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Today’s Topics

• Poly Mesh
 Hidden Surface Removal
 Visible Surface Determination

---------------------------
• Noise and Turbulence

 Clouds
 Marble
 Other Effects
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Rendering a Polymesh

• Scene is composed of triangles or other
polygons.

• We want to view the scene from different
view-points.
 Hidden Surface Removal

• Cull out surfaces or parts of surfaces that are not
visible.

 Visible Surface Determination
• Head right for the surfaces that are visible.
• Ray-Tracing is one way to do this.
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Wireframe Rendering

Copyright (C) 2000,2001,2002 Free Software
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA Everyone is permitted to copy
and distribute verbatim copies of this license
document, but changing it is not allowed.

Hidden-
Line
Removal

Hidden-
Face
Removal
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Convex Polyhedra

We can see a face if and only if
its normal has a component
toward us.

N·V > 0
V points from the face toward
the viewer.

N point toward the outside of the
polyhedra.
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Hidden Surface Removal
• Backface culling

 Never show the back of a polygon.
• Viewing frustum culling

 Discard objects outside the camera’s view.
• Occlusion culling

 Determining when portions of objects are hidden.
• Painter’s Algorithm
• Z-Buffer

• Contribution culling
 Discard objects that are too far away to be seen.

http://en.wikipedia.org/wiki/Hidden_face_removal
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Painter’s Algorithm
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Painter’s Algorithm

Sort objects back to front relative to the
viewpoint.

for each object (in the above order) do
draw it on the screen
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Painter’s Problem
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Z-Buffer

This image is licensed under the
Creative Commons Attribution License v. 2.0.

The Z-Buffer is usually part of
graphics card hardware. It can
also be implemented in software.

The depth of each pixel is stored
in the z-buffer.

The Z-Buffer is a 2D array that
holds one value for each pixel.

An object is rendered at a pixel
only if its z-value is higher(lower)
than the buffer value.  The buffer
is then updated.
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Visible Surface Determination

• If surfaces are invisible, don’t render them.
 Ray Tracing

• We only render the nearest object.
 Binary Space Partitioning (BSP)

• Recursively cut up space into convex sets with
hyperplanes.

• The scene is represented by a BSP-tree.
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Sorting the Polygons

The first step of the Painter’s algorithm is:
Sort objects back to front relative to the 

viewpoint.
The relative order may not be well defined.
We have to reorder the objects when we

change the viewpoint.
The BSP algorithm and BSP trees solve

these problems.
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Binary Space Partition

• Our scene is made of triangles.
 Other polygons can work too.

• Assume no triangle crosses the plane of
any other triangle.
 We relax this condition later.

following Shirley et al.
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BSP – Basics
• Let a plane in 3-space (or line in 2-space) be

defined implicitly, i.e.
 f(P) = f(x, y, z) = 0 in 3-space
 f(P) = f(x, y) = 0 in 2-space

• All the points P such that f(P) > 0 lie on one side
of the plane (line).

• All the points P such that f(P) < 0 lie on the other
side of the plane (line).

• Since we have assumed that all vertices of a
triangle lie on the same side of the plane (line),
we can tell which side of a plane a triangle lies
on.



February 17, 2009 15College of Computer and Information Science, Northeastern University

BSP on a Simple Scene

Suppose scene has 2 triangles
T1 on the plane f(P) = 0

  T2 on the f(P) < 0 side
 e is the eye.

if f(e) < 0 then
draw T1; draw T2

 else
draw T2; draw T1
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The BSP Tree
Suppose scene has many triangles, T1, T2, … .
We still assume no triangle crosses the plane of any other

triangle.
Let fi(P) = 0 be the equation of the plane containing Ti.
The BSPTREE has a node for each triangle with T1 at the

root.
At the node for Ti,

the minus  subtree contains all the triangles whose
vertices have fi(P) < 0
the plus  subtree contains all the triangles whose
vertices have fi(P) > 0.
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BSP on a non-Simple Scene

function draw(bsptree tree, point e)
if (tree.empty) then

return
if (ftree.root(e) < 0) then

draw(tree.plus, e)
render tree.triangle
draw(tree.minus, e)

else
draw(tree.minus, e)
render tree.triangle
draw(tree.plus, e)
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2D BSP Trees Demo

http://symbolcraft.com/graphics/bsp/

This is a demo in 2 dimensions.

The objects are line segments.

The dividing hyperplanes are lines.



Building the BSP Tree
We still assume no triangle crosses the plane of another triangle.

tree = node(T1)
for  i ∈ {2, …, N} do tree.add(Ti)

function add (triangle T)
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then

if (tree.minus.empty) then 
tree.minus = node(T)

else
 tree.minus.add(T)

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then
 if (tree.plus.empty) then 

 tree.plus = node(T)
else

tree.plus.add(T)
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Triangle Crossing a Plane
a

c

b

A

B

Two vertices, a and b,
will be on one side and
one, c,  on the other side.

Find intercepts , A and B,
of the plane with the 2
edges that cross it.
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Cutting the Triangle
a

c

b

A

B

Cut the triangle into three
triangles, none of which
cross the cutting plane.

Be careful when one or
more of a, b, and c is
close to or on the cutting
plane.
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Binary Space Partition
of Polygons

by Fredrik (public domain)
http://en.wikipedia.org/wiki/User:Fredrik
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Scan-Line Algorithm
• Romney, G. W., G. S. Watkins, D. C. Evans, "Real-Time

Display of Computer Generated Half-Tone Perspective
Pictures", IFIP, 1968, 973-978.

• Scan Line Conversion of Polymesh - like Polyfill

• Edge Coherence / Scanline Coherence
• 1) Most edges don’t hit a given scanline- keep track of

those that do.
• 2) Use the last point on an edge to compute the next

one.  xi+1 = xi + 1/m
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Polygon Data Structure

edges
xmin ymax 1/m •

1 6 8/4 •

(1, 2)

(9, 6)

xmin = x value at lowest y

ymax = highest y

Why 1/m?
If y = mx + b, x = (y-b)/m.

x at y+1 = (y+1-b)/m = (y-b)/m + 1/m.
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Preprocessing the edges

count twice,
once for each
edge

chop lowest pixel
to only count
oncedelete

horizontal
edges

For a closed polygon, there should be an even number
of crossings at each scan line.

We fill between each successive pair.



Polygon
Data Structure
after preprocessing

Edge Table (ET) has a list of
edges for each scan line.

e1

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

13

12

11

10 → e6

9

8

7 → e4 → e5

6 → e3 → e7 → e8

5

4

3

2

1 → e2 → e1 → e11

0 → e10 → e9

e11

7 → e3 → e4 → e5

6 → e7 → e8

11 → e6

10
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The Algorithm
1. Start with smallest nonempty y value in ET.
2. Initialize SLB (Scan Line Bucket) to nil.
3. While current y ≤ top y value:

a. Merge y bucket from ET into SLB; sort on xmin.
b. Fill pixels between rounded pairs of x values in SLB.
c. Remove edges from SLB whose ytop = current y.
d. Increment xmin by 1/m for edges in SLB.
e. Increment y by 1.



Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

ET
13
12

11  → e6
10
9
8

7 → e3 → e4 → e5
6 → e7 → e8
5
4
3
2

1 → e2 → e11
0 → e10→ e9

xmin ymax 1/m
e2 2 6 -2/5
e3 1/3 12 1/3
e4 4 12 -2/5
e5 4 13 0
e6 6 2/3 13 -4/3
e7 10 10 -1/2
e8 10 8 2
e9 11 8 3/8
e10 11 4 -3/4
e11 6 4 2/3

50 10 15



February 17, 2009 29College of Computer and Information Science, Northeastern University

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

50 10 15

y=0

SCB→ 11 4 -3/4 •

11 8 3/8 •
e9

e10
10 1/4

11 3/8
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Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

50 10 15

y=1

SLB→ 2 6 -2/5 •

6 4 2/3 •
e11

e2
1 3/5

10 1/4 4 -3/4 •

11 3/8 8 3/8 •
e9

e10

6 2/3

9 1/2

11 6/8
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Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

50 10 15

y=2

SLB→ 1 3/5 6 -2/5 •

6 2/3 4 2/3 •
e11

e2

9 1/2 4 -3/4 •

11 6/8 8 3/8 •
e9

e10

12 1/8

8 3/4

7 1/3

1 1/5
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Running the
Algorithm

e3
e4

e5

e6

e7
e8

e9

e10
0

5

10

13

50 10 15

y=3

SLB→ 1 1/5 6 -2/5 •

7 1/3 4 2/3 •
e11

e2

8 3/4 4 -3/4 •

12 1/8 8 3/8 •
e9

e10

12 4/8

8

8

4/5

e11e2
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Running the
Algorithm

e3
e4

e5

e6

e7
e8

e10
0

5

10

13

50 10 15

y=4

SLB→ 4/5 6 -2/5 •

8 4 2/3 •
e11

e2

8 4 -3/4 •

12 4/8 8 3/8 •
e9

e10 e11e2
e9

Remove these edges.
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Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=4

SLB→ 4/5 6 -2/5 •
e2

12 4/8 8 3/8 •
e9

12 7/8

2/5

e2 e11
e10

e9
e11 and e10 are removed.
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Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=5

SLB→ 2/5 6 -2/5 •
e2

12 7/8 8 3/8 •
e9

13 2/8

0

e2 e11
e10

e9
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Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=6

SLB→ 0 6 -2/5 •
e2

10 10 -1/2 •
e7

e2 e11
e10

e9

Remove this edge.

10 8 2 •
e8

13 2/8 8 3/8 •
e9

9 1/2

12

13 5/8



Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=7

SLB→

4 13 0 •
e5

9 1/2 10 -1/2 •
e7

e2 e11
e10

e9

12 8 2 •
e8

13 5/8 8 3/8 •
e9

Add these edges.

4 12 -2/5 •
e4

1/3 12 1/3 •
e3
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ET – the Edge Table
The EdgeTable is for all nonhorizontal edges of all

polygons.

ET has buckets based on edges smaller y-coordinate.
Edge Data:

 x-coordinate of smaller y-coordinate
 y-top
 1/m = delta x
 polygon identification #: which polygons the edge

belongs to
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Polygon Table

Polygon Table
A, B, C, D of the plane equation
shading or color info (e.g. color and N)
in (out) boolean

initialized to false (= out) at start of scanline
z – at lowest y, x



February 17, 2009 40College of Computer and Information Science, Northeastern University

Coherence

• Non-penetrating polygons maintain their
relative z values.
 If the polygons penetrate, add a false edge.

• If there is no change in edges from one
scanline to the next, and no change in
order wrt x, then no new computations of z
are needed.
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Active Edge Table
Keep in order of increasing x.

At (1) AET → AB → AC → DF → EF

A

B

CD

E

F

1

2

1 2 3 4

1 2 3 4
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Running the Algorithm 1
If more than one in is true, compute the z values at that
point to see which polygon is furthest forward.

If only one in is true, use that polygon’s color and shading.

A

B

CD

E

F

1

2

1 2 3 4

1 2 3 4
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Running the Algorithm 2
On crossing an edge

set in of polygons with that edge to not in.

At (2) AET → AB → DF → AC → EF

If there is a third polygon,
GHIJ behind the other two,
after edge AC is passed at
level (2) there is no need to
evaluate z again - if the
polygons do not pierce each
other.

A

B

CD

E

F

1

2

1 2 3 4

1 2 3 4
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Time for a Break



Perlin Noise
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Noise Reference Links

• Perlin Noise by Ken Perlin
• Perlin Noise by Hugo Elias
• Perlin Noise and Turbulence by Paul Bourke
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The Oscar™

To Ken Perlin for the
development of
Perlin Noise, a
technique used to
produce natural
appearing textures
on computer
generated surfaces
for motion picture
visual effects.
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The Movies
• James Cameron Movies (Abyss,Titanic,...)
• Animated Movies (Lion King, Moses,...)
• Arnold Movies (T2, True Lies, ...)
• Star Wars Episode I
• Star Trek Movies
• Batman Movies
• and lots of others

In fact, after around 1990 or so, every Hollywood
effects film has used it.
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What is Noise?

• Noise is a mapping from Rn to R - you
input an n-dimensional point with real
coordinates, and it returns a real value.

• n=1 for animation
• n=2 cheap texture hacks
• n=3 less-cheap texture hacks
• n=4 time-varying solid textures
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Noise is Smooth
Randomness
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Making Linear Noise

1. Generate random values at grid points.
2. Interpolate linearly between these values.
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Making Splined Noise

1. Generate random values at grid points.
2. Interpolate smoothly between these values.



February 17, 2009 53College of Computer and Information Science, Northeastern University

lerping

lerp(v1, v2, t) = (1 – t)v1 + tv2

P

Q

(1-t)P + tQ

t of the distance from P to Q
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2D Linear Noise

253  45  3

145  68  37

50  5  241

228  154  219

199  57  20 139  80  230
154  74  178

101  15  182

207  133  174
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3D Linear Noise
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Noise is Smooth
Randomness
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Perlin Noise Sphere
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Noise Code

MATLAB Noise Code

Don’t click this.
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Turbulence or Sum
1/fn(noise)

Perlin Noise and Turbulence by Baul Bourke

noise(p) + ½ noise(2p) + ¼ noise(4p) ...
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Turbulence and Persistence

( ) ( )
1

0

Noise  

    .

 2.

 0 1.

n
i i

i

n

x p b x

n p

b

p p

!

=

=

<

=

< "

#Turbulence

where is the smallest integer such that size of a pixel

Usually

is the persistence, 

See Perlin Noise by Hugo Elias for more about
persistence.
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Perlin Sum 1/f(noise)
Sphere
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Perlin Sum 1/f(|noise|)
Sphere
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2D Nornalized Turbulence

Just Noise
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2D Turbulence
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Turbulence Code



function turb = LinearTurbulence2(u, v, noise, divisor)
% double t, scale;
% LN(u, v) +LN(2u, 2v)/2 + LN(4u, 4v)/4 + ...
% Value is between between 0 and 2.

    t = 0;
    scale = 1;
    while (scale >= 1/divisor)
        t = t + linearNoise2(u/scale, v/scale, noise) * scale;
        scale = scale/2;
    end

    turb = t/2; % now value is between 0 and 1
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Marble

factorG  = sqrt(abs(sin(x + twist*turbulence(x, y, noise)
color = (0, trunc(factorG*255), 255);



Clouds

r = sqrt((x-200/d)*(x-200/d) + (y-200/d)*(y-200/d));
factorB = abs(cos(r + fluff*turbulence(x, y, noise));
color=(127 + 128*(1 - factorB), 127 + 128*(1 - factorB), 255);
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Fire
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Plane Flame Code
(MATLAB)

w = 300;     h = w + w/2;     x=1:w;     y=1:h;

flameColor = zeros(w,3); % Set a color for each x
flameColor(x,:)=…

[1-2*abs(w/2-x)/w; max(0,1-4*abs(w/2-x)/w); zeros(1,w)]';

flame=zeros(h,w,3); % Set colors for whole flame
% 1 <= x=j <= 300=h, 1 <= y=451-i <= 450=h+h/2
for i = 1:h
    for j = 1:w
        flame(i,j,:)=(1-(h-i)/h)*flameColor(j,:);
    end
end
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Turbulent Flame Code
(MATLAB)

for u = 1:450
    for v = 1:300
        x = round(u+80*Tarray(u,v,1)); x = max(x,2); x = min(x,449);
        y = round(v+80*Tarray(u,v,2)); y = max(y,2); y = min(y,299);
        flame2(u,v,:) = flame(x,y,:);
    end
end



function Tarray = turbulenceArray(m,n)
noise1 = rand(39,39);
noise2 = rand(39,39);
noise3 = rand(39,39);
divisor = 64;
Tarray = zeros(m,n);

for i = 1:m
    for j = 1:n
       Tarray(i,j,1) = LinearTurbulence2(i/divisor, j/divisor, noise1, divisor);
        Tarray(i,j,2) = LinearTurbulence2(i/divisor, j/divisor, noise2, divisor);
        Tarray(i,j,3) = LinearTurbulence2(i/divisor, j/divisor, noise3, divisor);
    end
end
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Student Images
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Student Images
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Student Images
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Perlin’s Clouds and Corona


