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We present an automatic method to classify the sub-cellular location of proteins
based on the text of relevant medline abstracts. For each protein, a vector of terms
is generated from medline abstracts in which the protein/gene’s name or synonym
occurs. A Support Vector Machine (SVM) is used to automatically partition the
term space and to thus discriminate the textual features that define sub-cellular
location. The method is benchmarked on a set of proteins of known sub-cellular
location from S.cerevisiae. No prior knowledge of the problem domain nor any nat-
ural language processing is used at any stage. The method out-performs support
vector machines trained on amino acid composition and has comparable perfor-
mance to rule-based text classifiers. Combining text with protein amino-acid com-
position improves recall for some sub-cellular locations. We discuss the generality
of the method and its potential application to a variety of biological classification
problems.

1 Introduction

The sub-cellular localisation of a protein is a key element in understanding its
function. In order to carry out its physiological role, a protein must be often be
proximal to other components involved in that process; thus knowledge of sub-
cellular localization can restrict the number of possible pocesses with which a
protein can be involved. Location can also alter the experimental approach to
characterising a protein - e.g. purification.

Despite the importance of a protein’s sub-cellular localisation, automatic
prediction or extraction of this property has proved a suprisingly difficult task?!.
It has been know for sometime that the amino acid composition of protein
can be an indicator of its sub-cellular location 2. Tt is also clear that many
cellular compartments have proteins assigned to them according to targeting
signals within the protein sequences; however, such signals are not universal
or necessarily clearly defined.
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An alternative approach, pioneered by Eisenhaber and Bork is to use the
existing textual information relevant to a protein to classify it to a particular
sub-cellular location 2. This is achieved using a set of manually generated
biological rules and the SWISS-PROT annotations of the proteins 4. After
tokenizing the annotations the rules are applied and a sub-cellular location
extracted. They named this method Meta-Annotator. The authors report that
88% of SWISS-PROT entries can been assigned to a cellular compartment by
this method. This compares very favourably with the 22% that is achieved by

simple matching of relevant keywords within the documents.

Despite the success of this technique, it has two inherent weaknesses: first,
a set of rules must be generated - this is obviously less intensive than manually
classifying the documents, but is subjective and costly in time; second, in
order to tokenize the documents they must already be structured - free text
cannot be treated in such a manner without recourse to natural language
parsing (NLP). NLP is beginning to show great promise within the field of
biological informatics and has been successfully applied to extracting protein-
protein interactions ®, metabolic pathways %, and drug/gene relationships ”
from biological text. Although NLP often achieves very good precision, recall
is often disappointing - problems of synonymy and polysemy are very difficult
to overcome. In this work we investigate whether a simpler approach to the
problem can be successfully applied.

The method described in this paper is to treat the protein as a vector
of terms from relevant Medline documents. This approach derives from the
vector-based model common in information retrieval 8. The term weights of
a vector are a functions of their frequencies within the document collection
as a whole and the frequency within the relevant documents. Given a set of
protein term-vectors the task is to find some function that partitions the space
according to the localisation of the protein. For this task we employ support
vector machines (SVM) ?.

Support vector machines are a mathematical method for performing si-
multaneous dimension reduction and binary classification®. SVMs have been
applied to the problems of pattern recognition '°, regression estimation '° and
information retrieval '*. Because SVMs cope well with high dimensionality
and are very fast to train, they are particularly suited to problems in text
data-mining/information retrieval. Kwok studied the use of SVMs in text
catagorization of Reuters newswire documents 2. In this paper, we apply an
analogous approach to Medline/SWISS-PROT documents.

We evaluate the performance of SVMs in classifying a set of proteins of
known sub-cellular locations from S. cerevisiae. Text relevant to these proteins
is obtained from Medline by key-word matching of the gene naming terms.



SVMs trained on the resulting term vectors classify the proteins with good
precision and recall. We also show that SVMs trained on amino acid composi-
tions are out-performed by our SVMs trained to text data and that combining
amino acid composition and term vectors can enhance classification for some
sub-cellular locations.

2 Methods

2.1 Document and term processing

To obtain term vector representations of cerevisiae proteins we employed the
following procedure. First, we scanned 22517 Medline documents for occur-
rences of yeast gene naming terms. These terms and synonyms were obtained
from the Saccharomyces Genome Database gene registry '®¢. For each protein,
any document that contained an occurrence of the gene name or aliases of that
gene was considered relevant. This resulted in a collection of 12596 documents.
We employed stop word removal, stemming and removed stemmed terms that
occurred in fewer than five documents. The term representation of a gene is
a function of the number of relevant Medline documents and the occurrence
statistics of the terms. We employed a variant of inverse document frequency
(IDF) that takes account of the number of Medline documents relevant to a
particular gene. The weight of term i for gene k is given by :

log (1 + Z fi(wi)) —log N(w;) —log (1 + Ry) 1)

where f;(w;) is the frequency of term 4 in document j, N (w;) is the number
of documents containing term 4, and Ry, is the number of medline documents
relevant to gene k. Cooley suggests that the specific nature of term weighting
may not not be crucial to the performance of SVMs in text classification !!

2.2 Classification

The assignment of yeast proteins to sub-cellular compartments was obtained
from the MIPS web site ?. According to MIPS, 2233 proteins have known
locations in one or more of 16 categories. We limit our test and training data
to these proteins. The locations and numbers of proteins at each location
is shown in 1. For each location class, our training set consisted of half the
number of genes that fall into this category plus half the of the remaining

chttp://genome-www.stanford.edu/Saccharomyces/registry.html
davailable from http://mips.gsf.de/proj/yeast/catalogues/subcell/index.html



negative examples. The test set consists of the remaining proteins - positive
and negative cases.

Table 1: Number of positive examples in training and test sets for sub-cellular location

Role/location +ve in | +ve in test
training set | set
organisation of plasma membrane 67 63
organisation of cytoplasm 279 245
organisation of cytoskeleton 47 52
organisation of endoplasmatic reticulum | 68 80
organisation of Golgi 44 33
nuclear organisation 267 341
organisation of chromosome structure 19 18
mitochondrial organisation 174 155
peroxisomal organisation 19 12
vacuolar and lysosomal organisation 27 16
extracellular /secretion proteins 10 )

2.3 Training of SVM’s

We used the support vector machine program SVM Light package v3.50 14 ¢.
We trained a SVM for each classification using a linear kernel function with C

calculated as W(ww)

2.4 FEvaluation

We evaluate the classification performance using a variety of methods. For
traditional text retrieval evaluation measures based on precision/recall have
been widely used 5. We use precision/recall plots calculated on the distance
of each test vector from the SVM decision boundary; however, comparison
of performance between them is difficult because the classes contain different
numbers of positive examples. To assess the global performance of classification
methods we employed micro- and macro- averaging of the precision /recall data.
Micro-averaging determines precision and recall of a set of binary classifiers
averaged over the number of documents; this equates to evaluating average

¢available from http://ais.gmd.de/thorsten/svm_light



performance a document selected randomly from the test collection. In macro-
averaging, the recall/precision are averaged over the number of classes. Macro-
averaging estimates the expected performance of an SVM trained on a new
class; whereas micro-averaging estimates the performance of the system with
new documents. For our purposes, micro-averaging is more useful.

We also use the F1 measure proposed by van Rijsbergen’. F1 is given
by f%’; where p and r are precision and recall respectively. We determine
the maximal value of F1 for the performance of each system on a particular
classification.

3 Results
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Figure 1: Precision/recall plots for location classifiers trained on term vectors. Horizontal
lines indicate the performance of a random classifier

Precision/recall graphs for the various classifications are shown in figure
1. The performance of a random classifier is shown as a horizontal line in
each plot. At low levels of recall, the precision is generally very high (95%+).



Classes with a large number of positive examples - nuclear, cytoplasmic, and
mitochondrial - are better predicted than the rarer classifications. This is
reflected in averaged precision/recall shown in figure 2. The better apparent
performance from micro-averaging is a result of better prediction of bigger
classes. The values of Maxz(F1) are shown in table 2 and are much greater in
all cases than a random classifier.
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Figure 2: Micro and macro averaging of classification to 11 locational categories.

3.1 Sequence and text together improve classification

It has been known for some time that the amino acid composition of a protein
can be used as an indicator of its sub-cellular localisation '6-2. In particu-
lar, membrane associated proteins tend towards hydrophobicity, while intra-
cellular proteins tend to be low in cysteine and rich in aliphatic and charged
amino acids. Nuclear proteins generally contain disproportionally more charged
and polar residues.

Figure 3 illustrates the performance of support vector machines in dis-
criminating protein localisation based of their fractional composition of the
twenty amino acids. It can been seen that composition is a poor predictor
of ER, cytoskeleton, golgi, peroxisomal and vacuolar proteins, but good at



Table 2: Maximum F1-value for classifications

Role/location Max F1
text alone text +  composition random
composition alone

organisation of plasma membrane 0.54 0.56 0.47 0.12
organisation of cytoplasm 0.55 0.60 0.48 0.39
organisation of cytoskeleton 0.62 0.61 0.13 0.10
organisation of endoplasmatic reticulum | 0.65 0.66 0.10 0.14
organisation of Golgi 0.54 0.53 0.10 0.14
nuclear organisation 0.80 0.82 0.61 0.51
organisation of chromosome structure 0.52 0.52 0.20 0.04
mitochondrial organisation 0.75 0.75 0.36 0.27
peroxisomal organisation 0.67 0.65 0.03 0.01
vacuolar and lysosomal organisation 0.69 0.69 0.06 0.02
extracellular/secretion proteins 0.31 0.33 0.12 0.01

predicting cytoplasmic, membrane and nuclear proteins. Composition also
contains limited information on mitochondrial and chromosomal proteins. For
extra-cellular proteins the scarcity of data makes assessment difficult, but the
composition of these proteins gives better than random predictions.

When the test and training vectors derived from terms within Medline are
extended to include the amino acid composition, performance in classifying
proteins to the cytosol and nucleus is enhanced (table 2). In particular recall
is improved. This may reflect improved performance on those proteins which
have relatively few citations in the literature.

3.2 Detecting errors in annotation

Any manual method of gene annotation is liable to errors of omission and
mis-classification. We checked apparent false negatives and positives to assess
whether they were genuine by inspection of the relevant Medline documents.

For the cytosolic classification, the top scoring ‘false’ positive is cdc42,
a Rho-type GTPase involved in bud site assembly and cell polarity. cdc42
contains a CAAX motif for geranylgeranyl modification and is likely to be
associated with cell membranes. Ziman et al.,'” determined that cdc42 exists
in both a soluble form and membrane associated form within the cell; thus
cdc42 should be included in cytosolic classification. A similar situation exists
with yptl which is a GTP-binding protein required for vesicle transport from
ER to Golgi and within the Golgi stack. It also undergoes geranylgeranyl
modification, but the abundance and significance of any cytosolic form of the
protein is not clear.

There are several proteins which MIPS assigns to the nucleus that our
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Figure 3: Precision/recall plots for location classifiers trained on term and/or amino acid
composition vectors.

method correctly flags as being non-nuclear. These include: UBC6 - a ubiquitin-
conjugating enzyme, anchored in the ER membrane with the catalytically ac-
tive domain in cytoplasm!®; htsl - a histidyl-tRNA synthetase which is located
exclusively in the mitochondria and cytosol ; and SMI1 protein involved in
beta-1,3-glucan synthesis which has been shown to localise in patches at bud
sites 20.

4 Discussion

4.1  Functional classification using SVMs and text

Here we show that functional classification of genes can be facilitated by text
analysis of documents relevant to a gene. Other than a list of gene naming
terms and synonyms, our method uses no prior knowledge of the problem
domain nor any information from previously compiled sequence databases.



Automatic functional assignment of proteins can be used to improve man-
ual assignment by spotting errors and increasing recall. Such errors may be
simple mistakes, or the result of partial or incorrect information or understand-
ing on the part of the human classifier. Even in the absence of such errors,
assessments of what constitutes a correct assignment of documents into a clas-
sification will vary from user to user; thus there is a theoretical limit to the
precision of an automatic classifier. For nuclear and mitochondrial proteins,
automatic classification may be approaching this limit.

Although amino acid composition is generally a poor indicator of sub-
cellular location, for some locations sequence provides a strong signal. In such
cases, combining text and composition features can enhance recall.

4.2 Comparison with other methods

To compare our classification methods to that of Eisenhaber and Bork, we
tested their algorithm (Meta-Annotator) on a subset of our original data that
is present in SWISS-PROT *. Meta-Annotator is outstandingly good at pre-
dicting mitochondrial proteins and very good at predicting nuclear proteins.

Because Meta-Annotator joins the golgi and endoplasmic reticulum (ER)
into a single class, we modified our treatment of this locational class. A single
SVM trained to distinguish golgi or ER from others performed very poorly,
probably because the intersection of these two sets is very small (8 cases)
according to the MIPS classification. We therefore used the max(F1) value
from micro-averaging of two SVMs trained on the ER and golgi proteins inde-
pendently. Text classification using SVMs out-performs Meta-Annotator for
cytoplasmic and golgi/ER proteins.

It should be borne in mind when comparing the two approaches that Meta-
Annotator involves a large ammount of manual intervention. Not only is the
method only applicable to a previously manually curated protein database
(Swiss-Prot), but it also has encoded into more than 1000 logical rules derived
from a human expert. Our approach requires no human input other than a
list of gene names and synonyms. Given these facts it is little wonder than
Meta-Annotator can generally out-perform our method. It is encouraging that
a generic automatic approach can perform so well. With a larger set of training
documents the SVM approach may be improved.

4.8 Combining features for functional classification of proteins

In this paper we have demonstrated that combining disparate features of a
protein can aid in the functional classification of that protein. With the advent
of many high-throughput studies of genes and proteins, many more features can



Table 3: Comparison of text SVMs and Meta-Annotator

Role/location Meta_A precsion/recall MetagF'1 max(F1) for text
organisation of cytoplasm 49/32 0.38 0.54
organisation of Golgi/ER 75/48 0.58 0.62
nuclear organisation 87/86 0.86 0.80
mitochondrial organisation  90/93 0.91 0.75

be used as training data for binary classifiers. These include protein interaction
data, features of the protein or DNA sequence and expression array data.
The inclusion of a variety of independent or semi-independent features should
improve recall since data for every protein may not be available from every
experiment. For example, our method can be applied to proteins/genes of
unknown sequence or conversely, sequence information can be used to infer
function in the absence of any text relevant to the protein/gene.

Support vector machines are well suited to classification tasks of high di-
mensionality in which many features may be noisy or irrelevant. There is no
doubt that data from expression array and protein interaction experiments can
yield insights into gene function, but the quality of such data is hard to deter-
mine. The method presented here may ameliorate some of these problems.

Finally, entities other than proteins and genes can be represented as high
dimensional vectors of text terms; these include whole organisms, protein com-
plexes, protein domains or motifs, small molecules, cells and arbitrary text
documents. In short, any entity which contains text, or for which relevant
texts can be retrieved can be placed within a classification scheme.
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