

# CS G140 Graduate Computer Graphics

Prof. Harriet Fell
Spring 2009
Lecture 5 – February 4, 2009



### Comments

- "NOTHING else" means nothing else.
- Do you want your pictures on the web?
  - If not, please send me an email.



## Today's Topics

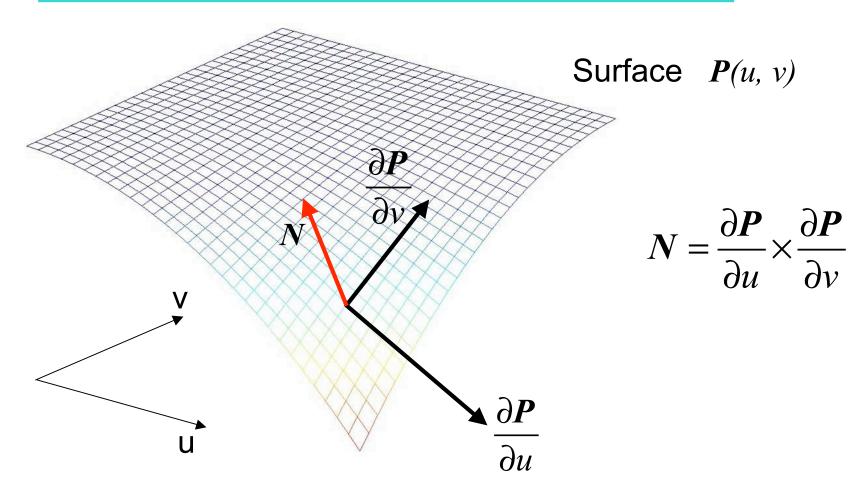
- Bump Maps
- Texture Maps

\_\_\_\_\_

- 2D-Viewport Clipping
  - Cohen-Sutherland
  - Liang-Barsky

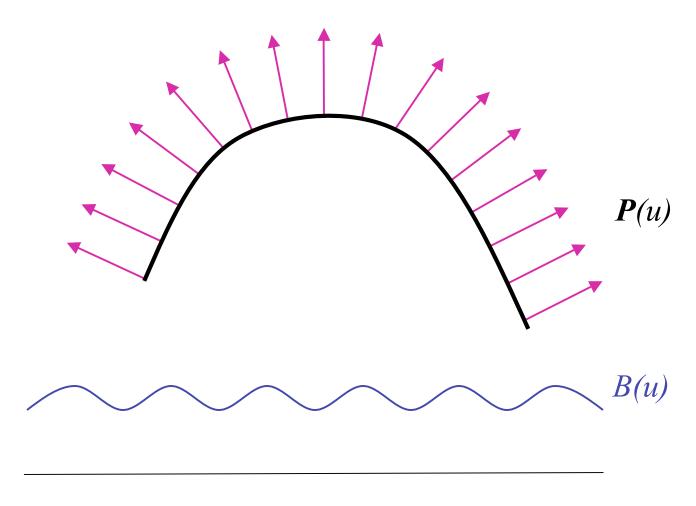


## Bump Maps - Blinn 1978



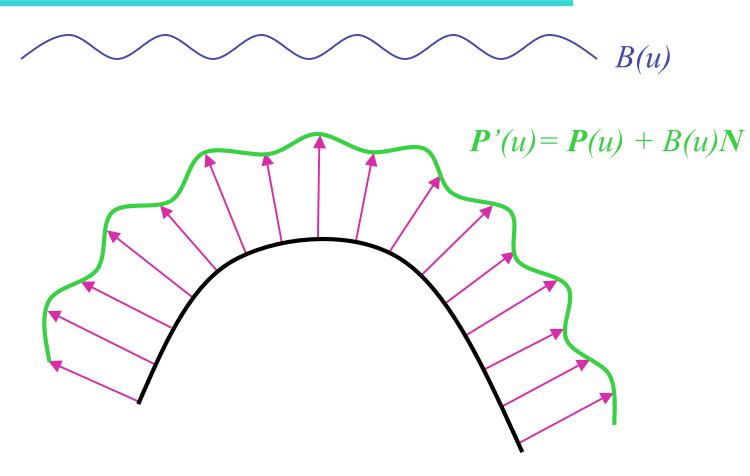


# One dimensional Example



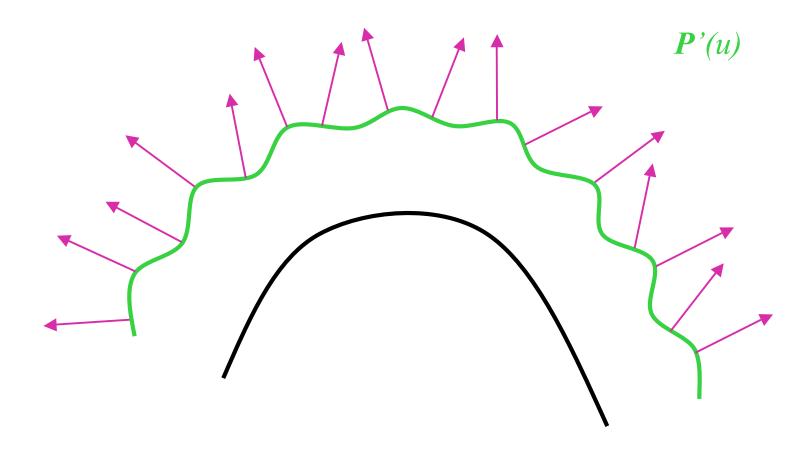


### The New Surface





### The New Surface Normals





### Bump Maps - Formulas

A parametric Surface 
$$(x(u,v),y(u,v),z(u,v)) = P(u,v)$$

$$N = \frac{\partial \mathbf{P}}{\partial u} \times \frac{\partial \mathbf{P}}{\partial v}$$

The new surface 
$$P'(u,v) = P(u,v) + B(u,v)N$$

$$N' = P'_{u} \times P'_{v}$$

$$P'_{u} = P_{u} + B_{u}N + B(u, v)N_{u}$$

$$P'_{v} = P_{v} + B_{v}N + B(u, v)N_{v}$$



### The New Normal

$$N' = (\mathbf{P}_{u} + B_{u}N + B(u,v)N_{u}) \times (\mathbf{P}_{v} + B_{v}N + B(u,v)N_{v})$$

$$= \mathbf{P}_{u} \times \mathbf{P}_{v} + B_{v}\mathbf{P}_{u} \times N + B(u,v)\mathbf{P}_{u} \times N_{v}$$

$$+B_{u}N \times \mathbf{P}_{v} + B_{u}B_{v}N \times N + B_{u}B(u,v)N \times N_{v}$$

$$+B(u,v)N_{u} \times \mathbf{P}_{v} + B(u,v)B_{v}N_{u} \times N + B(u,v)^{2}N_{u} \times N_{v}$$

This term is 0.

These terms are small if B(u, v) is small.

We use 
$$N' = P_u \times P_v + B_v P_u \times N + B_u N \times P_v$$



### Tweaking the Normal Vector

$$N' = P_u \times P_v + B_v P_u \times N + B_u N \times P_v$$
$$= N + B_v P_u \times N + B_u N \times P_v$$

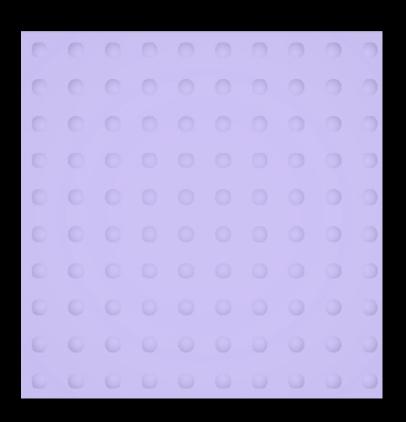
$$A = N \times P_v$$
  $B = N \times P_u$   
 $D = B_u A - B_v B$  is the difference vector.

$$N' = N + D$$

**D** lies in the tangent plane to the surface.

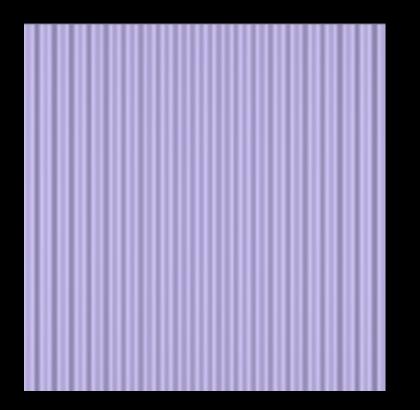
### Plane with Spheres

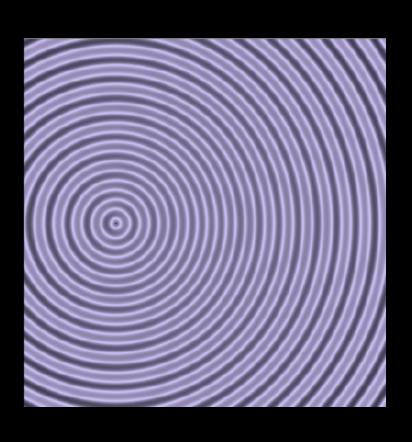
### Plane with Horizontal Wave



### Plane with Vertical Wave

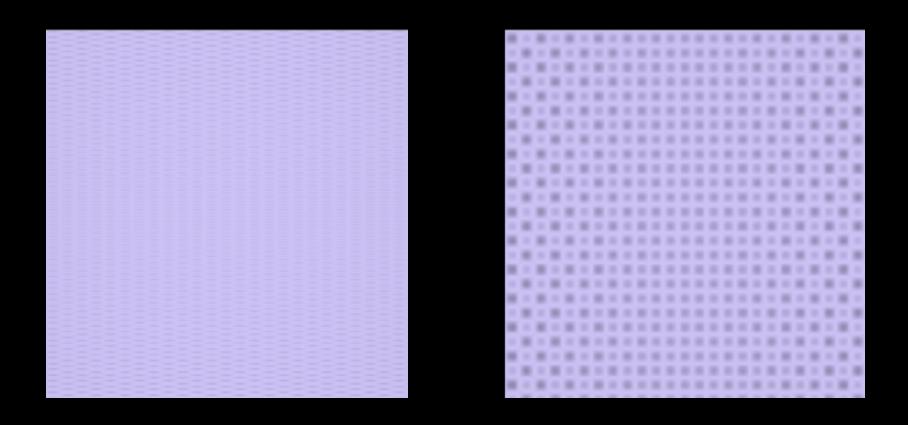
### Plane with Ripple





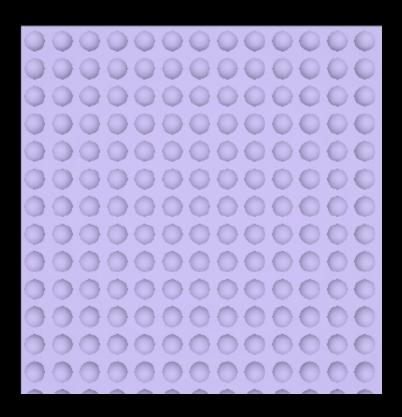
### Plane with Mesh

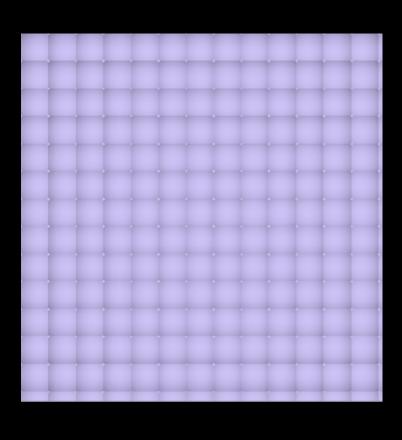
### Plane with Waffle



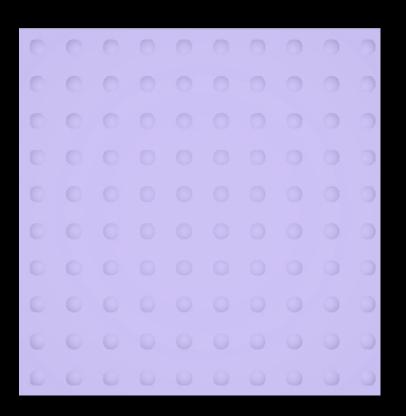
### Plane with Dimples

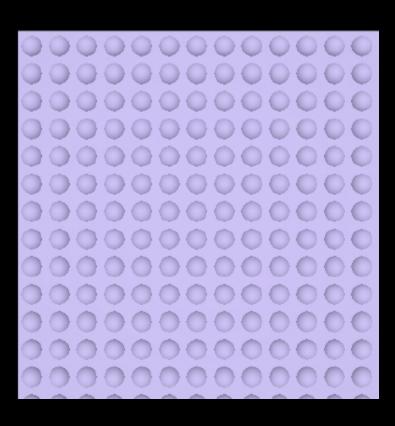
### Plane with Squares



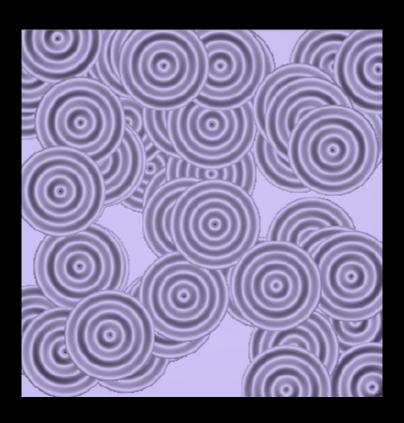


### **Dots and Dimples**

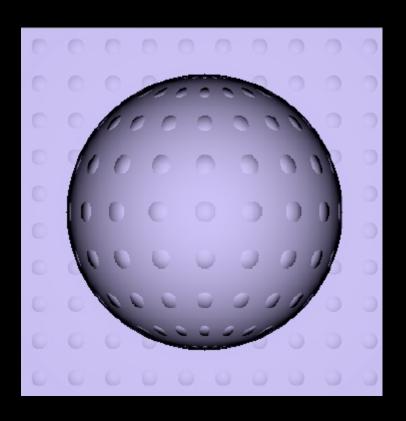




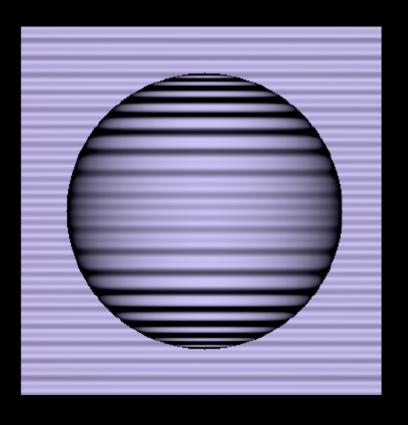
### Plane with Ripples



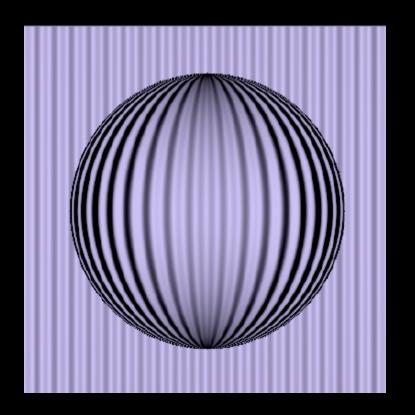
# Sphere on Plane with Spheres



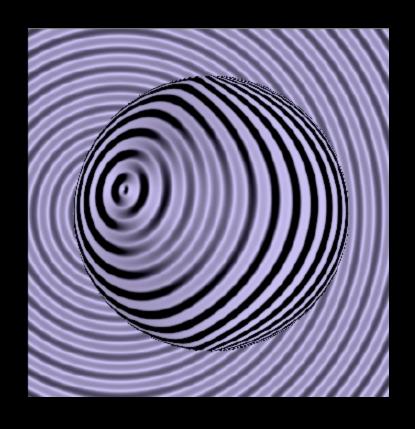
# Sphere on Plane with Horizontal Wave



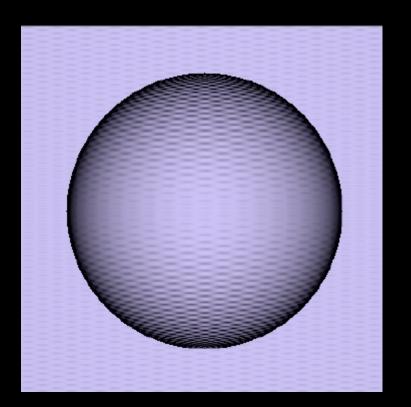
# Sphere on Plane with Vertical Wave



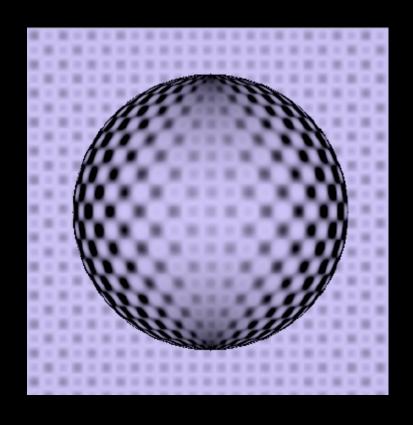
# Sphere on Plane with Ripple



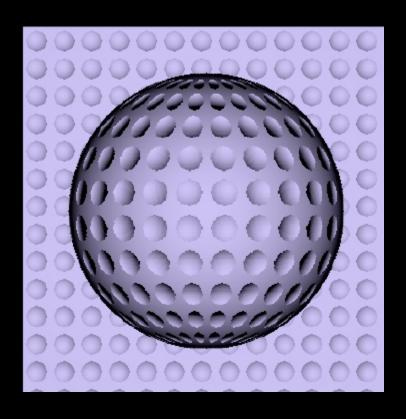
# Sphere on Plane with Mesh



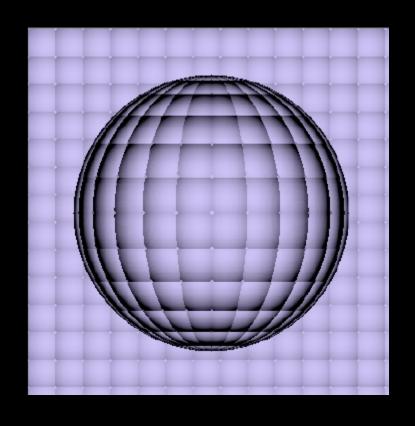
# Sphere on Plane with Waffle



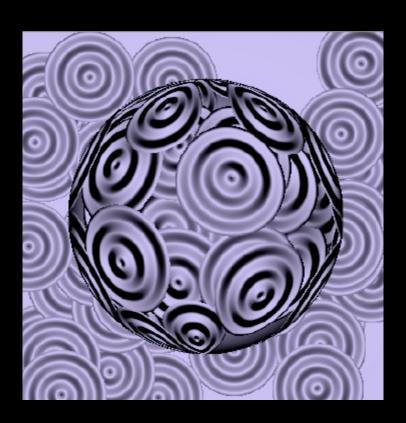
# Sphere on Plane with Dimples



# Sphere on Plane with Squares

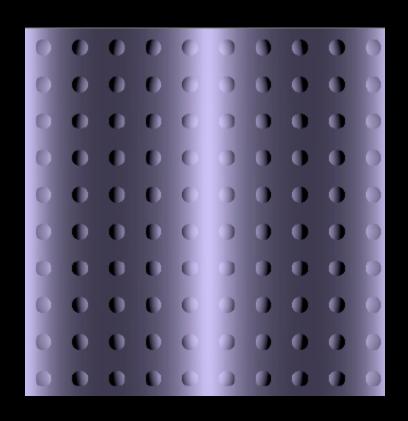


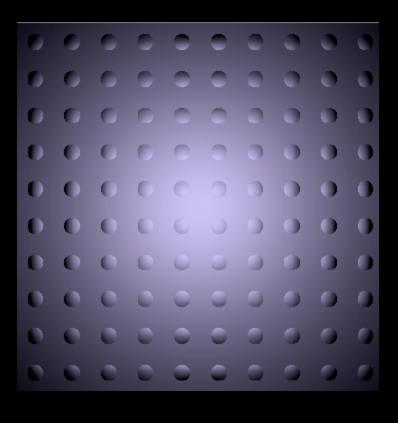
# Sphere on Plane with Ripples



### Wave with Spheres

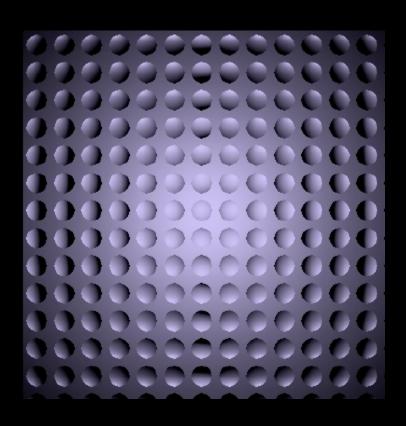
### Parabola with Spheres

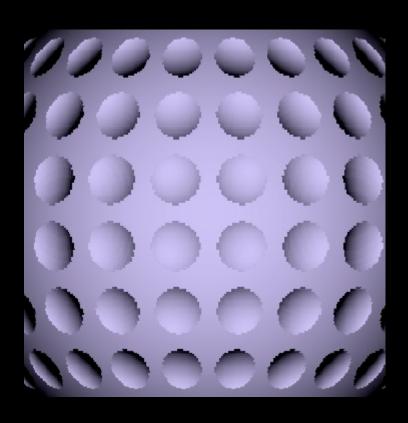




### Parabola with Dimples

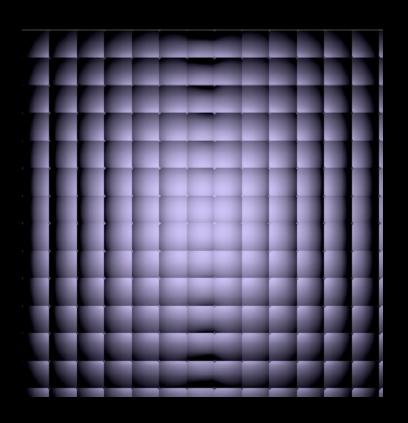
### Big Sphere with Dimples

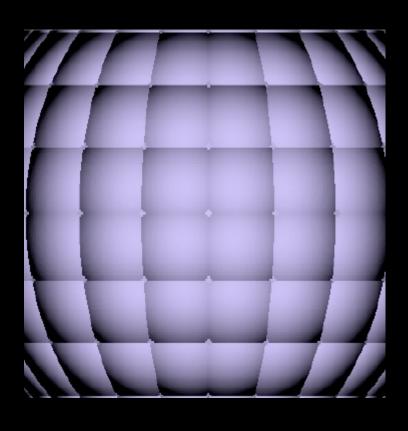




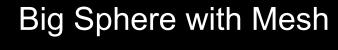
### Parabola with Squares

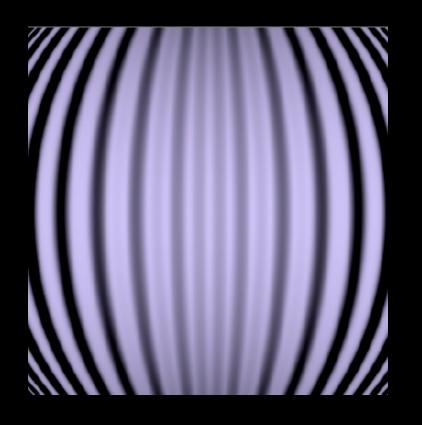
### Big Sphere with Squares





Big Sphere with Vertical Wave

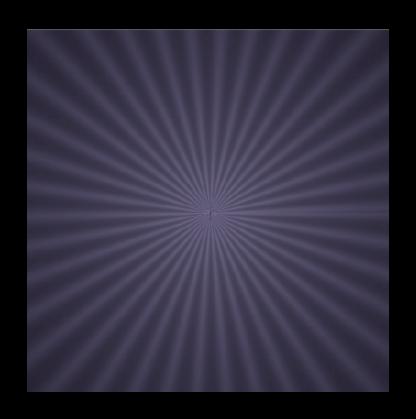


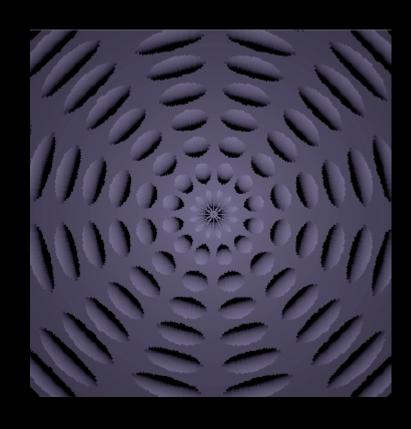




### Cone Vertical with Wave

### Cone with Dimples





### Cone with Ripple

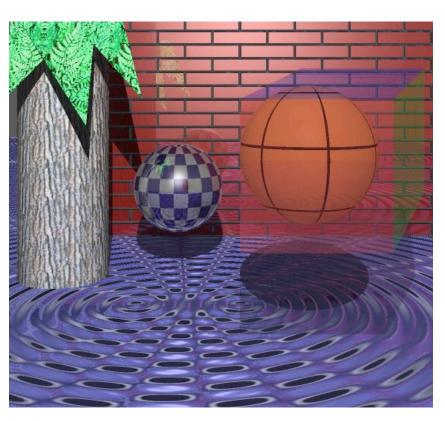
### Cone with Ripples

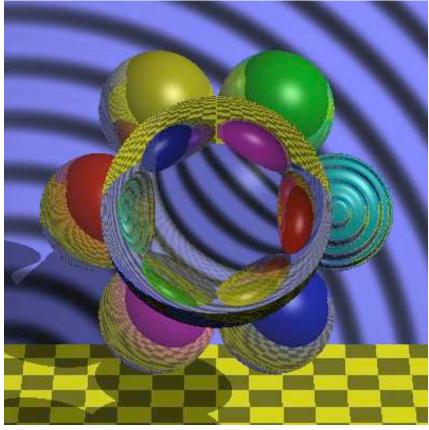






# Student Images







### Bump Map - Plane

```
x = h - 200;
y = v - 200;
z = 0;
N.Set(0, 0, 1);
Du.Set(-1, 0, 0);
Dv.Set(0, 1, 0);
uu = h;
vv = v;
zz = z;
```



### Bump Map Code – Big Sphere

```
radius = 280.0;
z = sqrt(radius*radius - y*y - x*x);
N.Set(x, y, z);
N = Norm(N);
Du.Set(z, 0, -x);
Du = -1*Norm(Du);
Dv.Set(-x^*y, x^*x + z^*z, -y^*z);
Dv = -1*Norm(Dv);
vv = acos(y/radius)*360/pi;
uu = (pi/2 + atan(x/z))*360/pi;
ZZ = Z;
```



### Bump Map Code – Dimples

```
Bu = 0; Bv = 0;
iu = (int)uu \% 30 - 15;
iv = (int)vv \% 30 - 15;
r2 = 225.0 - (double)iu*iu - (double)iv*iv;
if (r2 > 100) {
       if (iu == 0) Bu = 0;
       else Bu = (iu)/sqrt(r2);
       if (iv == 0) Bv = 0;
       else Bv = (iv)/sqrt(r2);
```



### Image as a Bump Map

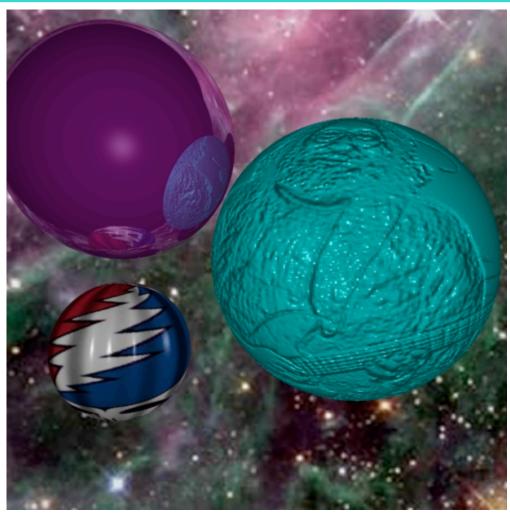
A bump map is a gray scale image; any image will do. The lighter areas are rendered as raised portions of the surface and darker areas are rendered as depressions. The bumping is sensitive to the direction of light sources.

http://www.cadcourse.com/winston/BumpMaps.html



### Bump Map from an Image

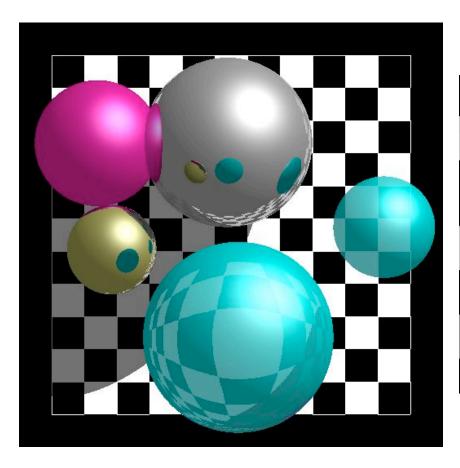
Victor Ortenberg

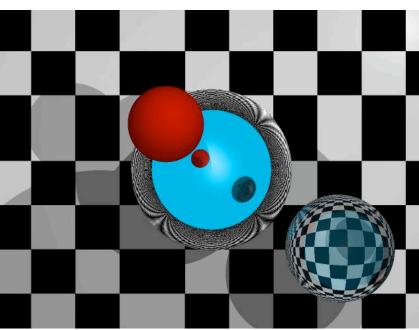


College of Computer and Information Science, Northeastern University



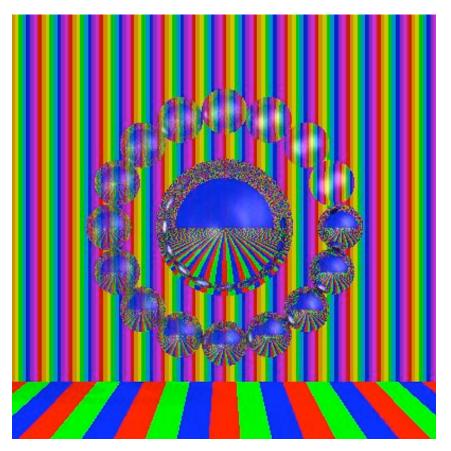
# Simple Textures on Planes Parallel to Coordinate Planes

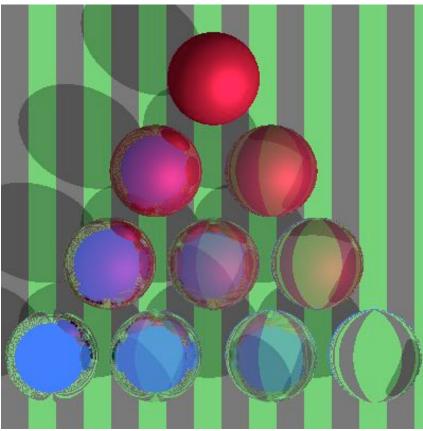






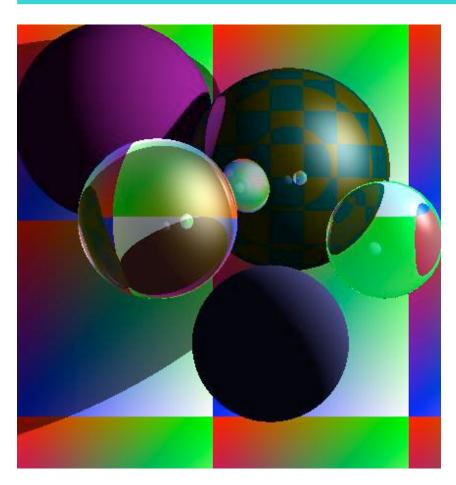
# **Stripes**

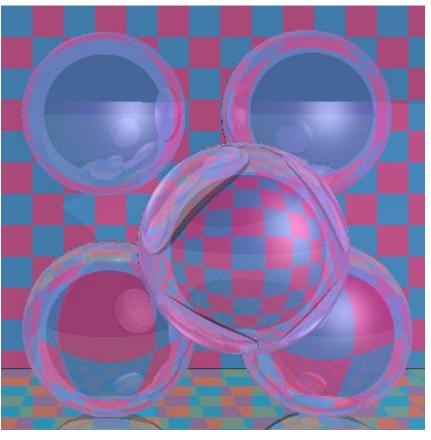






### Checks





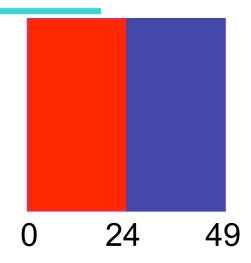


### Stripes and Checks

Red and Blue Stripes

if ((x % 50) < 25) color = red

else color = blue



#### Cyan and Magenta Checks

if 
$$(((x \% 50) < 25 \&\& (y \% 50) < 25)) ||$$

$$(((x \% 50) >= 25 \&\& (y \% 50) >= 25)))$$

color = cyan

else color = magenta

What happens when you cross x = 0 or y = 0?

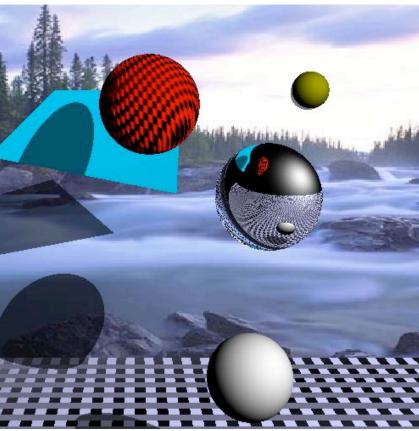


February 3, 2009



## Stripes, Checks, Image







### Mona Scroll



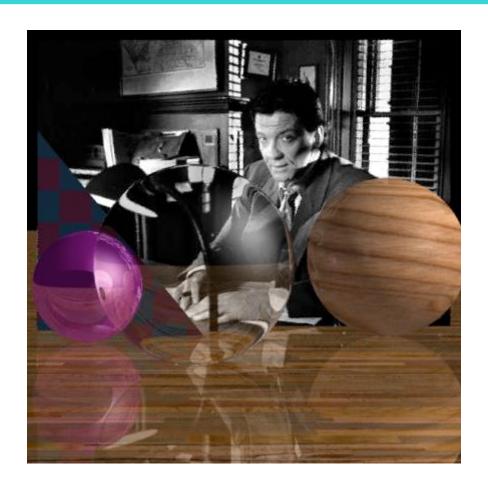


### Time for a Break





### Textures on 2 Planes





#### Mapping a Picture to a Plane

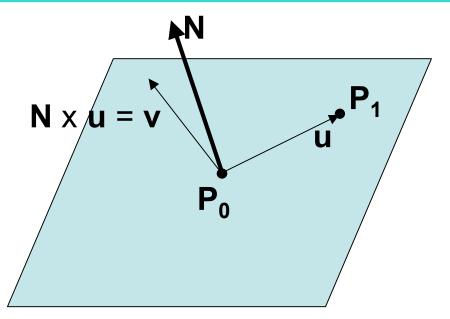
- Use an image in a ppm file.
- Read the image into an array of RGB values.
   Color myImage[width][height]
- For a point on the plane (x, y, d)
   theColor(x, y, d) = myImage(x % width, y % height)
- How do you stretch a small image onto a large planar area?







### Other planes and Triangles



Given a normal and 2 points on the plane:

Make **u** from the two points.

$$v = N \times u$$

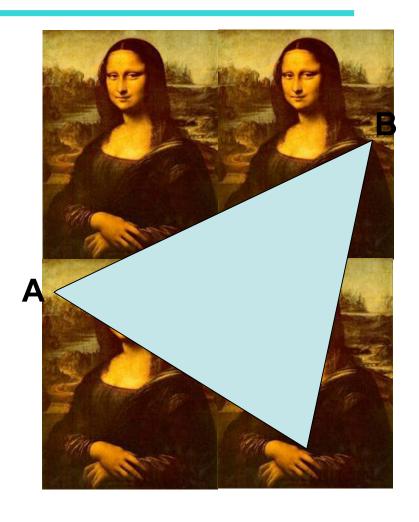
Express **P** on the plane as

$$P = P_0 + au + bv.$$



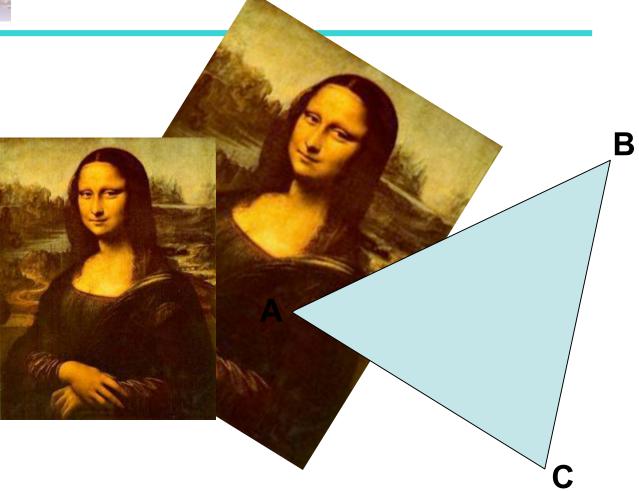
## Image to Triangle - 1





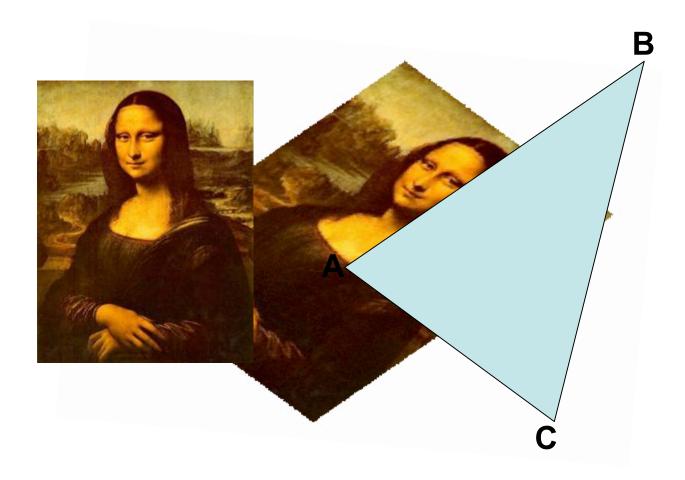


## Image to Triangle - 2



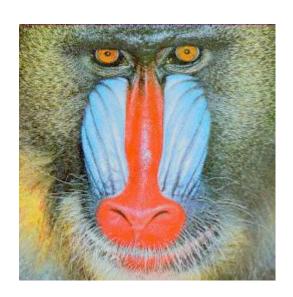


## Image to Triangle - 3





## Mandrill Sphere

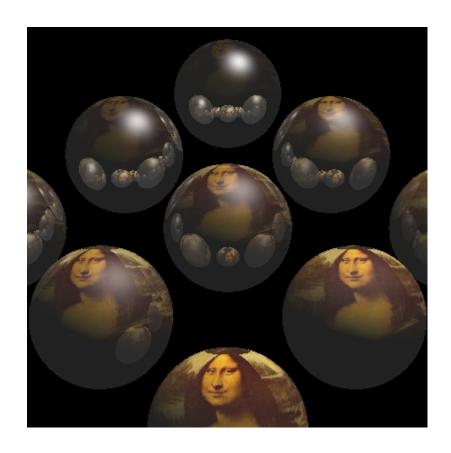






## Mona Spheres







# Tova Sphere





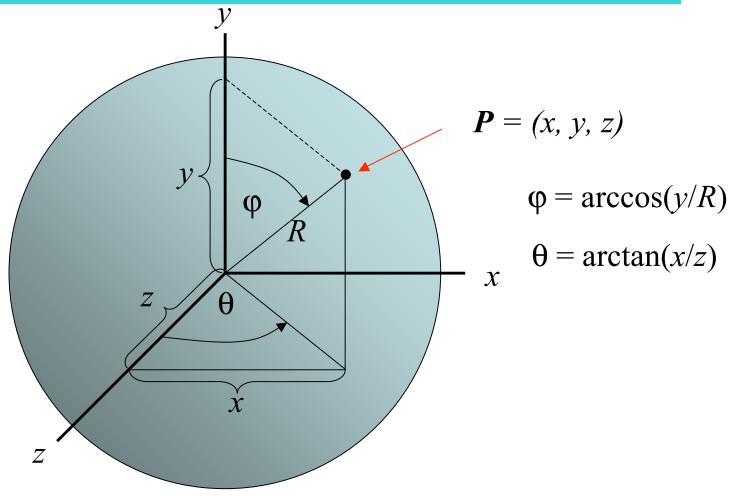


## More Textured Spheres

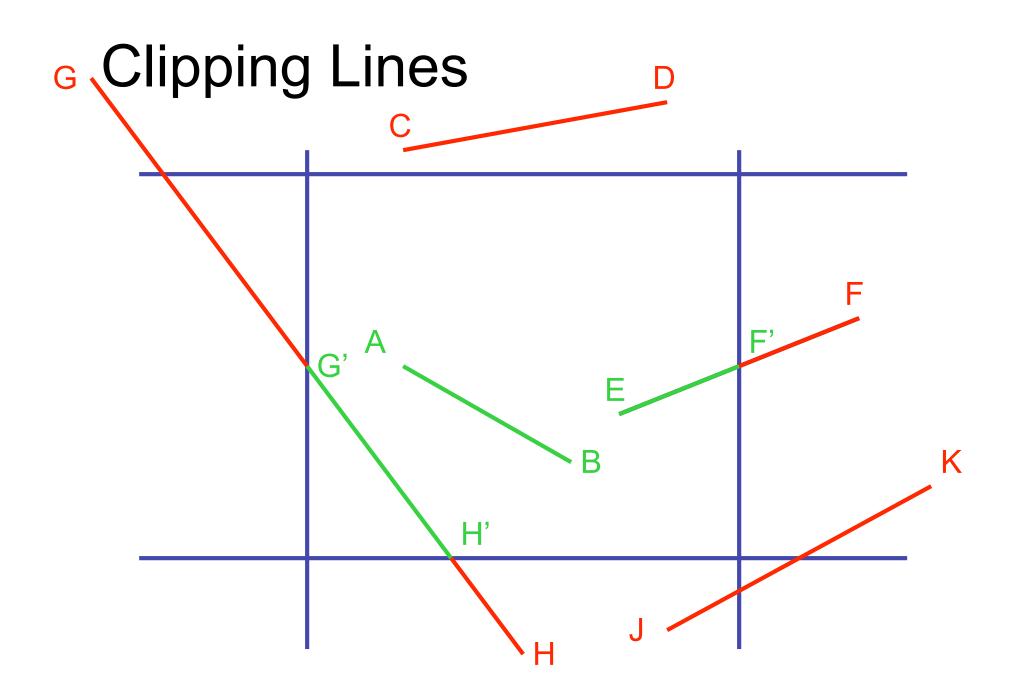




## **Spherical Geometry**



```
// for texture map — in lieu of using sphere color
double phi, theta; // for spherical coordinates
double x, y, z; // sphere vector coordinates
int h, v; // ppm buffer coordinates
Vector3D V;
    V = SP - theSpheres[hitObject].center;
    V.Get(x, y, z);
    phi = acos(y/theSpheres[hitObject].radius);
    if (z != 0) theta = atan(x/z); else phi = 0; // ???
    v = (phi)*ppmH/pi;
    h = (theta + pi/2)*ppmW/pi;
    if (v < 0) v = 0; else if (v >= ppmH) v = ppmH - 1;
    v = ppmH - v - 1; //v = (v + 85*ppmH/100)%ppmH;//9
    if (h < 0) h = 0; else if (h >= ppmW) h = ppmW - 1;
    h = ppmW - h - 1; //h = (h + 1*ppmW/10)%ppmW;
    rd = fullFactor*((double)(byte)mylmage[h][v][0]/255); clip(rd);
    gd = fullFactor*((double)(byte)mylmage[h][v][1]/255); clip(gd);
    bd = fullFactor*((double)(byte) mylmage[h][v][2]/255); clip(bd);
```





#### Intersections

We know how to find the intersections of a line segment

$$P + t(Q-P)$$

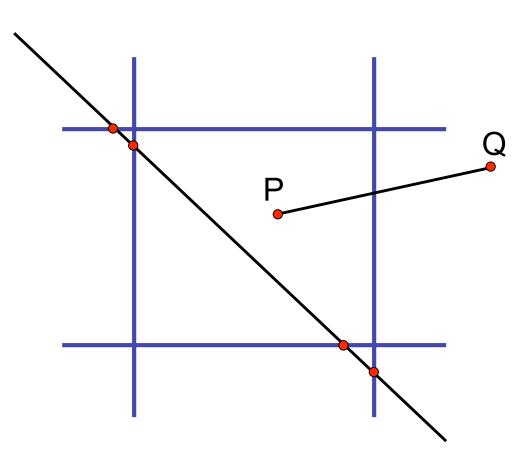
with the 4 boundaries

x = xmin

x = xmax

y = ymin

y = ymax





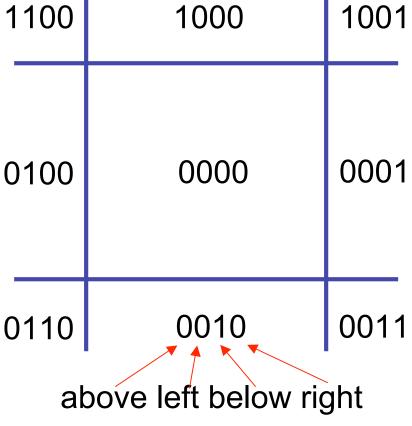
## Cohen-Sutherland Clipping

- 1. Assign a 4 bit *outcode* to each endpoint.
- 2. Identify lines that are trivially accepted or trivially rejected.

if (outcode(P) = outcode(Q) = 0)
 accept

else if (outcode(P) & outcode(Q)) ≠ 0) reject

else test further





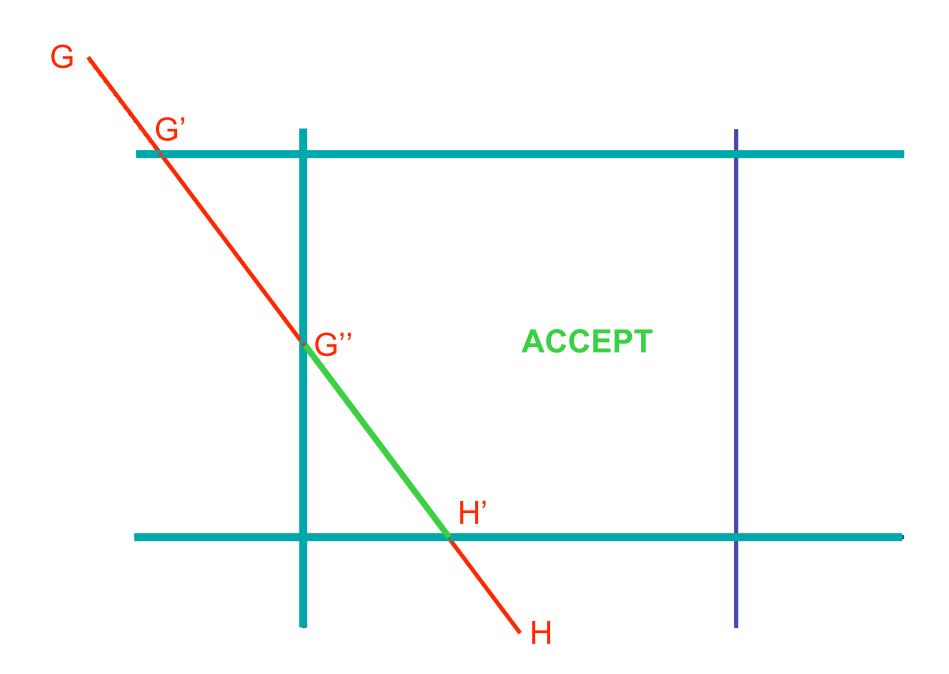
#### Cohen-Sutherland continued

Clip against one boundary at a time, top, left, bottom, right.

Check for trivial accept or reject.

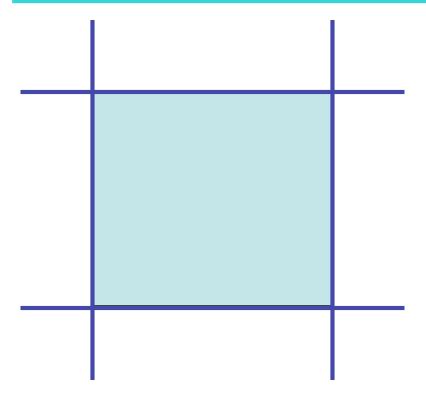
If a line segment PQ falls into the "test further" category then

```
if (outcode(P) & 1000 ≠ 0)
        replace P with PQ intersect y = top
else if (outcode(Q) & 1000 ≠ 0)
        replace Q with PQ intersect y = top
go on to next boundary
```





## Liang-Barsky Clipping



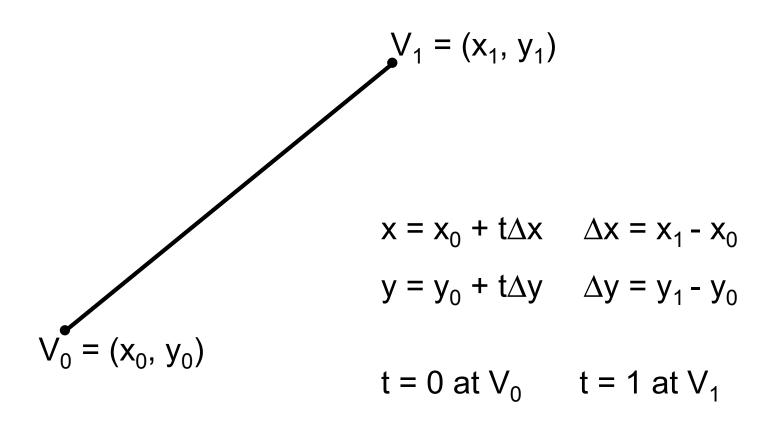
Clip window interior is defined by:

 $xleft \le x \le xright$ 

ybottom  $\leq$  y  $\leq$  ytop



## Liang-Barsky continued





## Liang-Barsky continued

Put the parametric equations into the inequalities:

$$xleft \le x_0 + t\Delta x \le xright$$

ybottom 
$$\leq y_0 + t\Delta y \leq y$$
top

$$-t\Delta x \leq x_0 - x left$$

$$-t\Delta y \le y_0$$
 - ybottom

$$t\Delta x \leq xright - x_0$$

$$t\Delta y \leq ytop - y_0$$

These decribe the interior of the clip window in terms of t.



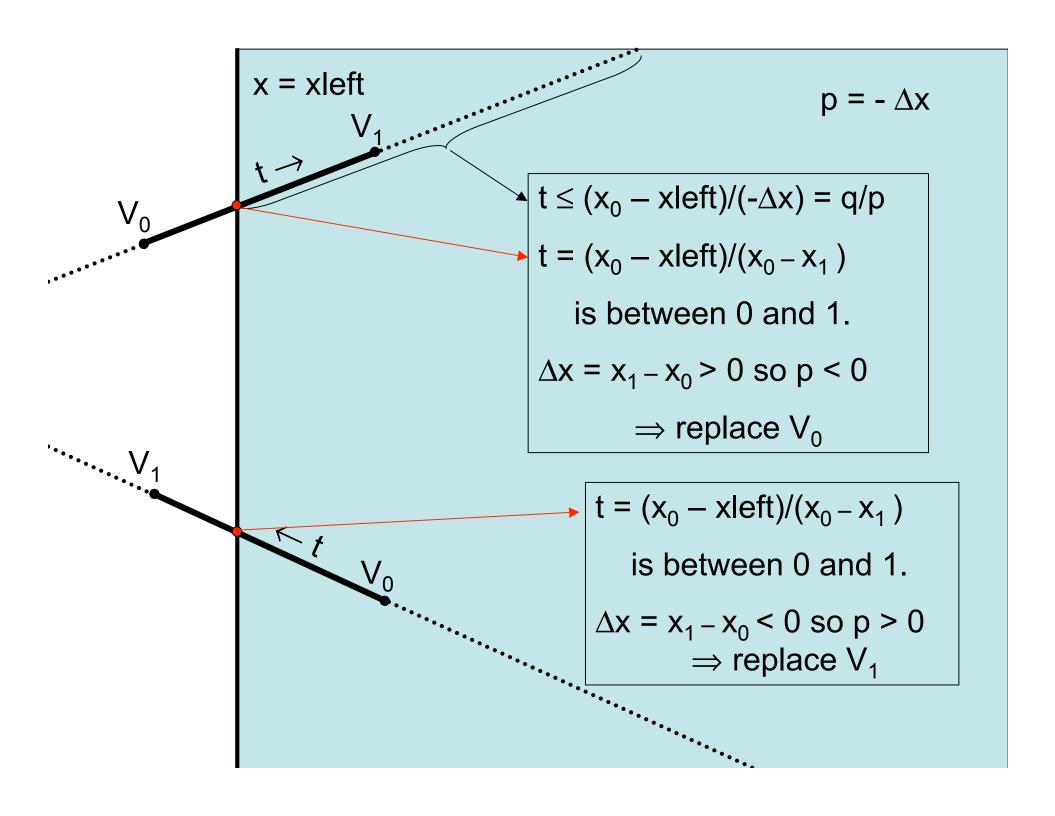
## Liang-Barsky continued

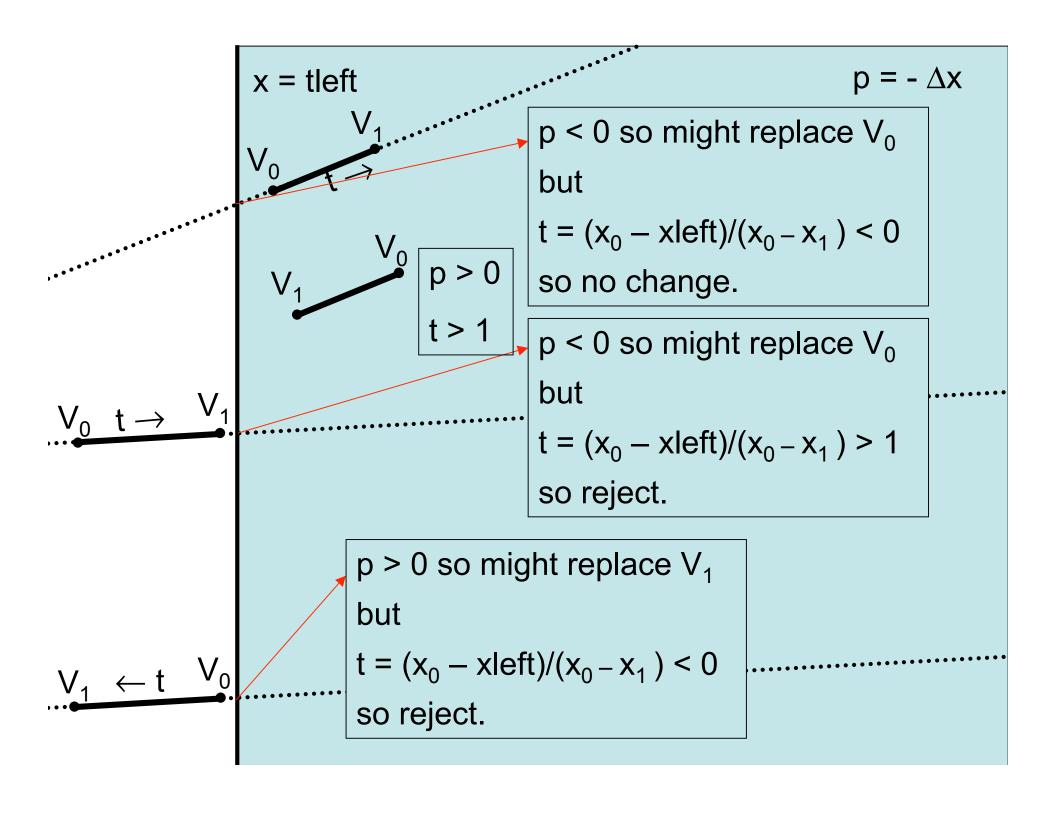
$$-t\Delta x \le x_0$$
 - xleft  $t\Delta x \le x$ right -  $x_0$   
- $t\Delta y \le y_0$  - ybottom  $t\Delta y \le y$ top -  $y_0$ 

These are all of the form

$$tp \leq q$$

• For each boundary, we decide whether to accept, reject, or which point to change depending on the sign of p and the value of t at the intersection of the line with the boundary.







## Liang-Barsky Rules

- 0 < t < 1, p < 0 replace V<sub>0</sub>
- 0 < t < 1, p > 0 replace  $V_1$
- t < 0, p < 0 no change</li>
- t < 0, p > 0 reject

- t > 1, p > 0 no change
- t > 1, p < 0 reject