CS G140
 Graduate Computer Graphics

Prof. Harriet Fell Spring 2009
Lecture 5 - February 4, 2009

Comments

- "NOTHING else" means nothing else.
- Do you want your pictures on the web?
- If not, please send me an email.

Today's Topics

- Bump Maps
- Texture Maps
- 2D-Viewport Clipping
- Cohen-Sutherland
- Liang-Barsky

Bump Maps - Blinn 1978

One dimensional Example

The New Surface

The New Surface Normals

Bump Maps - Formulas

A parametric Surface $\quad(x(u, v), y(u, v), z(u, v))=\boldsymbol{P}(u, v)$

$$
\boldsymbol{N}=\frac{\partial \boldsymbol{P}}{\partial u} \times \frac{\partial \boldsymbol{P}}{\partial v}
$$

The new surface

$$
\boldsymbol{P}^{\prime}(u, v)=\boldsymbol{P}(u, v)+B(u, v) \boldsymbol{N}
$$

$$
\begin{aligned}
& \boldsymbol{N}^{\prime}=\boldsymbol{P}_{{ }_{u}} \times \boldsymbol{P}_{v}^{\prime} \\
& \boldsymbol{P}_{v}^{\prime}{ }_{u}=\boldsymbol{P}_{u}+B_{u} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{u} \\
& \boldsymbol{P}_{v}^{\prime}=\boldsymbol{P}_{v}+B_{v} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{v}
\end{aligned}
$$

The New Normal

$$
\begin{aligned}
& \boldsymbol{N}^{\prime}=\left(\boldsymbol{P}_{u}+B_{u} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{u}\right) \times\left(\boldsymbol{P}_{v}+B_{v} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{v}\right) \\
& =\boldsymbol{P}_{u} \times \boldsymbol{P}_{v}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B(u, v) \boldsymbol{P} \times \boldsymbol{N}_{v} \\
& +B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v}+B_{u} B \boldsymbol{B} \times \boldsymbol{N}+B_{u} B(u, v) \boldsymbol{N} \times \boldsymbol{N}_{v} \\
& +B\left(u, v \boldsymbol{N}_{u} \times \boldsymbol{P}_{v}+B(u, v) B_{n}, \boldsymbol{N}_{u} \times \boldsymbol{N}+B(u, v)^{2} \boldsymbol{N}_{v} \times \boldsymbol{N}_{v}\right.
\end{aligned}
$$

This term is 0 .

These terms are small if $B(u, v)$ is small.
We use $\quad \boldsymbol{N}^{\prime}=\boldsymbol{P}_{u} \times \boldsymbol{P}_{v}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v}$

Tweaking the Normal Vector

$$
\begin{array}{ll}
\boldsymbol{N}^{\prime}=\boldsymbol{P}_{u} \times \boldsymbol{P}_{v}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v} \\
=\boldsymbol{N}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v} \\
\boldsymbol{A}=\boldsymbol{N} \times \boldsymbol{P}_{v} & \boldsymbol{B}=\boldsymbol{N} \times \boldsymbol{P}_{u} \\
\boldsymbol{D}=B_{u} \boldsymbol{A}-B_{v} \boldsymbol{B} & \text { is the difference vector. }
\end{array}
$$

$$
N^{\prime}=N+D
$$

D lies in the tangent plane to the surface.

Plane with Spheres

Plane with Vertical Wave

Plane with Ripple

Plane with Dimples

Dots and Dimples

Plane with Ripples

Sphere on Plane with Spheres

Sphere on Plane with Vertical Wave

Sphere on Plane with Ripple

Sphere on Plane with Mesh

Sphere on Plane with Waffle

Sphere on Plane with Dimples

Sphere on Plane with Squares

Sphere on Plane with Ripples

Wave with Spheres

Parabola with Spheres

Parabola with Dimples

Big Sphere with Dimples

$$
\begin{aligned}
& \text { 10099000000000 } \\
& 109909000000 \\
& \text { 100) } 00000000 \\
& 000)(0000 \\
& 0000000000 \\
& 100)=0600 \\
& 10000000000 \\
& 10,00900000 \\
& 100000000000 \\
& 100000000000
\end{aligned}
$$

Parabola with Squares

Big Sphere with Squares

Big Sphere with Vertical Wave

Big Sphere with Mesh

Cone Vertical with Wave
Cone with Dimples

Cone with Ripple

Cone with Ripples

Student Images

Bump Map - Plane

$$
\begin{aligned}
& x=h-200 \\
& y=v-200 \\
& z=0 ;
\end{aligned}
$$

N.Set(0, 0, 1);
$\operatorname{Du} . \operatorname{Set}(-1,0,0)$;
Dv.Set(0, 1, 0);
uu = h;
vv = v;
zz = z;

Bump Map Code - Big Sphere

```
radius = 280.0;
\(z=\) sqrt(radius*radius \(\left.-y^{*} y-x^{*} x\right)\);
N.Set(x, y, z);
\(\mathrm{N}=\operatorname{Norm}(\mathrm{N})\);
Du.Set(z, 0, -x);
Du = -1*Norm(Du);
Dv.Set(-x*y, \(\left.x^{*} x+z^{*} z,-y^{*} z\right)\);
Dv = -1*Norm(Dv);
vv = acos(y/radius)*360/pi;
uu \(=(\mathrm{pi} / 2+\operatorname{atan}(\mathrm{x} / \mathrm{z}))^{*} 360 / \mathrm{pi} ;\)
zz = z;
```


Bump Map Code - Dimples

```
Bu=0; Bv=0;
iu = (int)uu % 30-15;
iv = (int)vv % 30-15;
r2 = 225.0 - (double)iu*iu - (double)iv*iv;
if (r2 > 100) {
    if (iu == 0) Bu = 0;
    else Bu = (iu)/sqrt(r2);
    if (iv == 0) Bv = 0;
    else Bv = (iv)/sqrt(r2);
}
```


Image as a Bump Map

A bump map is a gray scale image; any image will do. The lighter areas are rendered as raised portions of the surface and darker areas are rendered as depressions. The bumping is sensitive to the direction of light sources.
http://www.cadcourse.com/winston/BumpMaps.html

Bump Map from an Image Victor Ortenberg

Simple Textures on Planes Parallel to Coordinate Planes

Stripes

Checks

February 3, 2009

Stripes and Checks

Red and Blue Stripes

$$
\text { if }((x \% 50)<25) \text { color }=\text { red }
$$

else color = blue

Cyan and Magenta Checks
if $(((x$ \% 50) < $25 \& \&(y \% 50)<25))$ ||

$$
\begin{gathered}
(((x \% 50)>=25 \& \&(y \% 50)>=25))) \\
c \text { color }=\text { cyan }
\end{gathered}
$$

else color = magenta
What happens when you cross $x=0$ or $y=0$?

Stripes, Checks, Image

Mona Scroll

Time for a Break

Textures on 2 Planes

Mapping a Picture to a Plane

- Use an image in a ppm file.
- Read the image into an array of RGB values.

Color mylmage[width][height]

- For a point on the plane (x, y, d) theColor($\mathrm{x}, \mathrm{y}, \mathrm{d}$) $=$ mylmage($\mathrm{x} \%$ width, $\mathrm{y} \%$ height)
- How do you stretch a small image onto a large planar area?

Other planes and Triangles

Given a normal and 2 points on the plane:

Make u from the two points.
$\mathbf{v}=\mathbf{N x} \mathbf{u}$
Express \mathbf{P} on the plane as
$\mathbf{P}=\mathbf{P}_{0}+a u+b v$.

Image to Triangle - 1

Image to Triangle - 3

Mandrill Sphere

Mona Spheres

Tova Sphere

More Textured Spheres

Spherical Geometry

// for texture map - in lieu of using sphere color double phi, theta; // for spherical coordinates double $\mathrm{x}, \mathrm{y}, \mathrm{z}$; // sphere vector coordinates int h, v; // ppm buffer coordinates Vector3D V;

```
V = SP - theSpheres[hitObject].center;
V.Get(x, y, z);
phi = acos(y/theSpheres[hitObject].radius);
if (z!= 0) theta = atan(x/z); else phi = 0; // ???
v = (phi)*ppmH/pi;
h = (theta + pi/2)*ppmW/pi;
if (v < 0) v = 0; else if (v >= ppmH) v = ppmH - 1;
v = ppmH -v -1; //v = (v + 85*ppmH/100)%ppmH;//9
if (h<0)h = 0; else if (h>= ppmW) h=ppmW - 1;
h = ppmW -h -1; //h = (h + 1*ppmW/10)%ppmW;
rd = fullFactor*((double)(byte)mylmage[h][v][0]/255); clip(rd);
gd = fullFactor*((double)(byte)mylmage[h][v][1]/255); clip(gd);
bd = fullFactor*((double)(byte) mylmage[h][v][2]/255); clip(bd);
```


${ }^{G}$ Clipping Lines
 C

Intersections

We know how to find the intersections of a line segment

$$
P+t(Q-P)
$$

with the 4 boundaries

$$
\begin{aligned}
& x=x \min \\
& x=x \max \\
& y=y \min \\
& y=y \max
\end{aligned}
$$

Cohen-Sutherland Clipping

1. Assign a 4 bit outcode to each endpoint.
2. Identify lines that are trivially accepted or trivially rejected.

1100	1000	1001
0100	0000	0001
0110	0010	0011

Cohen-Sutherland continued

Clip against one boundary at a time, top, left, bottom, right.
Check for trivial accept or reject.
If a line segment PQ falls into the "test further" category then

$$
\begin{aligned}
& \text { if }(\text { outcode }(P) \& 1000 \neq 0) \\
& \text { replace } P \text { with } P Q \text { intersect } y=\text { top } \\
& \text { else if (outcode }(Q) \& 1000 \neq 0) \\
& \text { replace } Q \text { with } P Q \text { intersect } y=\text { top } \\
& \text { go on to next boundary }
\end{aligned}
$$

G

Liang-Barsky Clipping

Clip window interior is defined by:

xleft $\leq x \leq$ xright
ybottom $\leq y \leq y t o p$

Liang-Barsky continued

$$
\begin{array}{ll}
V_{0}=\left(x_{0}, y_{0}\right) & \Delta x=x_{1}-x_{0} \\
t=x_{0}+t \Delta x & \left.y_{1}\right) \\
t=y_{1}-t \Delta y & \Delta y=y_{0}-V_{0} \\
t=1 \text { at } V_{1}
\end{array}
$$

Liang-Barsky continued

Put the parametric equations into the inequalities:
xleft $\leq \mathrm{x}_{0}+\mathrm{t} \Delta \mathrm{x} \leq \mathrm{xright}$
ybottom $\leq \mathrm{y}_{0}+\mathrm{t} \Delta \mathrm{y} \leq \mathrm{ytop}$

$$
\begin{array}{ll}
-t \Delta x \leq x_{0}-\text { xleft } & t \Delta x \leq \text { xright }-x_{0} \\
-t \Delta y \leq y_{0}-\text { ybottom } & t \Delta y \leq \text { ytop }-y_{0}
\end{array}
$$

These decribe the interior of the clip window in terms of t .

Liang-Barsky continued

$$
\begin{array}{ll}
-t \Delta x \leq x_{0}-x \text { left } & t \Delta x \leq x \text { right }-x_{0} \\
-t \Delta y \leq y_{0}-\text { ybottom } & \\
t \Delta y \leq \text { ytop }-y_{0}
\end{array}
$$

- These are all of the form

$$
\mathrm{tp} \leq \mathrm{q}
$$

- For each boundary, we decide whether to accept, reject, or which point to change depending on the sign of p and the value of t at the intersection of the line with the boundary.

Liang-Barsky Rules

- $0<t<1, \mathrm{p}<0$ replace V_{0}
- $0<t<1, p>0$ replace V_{1}
- $\mathrm{t}<0, \mathrm{p}<0$ no change
- $\mathrm{t}<0, \mathrm{p}>0$ reject
- $t>1, p>0$ no change
- $\mathrm{t}>1, \mathrm{p}<0$ reject

