
February 17, 2009 1College of Computer and Information Science, Northeastern University

CS G140
Graduate Computer Graphics

Prof. Harriet Fell
Spring 2009

Lecture 7 – February 18, 2009

February 17, 2009 2College of Computer and Information Science, Northeastern University

Today’s Topics

• Poly Mesh
 Hidden Surface Removal
 Visible Surface Determination

• Noise and Turbulence

 Clouds
 Marble
 Other Effects

February 17, 2009 3College of Computer and Information Science, Northeastern University

Rendering a Polymesh

• Scene is composed of triangles or other
polygons.

• We want to view the scene from different
view-points.
 Hidden Surface Removal

• Cull out surfaces or parts of surfaces that are not
visible.

 Visible Surface Determination
• Head right for the surfaces that are visible.
• Ray-Tracing is one way to do this.

February 17, 2009 4College of Computer and Information Science, Northeastern University

Wireframe Rendering

Copyright (C) 2000,2001,2002 Free Software
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA Everyone is permitted to copy
and distribute verbatim copies of this license
document, but changing it is not allowed.

Hidden-
Line
Removal

Hidden-
Face
Removal

February 17, 2009 5College of Computer and Information Science, Northeastern University

Convex Polyhedra

We can see a face if and only if
its normal has a component
toward us.

N·V > 0
V points from the face toward
the viewer.

N point toward the outside of the
polyhedra.

February 17, 2009 6College of Computer and Information Science, Northeastern University

Hidden Surface Removal
• Backface culling

 Never show the back of a polygon.
• Viewing frustum culling

 Discard objects outside the camera’s view.
• Occlusion culling

 Determining when portions of objects are hidden.
• Painter’s Algorithm
• Z-Buffer

• Contribution culling
 Discard objects that are too far away to be seen.

http://en.wikipedia.org/wiki/Hidden_face_removal

February 17, 2009 7College of Computer and Information Science, Northeastern University

Painter’s Algorithm

February 17, 2009 8College of Computer and Information Science, Northeastern University

Painter’s Algorithm

Sort objects back to front relative to the
viewpoint.

for each object (in the above order) do
draw it on the screen

February 17, 2009 9College of Computer and Information Science, Northeastern University

Painter’s Problem

February 17, 2009 10College of Computer and Information Science, Northeastern University

Z-Buffer

This image is licensed under the
Creative Commons Attribution License v. 2.0.

The Z-Buffer is usually part of
graphics card hardware. It can
also be implemented in software.

The depth of each pixel is stored
in the z-buffer.

The Z-Buffer is a 2D array that
holds one value for each pixel.

An object is rendered at a pixel
only if its z-value is higher(lower)
than the buffer value. The buffer
is then updated.

February 17, 2009 11College of Computer and Information Science, Northeastern University

Visible Surface Determination

• If surfaces are invisible, don’t render them.
 Ray Tracing

• We only render the nearest object.
 Binary Space Partitioning (BSP)

• Recursively cut up space into convex sets with
hyperplanes.

• The scene is represented by a BSP-tree.

February 17, 2009 12College of Computer and Information Science, Northeastern University

Sorting the Polygons

The first step of the Painter’s algorithm is:
Sort objects back to front relative to the

viewpoint.
The relative order may not be well defined.
We have to reorder the objects when we

change the viewpoint.
The BSP algorithm and BSP trees solve

these problems.

February 17, 2009 13College of Computer and Information Science, Northeastern University

Binary Space Partition

• Our scene is made of triangles.
 Other polygons can work too.

• Assume no triangle crosses the plane of
any other triangle.
 We relax this condition later.

following Shirley et al.

February 17, 2009 14College of Computer and Information Science, Northeastern University

BSP – Basics
• Let a plane in 3-space (or line in 2-space) be

defined implicitly, i.e.
 f(P) = f(x, y, z) = 0 in 3-space
 f(P) = f(x, y) = 0 in 2-space

• All the points P such that f(P) > 0 lie on one side
of the plane (line).

• All the points P such that f(P) < 0 lie on the other
side of the plane (line).

• Since we have assumed that all vertices of a
triangle lie on the same side of the plane (line),
we can tell which side of a plane a triangle lies
on.

February 17, 2009 15College of Computer and Information Science, Northeastern University

BSP on a Simple Scene

Suppose scene has 2 triangles
T1 on the plane f(P) = 0

 T2 on the f(P) < 0 side
 e is the eye.

if f(e) < 0 then
draw T1; draw T2

 else
draw T2; draw T1

February 17, 2009 16College of Computer and Information Science, Northeastern University

The BSP Tree
Suppose scene has many triangles, T1, T2, … .
We still assume no triangle crosses the plane of any other

triangle.
Let fi(P) = 0 be the equation of the plane containing Ti.
The BSPTREE has a node for each triangle with T1 at the

root.
At the node for Ti,

the minus subtree contains all the triangles whose
vertices have fi(P) < 0
the plus subtree contains all the triangles whose
vertices have fi(P) > 0.

February 17, 2009 17College of Computer and Information Science, Northeastern University

BSP on a non-Simple Scene

function draw(bsptree tree, point e)
if (tree.empty) then

return
if (ftree.root(e) < 0) then

draw(tree.plus, e)
render tree.triangle
draw(tree.minus, e)

else
draw(tree.minus, e)
render tree.triangle
draw(tree.plus, e)

February 17, 2009 18College of Computer and Information Science, Northeastern University

2D BSP Trees Demo

http://symbolcraft.com/graphics/bsp/

This is a demo in 2 dimensions.

The objects are line segments.

The dividing hyperplanes are lines.

Building the BSP Tree
We still assume no triangle crosses the plane of another triangle.

tree = node(T1)
for i ∈ {2, …, N} do tree.add(Ti)

function add (triangle T)
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then

if (tree.minus.empty) then
tree.minus = node(T)

else
 tree.minus.add(T)

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then
 if (tree.plus.empty) then

 tree.plus = node(T)
else

tree.plus.add(T)

February 17, 2009 20College of Computer and Information Science, Northeastern University

Triangle Crossing a Plane
a

c

b

A

B

Two vertices, a and b,
will be on one side and
one, c, on the other side.

Find intercepts , A and B,
of the plane with the 2
edges that cross it.

February 17, 2009 21College of Computer and Information Science, Northeastern University

Cutting the Triangle
a

c

b

A

B

Cut the triangle into three
triangles, none of which
cross the cutting plane.

Be careful when one or
more of a, b, and c is
close to or on the cutting
plane.

February 17, 2009 22College of Computer and Information Science, Northeastern University

Binary Space Partition
of Polygons

by Fredrik (public domain)
http://en.wikipedia.org/wiki/User:Fredrik

February 17, 2009 23College of Computer and Information Science, Northeastern University

Scan-Line Algorithm
• Romney, G. W., G. S. Watkins, D. C. Evans, "Real-Time

Display of Computer Generated Half-Tone Perspective
Pictures", IFIP, 1968, 973-978.

• Scan Line Conversion of Polymesh - like Polyfill

• Edge Coherence / Scanline Coherence
• 1) Most edges don’t hit a given scanline- keep track of

those that do.
• 2) Use the last point on an edge to compute the next

one. xi+1 = xi + 1/m

February 17, 2009 24College of Computer and Information Science, Northeastern University

Polygon Data Structure

edges
xmin ymax 1/m •

1 6 8/4 •

(1, 2)

(9, 6)

xmin = x value at lowest y

ymax = highest y

Why 1/m?
If y = mx + b, x = (y-b)/m.

x at y+1 = (y+1-b)/m = (y-b)/m + 1/m.

February 17, 2009 25College of Computer and Information Science, Northeastern University

Preprocessing the edges

count twice,
once for each
edge

chop lowest pixel
to only count
oncedelete

horizontal
edges

For a closed polygon, there should be an even number
of crossings at each scan line.

We fill between each successive pair.

Polygon
Data Structure
after preprocessing

Edge Table (ET) has a list of
edges for each scan line.

e1

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

13

12

11

10 → e6

9

8

7 → e4 → e5

6 → e3 → e7 → e8

5

4

3

2

1 → e2 → e1 → e11

0 → e10 → e9

e11

7 → e3 → e4 → e5

6 → e7 → e8

11 → e6

10

February 17, 2009 27College of Computer and Information Science, Northeastern University

The Algorithm
1. Start with smallest nonempty y value in ET.
2. Initialize SLB (Scan Line Bucket) to nil.
3. While current y ≤ top y value:

a. Merge y bucket from ET into SLB; sort on xmin.
b. Fill pixels between rounded pairs of x values in SLB.
c. Remove edges from SLB whose ytop = current y.
d. Increment xmin by 1/m for edges in SLB.
e. Increment y by 1.

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

ET
13
12

11 → e6
10
9
8

7 → e3 → e4 → e5
6 → e7 → e8
5
4
3
2

1 → e2 → e11
0 → e10→ e9

xmin ymax 1/m
e2 2 6 -2/5
e3 1/3 12 1/3
e4 4 12 -2/5
e5 4 13 0
e6 6 2/3 13 -4/3
e7 10 10 -1/2
e8 10 8 2
e9 11 8 3/8
e10 11 4 -3/4
e11 6 4 2/3

50 10 15

February 17, 2009 29College of Computer and Information Science, Northeastern University

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

50 10 15

y=0

SCB→ 11 4 -3/4 •

11 8 3/8 •
e9

e10
10 1/4

11 3/8

February 17, 2009 30College of Computer and Information Science, Northeastern University

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

50 10 15

y=1

SLB→ 2 6 -2/5 •

6 4 2/3 •
e11

e2
1 3/5

10 1/4 4 -3/4 •

11 3/8 8 3/8 •
e9

e10

6 2/3

9 1/2

11 6/8

February 17, 2009 31College of Computer and Information Science, Northeastern University

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

50 10 15

y=2

SLB→ 1 3/5 6 -2/5 •

6 2/3 4 2/3 •
e11

e2

9 1/2 4 -3/4 •

11 6/8 8 3/8 •
e9

e10

12 1/8

8 3/4

7 1/3

1 1/5

February 17, 2009 32College of Computer and Information Science, Northeastern University

Running the
Algorithm

e3
e4

e5

e6

e7
e8

e9

e10
0

5

10

13

50 10 15

y=3

SLB→ 1 1/5 6 -2/5 •

7 1/3 4 2/3 •
e11

e2

8 3/4 4 -3/4 •

12 1/8 8 3/8 •
e9

e10

12 4/8

8

8

4/5

e11e2

February 17, 2009 33College of Computer and Information Science, Northeastern University

Running the
Algorithm

e3
e4

e5

e6

e7
e8

e10
0

5

10

13

50 10 15

y=4

SLB→ 4/5 6 -2/5 •

8 4 2/3 •
e11

e2

8 4 -3/4 •

12 4/8 8 3/8 •
e9

e10 e11e2
e9

Remove these edges.

February 17, 2009 34College of Computer and Information Science, Northeastern University

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=4

SLB→ 4/5 6 -2/5 •
e2

12 4/8 8 3/8 •
e9

12 7/8

2/5

e2 e11
e10

e9
e11 and e10 are removed.

February 17, 2009 35College of Computer and Information Science, Northeastern University

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=5

SLB→ 2/5 6 -2/5 •
e2

12 7/8 8 3/8 •
e9

13 2/8

0

e2 e11
e10

e9

February 17, 2009 36College of Computer and Information Science, Northeastern University

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=6

SLB→ 0 6 -2/5 •
e2

10 10 -1/2 •
e7

e2 e11
e10

e9

Remove this edge.

10 8 2 •
e8

13 2/8 8 3/8 •
e9

9 1/2

12

13 5/8

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

50 10 15

y=7

SLB→

4 13 0 •
e5

9 1/2 10 -1/2 •
e7

e2 e11
e10

e9

12 8 2 •
e8

13 5/8 8 3/8 •
e9

Add these edges.

4 12 -2/5 •
e4

1/3 12 1/3 •
e3

February 17, 2009 38College of Computer and Information Science, Northeastern University

ET – the Edge Table
The EdgeTable is for all nonhorizontal edges of all

polygons.

ET has buckets based on edges smaller y-coordinate.
Edge Data:

 x-coordinate of smaller y-coordinate
 y-top
 1/m = delta x
 polygon identification #: which polygons the edge

belongs to

February 17, 2009 39College of Computer and Information Science, Northeastern University

Polygon Table

Polygon Table
A, B, C, D of the plane equation
shading or color info (e.g. color and N)
in (out) boolean

initialized to false (= out) at start of scanline
z – at lowest y, x

February 17, 2009 40College of Computer and Information Science, Northeastern University

Coherence

• Non-penetrating polygons maintain their
relative z values.
 If the polygons penetrate, add a false edge.

• If there is no change in edges from one
scanline to the next, and no change in
order wrt x, then no new computations of z
are needed.

February 17, 2009 41College of Computer and Information Science, Northeastern University

Active Edge Table
Keep in order of increasing x.

At (1) AET → AB → AC → DF → EF

A

B

CD

E

F

1

2

1 2 3 4

1 2 3 4

February 17, 2009 42College of Computer and Information Science, Northeastern University

Running the Algorithm 1
If more than one in is true, compute the z values at that
point to see which polygon is furthest forward.

If only one in is true, use that polygon’s color and shading.

A

B

CD

E

F

1

2

1 2 3 4

1 2 3 4

February 17, 2009 43College of Computer and Information Science, Northeastern University

Running the Algorithm 2
On crossing an edge

set in of polygons with that edge to not in.

At (2) AET → AB → DF → AC → EF

If there is a third polygon,
GHIJ behind the other two,
after edge AC is passed at
level (2) there is no need to
evaluate z again - if the
polygons do not pierce each
other.

A

B

CD

E

F

1

2

1 2 3 4

1 2 3 4

February 17, 2009 44College of Computer and Information Science, Northeastern University

Time for a Break

Perlin Noise

February 17, 2009 46College of Computer and Information Science, Northeastern University

Noise Reference Links

• Perlin Noise by Ken Perlin
• Perlin Noise by Hugo Elias
• Perlin Noise and Turbulence by Paul Bourke

February 17, 2009 47College of Computer and Information Science, Northeastern University

The Oscar™

To Ken Perlin for the
development of
Perlin Noise, a
technique used to
produce natural
appearing textures
on computer
generated surfaces
for motion picture
visual effects.

February 17, 2009 48College of Computer and Information Science, Northeastern University

The Movies
• James Cameron Movies (Abyss,Titanic,...)
• Animated Movies (Lion King, Moses,...)
• Arnold Movies (T2, True Lies, ...)
• Star Wars Episode I
• Star Trek Movies
• Batman Movies
• and lots of others

In fact, after around 1990 or so, every Hollywood
effects film has used it.

February 17, 2009 49College of Computer and Information Science, Northeastern University

What is Noise?

• Noise is a mapping from Rn to R - you
input an n-dimensional point with real
coordinates, and it returns a real value.

• n=1 for animation
• n=2 cheap texture hacks
• n=3 less-cheap texture hacks
• n=4 time-varying solid textures

February 17, 2009 50College of Computer and Information Science, Northeastern University

Noise is Smooth
Randomness

February 17, 2009 51College of Computer and Information Science, Northeastern University

Making Linear Noise

1. Generate random values at grid points.
2. Interpolate linearly between these values.

February 17, 2009 52College of Computer and Information Science, Northeastern University

Making Splined Noise

1. Generate random values at grid points.
2. Interpolate smoothly between these values.

February 17, 2009 53College of Computer and Information Science, Northeastern University

lerping

lerp(v1, v2, t) = (1 – t)v1 + tv2

P

Q

(1-t)P + tQ

t of the distance from P to Q

February 17, 2009 54College of Computer and Information Science, Northeastern University

2D Linear Noise

253 45 3

145 68 37

50 5 241

228 154 219

199 57 20 139 80 230
154 74 178

101 15 182

207 133 174

February 17, 2009 55College of Computer and Information Science, Northeastern University

3D Linear Noise

February 17, 2009 56College of Computer and Information Science, Northeastern University

Noise is Smooth
Randomness

February 17, 2009 57College of Computer and Information Science, Northeastern University

Perlin Noise Sphere

February 17, 2009 58College of Computer and Information Science, Northeastern University

Noise Code

MATLAB Noise Code

Don’t click this.

February 17, 2009 59College of Computer and Information Science, Northeastern University

Turbulence or Sum
1/fn(noise)

Perlin Noise and Turbulence by Baul Bourke

noise(p) + ½ noise(2p) + ¼ noise(4p) ...

February 17, 2009 60College of Computer and Information Science, Northeastern University

Turbulence and Persistence

() ()
1

0

Noise

 .

 2.

 0 1.

n
i i

i

n

x p b x

n p

b

p p

!

=

=

<

=

< "

#Turbulence

where is the smallest integer such that size of a pixel

Usually

is the persistence,

See Perlin Noise by Hugo Elias for more about
persistence.

February 17, 2009 61College of Computer and Information Science, Northeastern University

Perlin Sum 1/f(noise)
Sphere

February 17, 2009 62College of Computer and Information Science, Northeastern University

Perlin Sum 1/f(|noise|)
Sphere

February 17, 2009 63College of Computer and Information Science, Northeastern University

2D Nornalized Turbulence

Just Noise

February 17, 2009 64College of Computer and Information Science, Northeastern University

2D Turbulence

February 17, 2009 65College of Computer and Information Science, Northeastern University

Turbulence Code

function turb = LinearTurbulence2(u, v, noise, divisor)
% double t, scale;
% LN(u, v) +LN(2u, 2v)/2 + LN(4u, 4v)/4 + ...
% Value is between between 0 and 2.

 t = 0;
 scale = 1;
 while (scale >= 1/divisor)
 t = t + linearNoise2(u/scale, v/scale, noise) * scale;
 scale = scale/2;
 end

 turb = t/2; % now value is between 0 and 1

February 17, 2009 67College of Computer and Information Science, Northeastern University

Marble

factorG = sqrt(abs(sin(x + twist*turbulence(x, y, noise)
color = (0, trunc(factorG*255), 255);

Clouds

r = sqrt((x-200/d)*(x-200/d) + (y-200/d)*(y-200/d));
factorB = abs(cos(r + fluff*turbulence(x, y, noise));
color=(127 + 128*(1 - factorB), 127 + 128*(1 - factorB), 255);

February 17, 2009 69College of Computer and Information Science, Northeastern University

Fire

February 17, 2009 70College of Computer and Information Science, Northeastern University

Plane Flame Code
(MATLAB)

w = 300; h = w + w/2; x=1:w; y=1:h;

flameColor = zeros(w,3); % Set a color for each x
flameColor(x,:)=…

[1-2*abs(w/2-x)/w; max(0,1-4*abs(w/2-x)/w); zeros(1,w)]';

flame=zeros(h,w,3); % Set colors for whole flame
% 1 <= x=j <= 300=h, 1 <= y=451-i <= 450=h+h/2
for i = 1:h
 for j = 1:w
 flame(i,j,:)=(1-(h-i)/h)*flameColor(j,:);
 end
end

February 17, 2009 71College of Computer and Information Science, Northeastern University

Turbulent Flame Code
(MATLAB)

for u = 1:450
 for v = 1:300
 x = round(u+80*Tarray(u,v,1)); x = max(x,2); x = min(x,449);
 y = round(v+80*Tarray(u,v,2)); y = max(y,2); y = min(y,299);
 flame2(u,v,:) = flame(x,y,:);
 end
end

function Tarray = turbulenceArray(m,n)
noise1 = rand(39,39);
noise2 = rand(39,39);
noise3 = rand(39,39);
divisor = 64;
Tarray = zeros(m,n);

for i = 1:m
 for j = 1:n
 Tarray(i,j,1) = LinearTurbulence2(i/divisor, j/divisor, noise1, divisor);
 Tarray(i,j,2) = LinearTurbulence2(i/divisor, j/divisor, noise2, divisor);
 Tarray(i,j,3) = LinearTurbulence2(i/divisor, j/divisor, noise3, divisor);
 end
end

February 17, 2009 73College of Computer and Information Science, Northeastern University

Student Images

February 17, 2009 74College of Computer and Information Science, Northeastern University

Student Images

February 17, 2009 75College of Computer and Information Science, Northeastern University

Student Images

February 17, 2009 76College of Computer and Information Science, Northeastern University

Perlin’s Clouds and Corona

