
CREATING KNOWLEDGE REPOSITORIES FROM
BIOMEDICAL REPORTS: THE MEDSYNDIKATE TEXT MINING SYSTEM

UDO HAHN MARTIN ROMACKER
Text Knowledge Engineering Lab, Freiburg University, D-79098 Freiburg, Germany

http://www.coling.uni-freiburg.de

STEFAN SCHULZ
Department of Medical Informatics, Freiburg University Hospital, D-79104 Freiburg

http://www.imbi.uni-freiburg.de/medinf

MEDSYNDIKATE is a natural language processor for automatically acquiring knowledge from
medical finding reports. The content of these documents is transferred to formal representa-
tion structures which constitute a corresponding text knowledge base. The system architecture
integrates requirements from the analysis of single sentences, as well as those of referentially
linked sentences forming cohesive texts. The strong demands MEDSYNDIKATE poses to the
availability of expressive knowledge sources are accounted for by two alternative approaches
to (semi)automatic ontology engineering. We also present data for the knowledge extraction
performance of MEDSYNDIKATE for three major syntactic patterns in medical documents.

1 Introduction

The application of methods from the field of natural language processing to biologi-
cal data has long been restricted to the parsing of molecular structures such as DNA
���. More recently, however, efforts have also been directed to capturing content from
biological documents (research reports, journal articles, etc.), either dealing with re-
stricted information extraction problems such as name recognition for proteins or gene
products �����, or more sophisticated ones which aim at the acquisition of knowledge
relating to protein or enzyme interactions, molecular binding behavior, etc. ������	.

Current information extraction (IE) systems, however, suffer from various weak-
nesses. First, their range of understanding is bounded by rather limited domain knowl-
edge. The templates these systems are supplied with allow only factual information
about particular, a priori chosen entities (cell type, virus type, protein group, etc.) to
be assembled from the analyzed documents. Also, these knowledge sources are con-
sidered to be entirely static. Accordingly, when the focus of interest of a user shifts
to (facets of) a topic not considered so far, new templates must be supplied or exist-
ing ones must be updated manually. In any case, for a modified set of templates the
analysis has to be rerun for the entire document collection. Templates also provide ei-
ther no or severely limited inferencing capabilities to reason about the template fillers
– hence, their understanding depth is low. Finally, the potential of IE systems for



dealing with textual phenomena is rather weak, if it is available at all. Reference re-
lations spanning over several sentences, however, may cause invalid knowledge base
structures to emerge so that incorrect information may be retrieved or inferred.

With the SYNDIKATE system family, we are addressing these shortcomings and
aim at a more sophisticated level of knowledge acquisition from real-world texts. The
source documents we deal with are currently taken from two domains, viz. test reports
from the information technology domain (ITSYNDIKATE �
) and medical finding re-
ports, the framework of the MEDSYNDIKATE system ��. MEDSYNDIKATE is de-
signed to acquire from each input text a maximum number of simple facts (“The find-
ings correspond to an adenocarcinoma.”), complex propositions (“All mucosa layers
show an inflammatory infiltration that mainly consists of lymphocytes.”), and evalu-
ative assertions (“The findings correspond to a severe chronical gastritis.”). Hence,
our primary goal is to extract conceptually deeper and inferentially richer forms of
relational information than that found by state-of-the-art IE systems. Also, rather
than restricting natural language processing intentionally to few templates, we here
present an open system architecture for knowledge extraction where text understand-
ing is constrained only by the unpredictable limits of available knowledge sources,
the domain ontology, in particular.

To achieve this goal, several requirements with respect to language processing
proper have to be fulfilled. As most of the IE systems, we require our parser to
be robust to underspecification and ill-formed input (cf. the protocols in ��). Unlike
almost all of them, our parsing system is particularly sensitive to the treatment of tex-
tual reference relations as established by various forms of anaphora ��. Furthermore,
since SYNDIKATE systems rely on a knowledge-rich infrastructure, particular care is
taken to provide expressive knowledge repositories on a larger scale. We are currently
exploring two approaches. First, we automatically enhance the set of already given
knowledge templates through incremental concept learning routines ��. Our second
approach makes use of the large body of knowledge that has already been assembled
in medical taxonomies and terminologies (e.g., the UMLS). That knowledge is auto-
matically transformed into a description logics format and, after interactive debugging
and refinement, integrated into a comprehensive medical knowledge base ��.

2 System Architecture

In the following, major design issues for MEDSYNDIKATE are discussed, with focus
on the distinction between sentence-level and text-level analysis. We will then turn
to two alternative ontology engineering methodologies satisfying the need for the
(semi)automatic supply of large amounts of background knowledge.

The overall architecture of SYNDIKATE is summarized in Figure 1. The general
task of any SYNDIKATE system consists of mapping each incoming text, � �, into a



Figure 1: System Architecture of SYNDIKATE

corresponding text knowledge base, ��� �, which contains a formal representation
of ��’s content. This knowledge will be exploited by various information services,
such as inferentially supported fact retrieval or text summarization.

2.1 Sentence-Level Understanding

Grammatical knowledge for syntactic analysis resides in a fully lexicalized depen-
dency grammar (cf. �� for details), we refer to as Lexicon in Figure 1. Basic word
forms (lexemes) constitute the leaf nodes of the lexicon tree, while grammatical gen-
eralizations from lexemes appear as lexeme class specifications at different levels of
abstraction. The Generic Lexicon in Figure 1 contains entries which are domain-
independent (such as move, with, or month), while domain-specific extensions are
kept in specialized lexicons serving the needs of particular subdomains, e.g., IT (note-
book, hard disk, etc.) or medicine (adenocarcinoma, gastric mucosa, etc.).

Conceptual knowledge is expressed in a KL-ONE-like representation language
(cf.�� for details). These languages support the definition of complex concept descrip-



tions by means of conceptual roles and corresponding role filler constraints which
introduce type restrictions on possible fillers. Taxonomic reasoning can be defined
as being primitive (following explicit links), or it can be realized by letting a classi-
fier engine compute subsumption relations between complex conceptual descriptions.
A distinction is made between concept classes (types) and instances (representing
concrete real-world entities). Most lexemes (except, e.g., pronouns, prepositions)
are directly associated with one (or, in case of polysemy, several) concept type(s).
Accordingly, when a new lexical item is read from the input text, a dedicated pro-
cess (word actor) is created for lexical parsing (step A in Figure 1), together with
an instance of the lexeme’s concept type (step B). Each word actor then negotiates
dependency relations by taking syntactic constraints from the already generated de-
pendency tree into account (step C), as well as conceptual constraints supplied by
the associated instance in the domain knowledge (step D) ��. As with the Lexicon,
the ontologies we provide are split up between one that serves all applications, the
Upper Ontology, while specialized ontologies account for the conceptual structure of
particular domains, e.g., information technology (NOTEBOOK, HARD-DISK, etc.), or
medicine (ADENOCARCINOMA, GASTRIC-MUCOSA, etc.).

Semantic knowledge is concerned with determining relations between instances
of concept classes based on the interpretation of so-called minimal semantically in-
terpretable subgraphs of the dependency graph. Such a subgraph is bounded by two
content words (nouns, verbs, adjectives) which may be directly linked by a single
dependency relation or indirectly by a sequence of dependency relations linking non-
content words only (e.g., prepositions, auxiliaries). Hence, a conceptual relation may
either be constrained by dependency relations (e.g., the subject: relation may only be
interpreted conceptually in terms of AGENT or PATIENT roles), by intervening non-
content words (e.g., some prepositions impose special role constraints, such as “with”
does in terms of HAS-PART or INSTRUMENT roles), or it may only be constrained by
conceptual compatibility between the concepts involved (e.g., for genitives) ��. The
specification of semantic knowledge shares many commonalities with domain knowl-
edge. Hence, the overlap in Figure 1.

2.2 Text-Level Understanding

The proper analysis of textual phenomena prevents inadequate text knowledge repre-
sentation structures to emerge in the course of sentence-centered analysis ��. Consider
the following text fragment:
(1) Der Befund entspricht einem hochdifferenzierten Adenokarzinom.

(The findings correspond to a highly differentiated adenocarcinoma.)
(2) Der Tumor hat einen Durchmesser von 2 cm.

(The tumor has a diameter of 2 cm.)



With purely sentence-oriented analyses, invalid knowledge bases are likely to
emerge, when each entity which has a different denotation at the text surface is treated
as a formally distinct item at the symbol level of knowledge representation, although
different denotations refer literally to the same conceptual entity. This is the case for
nominal anaphora, an example of which is given by the reference relation between
the noun phrase “Der Tumor” (the tumor) in Sentence (2) and “Adenokarzinom”
(adenocarcinoma) in Sentence (1). A false referential description appears in Figure
2, where TUMOR.2-05 is introduced as a new representational entity, whereas Figure
3 depicts the adequate, intended meaning at the conceptual representation level, viz.
maintaining ADENOCARCINOMA.6-04 as the proper referent.

Figure 2: Unresolved Nominal Anaphora

Figure 3: Resolved Nominal Anaphora

The methodological framework for tracking such reference relations at the text
level is provided by center lists �� (cf. step E in Figure 1). The ordering of their
elements indicates that the most highly ranked element is the most likely antecedent
of an anaphoric expression in the subsequent utterance, while the remaining elements
are ordered according to decreasing preference for establishing referential links.

�� [FINDINGS.2-01: Befund, ADENOCARCINOMA.6-04: Adenokarzinom]
�� [ADENOCARCINOMA.6-04: Tumor, DIAMETER.5-06: Durchmesser, CM: cm]

Table 1: Center Lists for Sentences (1) and (2)

In Table 1, the tuple notation takes the conceptual correlate of each noun in the
text knowledge base in the first place, while the lexical surface form appears in second
place. Using the center list of Sentence (1) for the interpretation of Sentence (2)
results in a series of queries whether FINDINGS is conceptually more special than
TUMOR (answer: No) or ADENOCARCINOMA is more special than TUMOR (answer:



Yes). As the second center list item for �� fulfils all required constraints (mainly
the one that ADENOCARCINOMA IS-A TUMOR), in the conceptual representation
structure of Sentence (2), TUMOR.2-05, the literal instance (cf. Figure 2), is replaced
by ADENOCARCINOMA.6-04, the referentially valid identifier (cf. Figure 3). As a
consequence, instead of having two unlinked sentence graphs for Sentence (1) and
(2) (e.g., cf. Figure 2) the reference resolution for nominal anaphora leads to joining
them in a single coherent and valid text knowledge graph in Figure 3.

Given a fact retrieval application, the validity of text knowledge bases becomes
a crucial issue. Disregarding textual phenomena will cause dysfunctional system be-
havior in terms of incorrect answers. This can be illustrated by a query Q such as

Q : (retrieve ?x (Tumor ?x))
A-: (Tumor.2-05, Adenocarcinoma.6-04)
A+: (Adenocarcinoma.6-04)

which triggers a search for all instances in the text knowledge base that are of type
TUMOR. Given an invalid knowledge base (cf. Figure 2), the incorrect answer (A-)
contains two entities, viz. TUMOR.2-05 and ADENOCARCINOMA.6-04, since both
are in the extension of the concept TUMOR. If, however, a valid text knowledge base
such as the one in Figure 3 is given, only the correct answer, ADENOCARCINOMA.6-
04, is inferred (A+).

2.3 Ontology Engineering

MEDSYNDIKATE requires a knowledge-rich infrastructure both in terms of gram-
mar and domain knowledge, which can hardly be maintained by human efforts alone.
Rather a significant amount of knowledge should be generated automatically. For
SYNDIKATE systems, we have chosen a dual strategy. One focuses on the incremen-
tal learning of new concepts while understanding the texts, the other is based on the
reuse of available comprehensive (though semantically weak) knowledge sources.

Concept Learning from Text. Extending a given core ontology by new concepts
as a by-product of the text understanding process builds on two different sources of
evidence — the already given domain knowledge, and the grammatical constructions
in which unknown lexical items occur in the source document.

The parser yields information from the grammatical constructions in which lexi-
cal items occur in terms of the labellings in the dependency graph. The kinds of syn-
tactic constructions in which unknown words appear are recorded and later assessed
relative to the credit they lend to a particular hypothesis. Typical linguistic indicators
that can be exploited for taxonomic integration are, e.g., appositions (‘the symptom
@A@’, with ‘@A@’ denoting the unknown word) or exemplification phrases (‘symp-
toms like @A@’), These constructions almost unequivocally determine ‘@A@’ when
considered as a medical concept to denote an instance of a SYMPTOM.



The conceptual interpretation of parse trees involving unknown words in the text
knowledge base leads to the derivation of concept hypotheses, which are further en-
riched by conceptual annotations. These reflect structural patterns of consistency,
mutual justification, analogy, etc. relative to already available concept descriptions
in the ontology or other concept hypotheses. Grammatical and conceptual evidence
of this kind, in particular their predictive “goodness” for the learning task, are rep-
resented by corresponding sets of linguistic and conceptual quality labels. Multiple
concept hypotheses for each unknown lexical item are organized in terms of hypothe-
sis spaces, each of which holds alternative or further specialized conceptual readings.
An inference engine coupled with the classifier, the so-called quality machine, esti-
mates the overall credibility of single concept hypotheses by taking the available set
of quality labels for each hypothesis into account (cf. �� for details).

Reengineering Medical Terminologies. The second approach makes use of the
large body of knowledge that has already been assembled in comprehensive medical
terminologies such as the UMLS��. The knowledge they contain, however, cannot be
applied directly to MEDSYNDIKATE, because it is characterized by inconsistencies,
circular definitions, insufficient depth, gaps, etc., and the lack of an inference engine.

The methodology for reusing weak medical knowledge consists of four steps
��. First, we create automatically KL-ONE-style logical expressions by feeding a
generator with data directly from the UMLS, i.e., the concepts and the semantic links
between concept pairs. In a second step, the imported concepts, already in a logical
format, are submitted to the classifier of the knowledge representation system (in our
case, LOOM) in order to check whether the terminological definitions are consistent
and non-circular. For those elements which are inconsistent, their validity is restituted
and definitional circles are removed manually by a medical domain expert. In the final
step the knowledge base which has emerged so far is manually rectified and refined
(e.g., by checking the adequacy of taxonomic and partonomic hierarchies).

3 Evaluating Knowledge Extraction Performance

3.1 Evaluation Framework

In quantitative terms, SYNDIKATE is neither a toy system nor a monster. The
Generic Lexicon currently includes 5,000 entries, while the MED Lexicon contributes
3,000 entries. Similarly, the Upper Ontology contains 1,500 concepts and roles, to
which the MED Ontology adds 2,500 concepts and roles. However, recent experi-
ments with reengineering the UMLS have resulted in a very large medical knowledge
base with 164,000 concepts and 76,000 relations �� that is currently under validation.

We extracted the text collection from the hospital information system of the
University Hospital in Freiburg (Germany). All finding reports in histopathology



from the first quarter of 1999 were initially included, altogether 4,973 documents.
However, for the time being MEDSYNDIKATE covers especially the subdomain of
gastro-intestinal diseases. Thus, 752 texts out of these 4,973 were extracted semi-
automatically in order to guarantee a sufficient coverage of domain knowledge. From
this collection, a random sample of 90 texts was taken and divided into two sets. 60
of them served as the training set which was used for parameter tuning of the system.
The remaining 30 texts were then used to measure the performance of the MEDSYN-
DIKATE system with unseen data. The configuration of the system was frozen prior
to analyzing the test set.

In the empirical study proper, three basic settings of dependency graphs were
evaluated, viz. ones containing genitives, prepositional phrases, as well as construc-
tions including modal verbs or auxiliaries. Genitives and prepositional phrases relate
fundamental biomedical concepts via associated roles at the conceptual level. Modal
and auxiliary verbs create a complex syntactic environment for the interpretation of
verbs, and, hence, the conceptual representation of medical processes and events.
For each instance of these configurations semantic interpretations were automatically
computed the result of which was judged for accuracy by two skilled raters.

Still, the way how a (gold) standard for semantic interpretation can be set up
is an issue of hot debates �	. In fact, conceptually annotated medical text corpora
do not exist at all, at least for the German language. At this level, the ontology we
have developed eases judgements, since it is based on a fine-grained relation hierar-
chy with clear sortal restrictions for role fillers. In anatomy, e.g., we use relations
such as ANATOMICAL-PART-OF, which is itself a subrelation of PHYSICAL-PART-
OF and PART-OF, and specialize it in order to account for subtle PART-OF relation-
ships. A very specific relation such as ANATOMICAL-PART-OF-MUCOSA refers to a
precise subset of entities to be related by the interpretation process. Therefore, re-
lating BRAIN to MUCOSA by ANATOMICAL-PART-OF-MUCOSA obviously would be
considered as incorrect, whereas relating LAMINA-PROPRIA-MUCOSAE would be
considered a reasonable interpretation.

3.2 Quantitative Analysis

The following tables contain data for both the training and the test set indicating the
quality of knowledge extraction as obtained for the three different syntactic settings.
Besides providing data for recall and precision, the tables are divided into two assess-
ment layers: “without interpretation” means that the system was not able to produce
an interpretation because of specification gaps, i.e., at least one of the two content
words in a minimal dependency graph under consideration was not specified. Note
that even for the training set which was intended to generate optimal results we were
unable to formulate reasonable and generally valid concept definitions for some of the



content words we encountered (e.g., for fuzzy expressions of locations: “In der Tiefe
der Schleimhaut” (“In the depth of the mucosa”)). The second group “with interpre-
tation” is divided into four categories. The label correct (non-ambiguous) qualifies, if
just a single and correct conceptual relation was computed by the semantic interpreta-
tion process. However, if the result was correct but yielded more than one conceptual
relation, the label correct (ambiguous) was assigned. An interpretation was consid-
ered incorrect when the conceptual relation was inappropriate. Finally, NIL was used
to indicate that an interpretation was performed (both concepts for the content words
were specified) but no conceptual relation could be computed.

Genitives. In the medical domain, as indicated by Table 2 the recall and precision
values for the interpretation of genitives are very encouraging both for the training set
(92% and 93%) and the test set (93% and 93%), respectively.� However, since gen-
itives, in general, provide no additional constraints how the conceptual correlates of
the two content words involved can be related, the number of ambiguous interpreta-
tions amounts to 13% and 36%, respectively.

Training Set Test Set
Recall 92% 93%
Precision 93% 93%
# occurrences . . . 168 91
. . . with interpretation 158 (94%) 86 (95%)

[confidence intervals] [89%-97%] [90%-98%]
. . . . . . correct (non-ambiguous) 125.5 (75%) 48.5 (53%)
. . . . . . correct (ambiguous) 22 (13%) 33 (36%)
. . . . . . incorrect 6.5 3.5
. . . . . . NIL 4 1
. . . without interpretation 10 (6%) 5 (5%)

Table 2: Evaluation of Genitives

Auxiliaries and Modals. Table 3 contains the results for modal verbs or auxil-
iaries. A semantic interpretation of modal/auxiliary verb complexes relates a content-
bearing verb with the conceptual correlate of the syntactic subject. In case of a passive
construction the direct-object-to-subject normalization has to be carried out.

Recall and precision for the training set are high (94% and 98%, respectively)
and, therefore, indicate that semantic interpretation can cope with almost all occur-
rences given an optimal degree of specification. The values for recall and precision
dropped to 80% and 84%, respectively, in the test set. The increase of NIL results
reveals that the granularity of the underlying domain model is insufficient as far as
conceptual relations are concerned. Although the corresponding concepts are mod-
elled, no conceptual relation between them could be determined.

�Confidence intervals for .95 probability are given in square brackets.



Training Set Test Set
Recall 94% 80%
Precision 98% 84%
# occurrences . . . 131 55
. . . with interpretation 125 (95%) 52 (95%)

[confidence intervals] [92%-99%] [84%-99%]
. . . . . . correct (non-ambiguous) 122 (93%) 43,5 (79%)
. . . . . . correct (ambiguous) 1 0
. . . . . . incorrect 0 0,5
. . . . . . NIL 2 8 (15%)
. . . without interpretation 6 (5%) 3 (5%)

Table 3: Evaluation of Modal Verbs and Auxiliaries

Prepositional phrases (PPs) are crucial for the semantic interpretation of a text,
since they introduce a wide variety of conceptual relations, such as spatial, temporal,
causal, or instrumental ones. The importance of PPs is reflected by their relative
frequency. In the training set and the test set, we encountered 1,108 prepositions,
which is a little bit less than 10% of the words in both sets (approximately 11,300).�
Provided also that the preposition’s syntactic head and its modifier participate in the
interpretation, at the phrase level, more than 25% of the texts’ contents is encoded by
PPs (certainly, this data also reflects a considerable degree of genre dependency).

Training Set Test Set
Recall 85% 85%
Precision 79% 81%
# occurrences . . . 562 278
. . . with interpretation 548 (98%) 253 (91%)

[confidence intervals] [96%-99%] [86%-93%]
. . . . . . correct (non-ambiguous) 401,5 (71%) 167 (60%)
. . . . . . correct (ambiguous) 32,5 (6%) 37,5 (13%)
. . . . . . incorrect 43 (8%) 30,5 (11%)
. . . . . . NIL 71 (13%) 18 (6%)
. . . without interpretation 14 (2%) 25 (9%)

Table 4: Evaluation of Prepositional Phrases

Considering the results for semantic interpretation of PPs (cf. Table 4), the values
for recall and precision are almost the same for the training set and the test set. Recall
climaxed at 85% for both the training set and the test set, whereas precision reached
79% for the training set and 81% for the test set. Getting almost the same performance

�Only 940 of these 1,108 were included in the empirical analysis, since 168 did not form a minimal
subgraph. Phrases like “zum Teil” (“partly”) map to a single meaning — as evidenced by the English
translation correlate — and were therefore excluded.



for both sets also reveals a stable level of semantic interpretation of PPs.�

4 Conclusions

We have introduced MEDSYNDIKATE, a system for mining knowledge from biomed-
ical reports. Emphasis was put on the role of various knowledge sources required for
‘deep’ text understanding. When turning from sentence-level to text-level analysis,
we considered representational inadequacies when text phenomena were not properly
accounted for and, hence, proposed a solution based on centering mechanisms.

The enormous knowledge requirements posed by our approach can only be rea-
sonably met when knowledge engineering does not rely on human efforts only. Hence,
a second major issue we have focused on concerns alternative ways to support knowl-
edge acquisition and guarantee, this way, a reasonable chance for scalability of the
system. We made two proposals. The first one deals with an automatic concept learn-
ing methodology that is fully embedded in the text understanding process, the other
one exploits the vast amounts of medical knowledge assembled in various knowledge
repositories such as the UMLS. We, finally, provided empirical data which character-
izes the knowledge extraction performance of MEDSYNDIKATE in terms of three
major syntactic structures, viz. genitives, modals and auxiliaries, and prepositional
phrases. These reflect, at the linguistic level, fundamental categories of biomedical
ontologies — states, processes, and actions.
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