CS G140 Graduate Computer Graphics

Prof. Harriet Fell Spring 2009
Lecture 4 - January 28, 2009

Today's Topics

- Raster Algorithms
- Lines - Section 3.5 in Shirley et al.
- Circles
- Antialiasing
- RAY Tracing Continued
- Ray-Plane
- Ray-Triangle
- Ray-Polygon

Pixel Coordinates

What Makes a Good Line?

- Not too jaggy
- Uniform thickness along a line
- Uniform thickness of lines at different angles
- Symmetry, Line(P,Q) = Line(Q,P)
- A good line algorithm should be fast.

Line Drawing

Which Pixels Should We Color?

- We could use the equation of the line:
- $y=m x+b$
- $m=\left(y_{1}-y_{0}\right) /\left(x_{1}-x_{0}\right)$
- $\mathrm{b}=\mathrm{y}_{1}-\mathrm{mx}_{1}$
- And a loop

$$
\begin{array}{cl}
\text { for } \mathrm{x}=\mathrm{x}_{0} \text { to } \mathrm{x}_{1} & \text { This calls for real multiplication } \\
\mathrm{y}=\mathrm{mx}+\mathrm{b} & \text { for each pixel } \\
\text { draw }(\mathrm{x}, \mathrm{y}) &
\end{array}
$$

This only works if $X_{1} \leq X_{2}$ and $|m| \leq 1$.

Midpoint Algorithm

- Pitteway 1967
- Van Aiken and Nowak 1985
- Draws the same pixels as the Bresenham Algorithm 1965.
- Uses integer arithmetic and incremental computation.
- Draws the thinnest possible line from $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ to $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ that has no gaps.
- A diagonal connection between pixels is not a gap.

Implicit Equation of a Line

$$
\left.f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}\right)\left(x_{1}, y\right.
$$

Basic Form of the Algotithm

$$
\begin{aligned}
& y=y_{0} \\
& \text { for } x=x_{0} \text { to } x_{1} \text { do } \\
& \quad \begin{array}{l}
d r a w(x, y) \\
\text { if }(\text { some condition }) \text { then } \\
y=y+1 \\
\begin{array}{l}
\text { We want to compute this } \\
\text { condition efficiently. }
\end{array}
\end{array}
\end{aligned}
$$

Since $m \in[0,1]$, as we move from x to $x+1$, the y value stays the same or goes up by 1 .

Above or Below the Midpoint?

Finding the Next Pixel

Assume we just drew (x, y).
For the next pixel, we must decide between

$$
(x+1, y) \text { and }(x+1, y+1)
$$

The midpoint between the choices is

$$
(x+1, y+0.5)
$$

If the line passes below $(x+1, y+0.5)$, we draw the bottom pixel.
Otherwise, we draw the upper pixel.

The Decision Function

if $f(x+1, y+0.5)<0$
// midpoint below line

$$
y=y+1
$$

$\mathrm{f}(\mathrm{x}, \mathrm{y})=\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right) \mathrm{x}+\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \mathrm{y}+\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0}$
How do we compute $f(x+1, y+0.5)$ incrementally?
using only integer arithmetic?

Incremental Computation

$$
\begin{aligned}
& f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0} \\
& f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right) \\
& f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right) \\
& y=y_{0} \\
& d=f\left(x_{0}+1, y+0.5\right) \\
& \text { for } x=x_{0} \text { to } x_{1} \text { do } \\
& \quad \text { draw }(x, y) \\
& \quad \text { if } d<0 \text { then } \\
& y=y+1 \\
& \quad d=d+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{aligned}
$$

else

$$
d=d++\left(y_{0}-y_{1}\right)
$$

Integer Decision Function

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}, \mathrm{y})=\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right) \mathrm{x}+\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right) \mathrm{y}+\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0} \\
& \mathrm{f}\left(\mathrm{x}_{0}+1, \mathrm{y}_{0}+0.5\right) \\
& \quad=\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{0}+1\right)+\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)\left(\mathrm{y}_{0}+0.5\right)+\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0} \\
& \begin{aligned}
2 \mathrm{f}\left(\mathrm{x}_{0}+1, y_{0}+0.5\right)
\end{aligned} \\
& \quad=2\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{0}+1\right)+\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)\left(2 \mathrm{y}_{0}+1\right)+2 \mathrm{x}_{0} \mathrm{y}_{1}-2 \mathrm{x}_{1} \mathrm{y}_{0}
\end{aligned} \quad \begin{aligned}
& 2 \mathrm{f}(\mathrm{x}, \mathrm{y})=0 \text { if }(\mathrm{x}, \mathrm{y}) \text { is on the line. } \\
& \quad<0 \text { if }(\mathrm{x}, \mathrm{y}) \text { is below the line. } \\
& \quad>0 \text { if }(\mathrm{x}, \mathrm{y}) \text { is above the line. }
\end{aligned}
$$

Incremental Computation

$$
\begin{aligned}
& f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0} \\
& \quad f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right) \\
& \quad f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
\end{aligned}
$$

$y=y_{0}$
$d=2 f\left(x_{0}+1, y+0.5\right)$
for $\mathrm{x}=\mathrm{x}_{0}$ to x_{1} do
draw (x, y)
if $\mathrm{d}<0$ then

$$
\begin{aligned}
& y=y+1 \\
& d=d+2\left(y_{0}-y_{1}\right)+2\left(x_{1}-x_{0}\right)
\end{aligned}
$$

else

$$
d=d++2\left(y_{0}-y_{1}\right)
$$

Midpoint Line Algorithm

$y=y_{0}$
$d=2\left(y_{0}-y_{1}\right)\left(x_{0}+1\right)+\left(x_{1}-x_{0}\right)\left(2 y_{0}+1\right)+2 x_{0} y_{1}-2 x_{1} y_{0}$
for $\mathrm{x}=\mathrm{x}_{0}$ to x_{1} do
draw (x, y)
if $d<0$ then

$$
\begin{aligned}
& y=y+1 \\
& d=d+2\left(y_{0}-y_{1}\right)+2\left(x_{1}-x_{0}\right)
\end{aligned}
$$

else

$$
d=d+2\left(y_{0}-y_{1}\right)
$$

Some Lines

Some Lines Magnified

Antialiasing by Downsampling

Circles

Drawing Circles - 1

Drawing Circles 2

Circular Symmetry

Midpoint Circle Algorithm

IN THE TOP OCTANT:

If (x, y) was the last pixel plotted, either
$(x+1, y)$ or $(x+1, y-1)$ will be the next pixel.
Making a Decision Function:

$$
\begin{aligned}
& d(x, y)=x^{2}+y^{2}-R^{2} \\
& \text { If } \begin{cases}d(x, y)<0 & (x, y) \text { is inside the circle. } \\
d(x, y)=0 & (x, y) \text { is on the circle. } \\
d(x, y)>0 & (x, y) \text { is outside the circle. }\end{cases}
\end{aligned}
$$

Decision Function

Evaluate d at the midpoint of the two possible pixels.

$$
d(x+1, y-1 / 2)=(x+1)^{2}+(y-1 / 2)^{2}-R^{2}
$$

If $\left\{\begin{array}{lll}d(x+1, y-1 / 2)<0 & \text { midpoint inside circle } & \text { choose } y \\ d(x+1, y-1 / 2)=0 & \text { midpoint on circle } & \text { choose } y \\ d(x+1, y-1 / 2)>0 & \text { midpoint outside circle } & \text { choose } y-1\end{array}\right.$

Computing $\mathrm{D}(\mathrm{x}, \mathrm{y})$ Incrementally

$D(x, y)=d(x+1, y-1 / 2)=(x+1)^{2}+(y-1 / 2)^{2}-R^{2}$
$D(x+1, y)-D(x, y)=$
$(x+2)^{2}+(y-1 / 2)^{2}-R^{2}-\left((x+1)^{2}+(y-1 / 2)^{2}-R^{2}\right)$
$=2(x+1)+1$
$D(x+1, y-1)-D(x, y)=$
$(x+2)^{2}+(y-3 / 2)^{2}-R^{2}-\left((x+1)^{2}+(y-1 / 2)^{2}-R^{2}\right)$
$=2(x+1)+1-2(y-1)$
You can also compute the differences incrementally.

Time for a Break

More Ray-Tracing

Equation of a Plane

Given a point P_{0} on the plane and a normal to the plane \mathbf{N}.
(x, y, z) is on the plane if and only if
$(x-a, y-b, z-c) \cdot \mathbf{N}=0$.

Ray/Plane Intersection

$$
P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \quad A x+B y+C z=D
$$

Ray Equation

$$
\begin{aligned}
& x=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y=y_{0}+t\left(y_{1}-y_{0}\right) \\
& z=z_{0}+t\left(z_{1}-z_{0}\right)
\end{aligned}
$$

$$
\mathrm{A}\left(\mathrm{x}_{0}+\mathrm{t}\left(\mathrm{x}_{1}-\mathrm{x}_{0}\right)\right)+\mathrm{B}\left(\mathrm{y}_{0}+\mathrm{t}\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)\right)+\mathrm{C}\left(\mathrm{z}_{0}+\mathrm{t}\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)\right)=\mathrm{D}
$$

Solve for t . Find $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Planes in Your Scenes

- Planes are specified by
- A, B, C, D or by \mathbf{N} and P
- Color and other coefficients are as for spheres
- To search for the nearest object, go through all the spheres and planes and find the smallest t.
- A plane will not be visible if the normal vector (A, B, C) points away from the light.

Ray/Triangle Intersection

Using the Ray/Plane intersection:

- Given the three vertices of the triangle,
- Find \mathbf{N}, the normal to the plane containing the triangle.
- Use \mathbf{N} and one of the triangle vertices to describe the plane, i.e. Find A, B, C, and D.
- If the Ray intersects the Plane, find the intersection point and its β and γ.
- If $0 \leq \beta$ and $0 \leq \gamma$ and $\beta+\gamma \leq 1$, the Ray hits the Triangle.

Ray/Triangle Intersection

Using barycentric coordinates directly: (Shirley pp. 206-208)
Solve
$\mathbf{e}+\mathrm{td}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})$ for t, β, and γ.
The x, y, and z components give you 3 linear equations in 3 unknowns.
If $0 \leq t \leq 1$, the Ray hits the Plane. If $0 \leq \beta$ and $0 \leq \gamma$ and $\beta+\gamma \leq 1$, the Ray hits the Triangle.

$$
\left(x_{e}, y_{e}, z_{e}\right)
$$

Ray/Polygon Intersection

A polygon is given by n co-planar points.
Choose 3 points that are not co-linear to find \mathbf{N}.

Apply Ray/Plane intersection procedure to find P.
Determine whether P lies inside the polygon.

Parity Check

Draw a horizontal half-line from P to the right.
Count the number of times the half-line crosses an edge.

Images with Planes and Polygons

Images with Planes and Polygons

Scan Line Polygon Fill

Polygon Data Structure

edges

$x \min$	$y \max$	$1 / m$	\bullet

$x \min =x$ value at lowest y
$(1,2)$
ymax $=$ highest y

$$
10 \rightarrow \text { e6 }
$$

$$
9
$$

8
$7 \rightarrow \mathrm{e} 4 \rightarrow \mathrm{e} 5$
$6 \rightarrow \mathrm{e} 3 \rightarrow \mathrm{e} 7 \rightarrow \mathrm{e} 8$
5
4
3
2
$1 \rightarrow \mathrm{e} 2 \rightarrow \mathrm{e} 1 \rightarrow \mathrm{e} 11$
$0 \rightarrow \mathrm{e} 10 \rightarrow \mathrm{e} 9$

Edge Table (ET) has a list of edges for each scan line.

Preprocessing the edges

For a closed polygon, there should be an even number of crossings at each scan line.
We fill between each successive pair.

delete horizontal edges

| 13 | | |
| :--- | :--- | :--- | :--- |
| 12 | | |
| 11 | $\rightarrow \mathrm{e} 6$ | |
| 10 | | |
| 9 | | |
| 8 | | |
| 7 | $\rightarrow \mathrm{e} 3$ | $\rightarrow \mathrm{e} 4 \quad \rightarrow \mathrm{e} 5$ |
| 6 | $\rightarrow \mathrm{e} 7$ | $\rightarrow \mathrm{e} 8$ |
| 5 | | |
| 4 | | |
| 3 | | |
| 2 | | |
| 1 | $\rightarrow \mathrm{e} 2$ | $\rightarrow \mathrm{e} 11$ |
| 0 | $\rightarrow \mathrm{e} 10$ | $\rightarrow \mathrm{e} 9$ |

Polygon

Data Structure after preprocessing

 Edge Table (ET) has a list of edges for each scan line.

The Algorithm

1. Start with smallest nonempty y value in ET.
2. Initialize SLB (Scan Line Bucket) to nil.
3. While current $y \leq$ top y value:
a. Merge y bucket from ET into SLB; sort on xmin.
b. Fill pixels between rounded pairs of x values in SLB.
c. Remove edges from SLB whose ytop = current y.
d. Increment xmin by $1 / \mathrm{m}$ for edges in SLB.
e. Increment y by 1.

ET			
12			
$11 \rightarrow \mathrm{e} 6$			
$\stackrel{9}{8}$			
$7 \rightarrow \mathrm{e} 3 \rightarrow \mathrm{e} 4 \rightarrow \mathrm{e} 5$			
6	$\rightarrow \mathrm{e} 7$	$\rightarrow \mathrm{e} 8$	
$5 \longrightarrow$ -			
${ }_{3}^{4}$			
1	\rightarrow e2	$\rightarrow \mathrm{e} 11$	
0	$\rightarrow \mathrm{e} 10$	$\rightarrow \mathrm{e} 9$	
	xmin	$y m a x$	1/m
e2	2	6	-2/5
e3	1/3	12	1/3
e4	4	12	-2/5
e5	4	13	0
e6	$62 / 3$	13	-4/3
e7	10	10	-1/2
e8	10	8	2
e9	11	8	3/8
e10	11	4	-3/4
e11	6	4	2/3

Running the Algorithm

Running the Algorithm

Running the Algorithm

Running the Algorithm

Running the Algorithm

Running the Algorithm

Running the Algorithm

e11 and e10 are removed.

Running the Algorithm

Remove this edge.
Running the Algorithm

Ray Box Intersection

Ray Box Intersection

http://courses.csusm.edu/cs697exz/ray box.htm

 or see Watt pages 21-22Box: minimum extent $\mathrm{Bl}=(\mathrm{xl}, \mathrm{yl}, \mathrm{zl})$ maximum extent $\mathrm{Bh}=(\mathrm{xh}, \mathrm{yh}, \mathrm{zh})$
Ray: $R 0=(x 0, y 0, z 0), R d=(x d, y d, z d)$ ray is $R 0+t R d$

Algorithm:

1. Set tnear $=-$ INFINITY, tfar $=+$ INFINITY
2. For the pair of X planes
3. if $\mathrm{zd}=0$, the ray is parallel to the planes so:

- if $\mathrm{x} 0<\mathrm{x} 1$ or $\mathrm{x} 0>\mathrm{xh}$ return FALSE (origin not between planes)

2. else the ray is not parallel to the planes, so calculate intersection distances of planes

- $\mathrm{t} 1=(\mathrm{xl}-\mathrm{x} 0) / \mathrm{xd} \quad$ (time at which ray intersects minimum X plane)
- $\mathrm{t} 2=(\mathrm{xh}-\mathrm{x} 0) / \mathrm{xd} \quad$ (time at which ray intersects maximum X plane)
- if $\mathrm{t} 1>\mathrm{t} 2$, swap t 1 and t 2
- if $\mathrm{t} 1>$ tnear, set tnear $=\mathrm{t} 1$
- if $\mathrm{t} 2<\mathrm{tfar}$, set $\mathrm{tfar}=\mathrm{t} 2$
- if tnear > tfar, box is missed so return FALSE
- if tfar <0, box is behind ray so return FALSE

3. Repeat step 2 for Y, then Z
4. All tests were survived, so return TRUE
