CS G140
 Graduate Computer Graphics

Prof. Harriet Fell Spring 2009
Lecture 3 - January 21, 2009

Today's Topics

- From 3D to 2D
- 2 Dimensional Viewing Transformation
http://www.siggraph.org/education/materials/HyperGraph/viewing/view2d/2dview0.htm
- Viewing - from Shirley et al. Chapter 7
- Recursive Ray Tracing
- Reflection
- Refraction

Scene is from my photo of Estes Park - Harriet Fell
Kitchen window from http://www.hoagy.org/cityscape/graphics/cityscapeAtNight.jpg

from a 3D World to a 2D Screen

When we define an image in some world coordinate system, to display that image we must somehow map the image to the physical output device.

1. Project 3D world down to a 2D window (WDC).
2. Transform WDC to a Normalized Device Coordinates Viewport (NDC).
3. Transform (NDC) to 2D physical device coordinates (PDC).

2 Dimensional Viewing Transformation

- Window
- Example: Want to plot x vs. $\cos (\mathrm{x})$ for x between 0.0 and 2Pi. The values of $\cos x$ will be between -1.0 and +1.0 . So we want the window as shown here.

2D Viewing Transformation

Viewport

Device

Pixel Coordinates

Canonical View to Pixels

2D Rectangle to Rectangle

Canonical View Volume

Orthographic Projection

Orthographic Projection Math

$$
\left[\begin{array}{c}
x_{\text {canonical }} \\
y_{\text {canonical }} \\
z_{\text {canonical }} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{n-f} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{b+t}{2} \\
0 & 0 & 1 & -\frac{n+f}{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Orthographic Projection Math

$$
\begin{aligned}
M_{o}= & {\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & 0 \\
0 & \frac{n_{y}}{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{n-f} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{b+t}{2} \\
0 & 0 & 1 & -\frac{n+f}{2} \\
0 & 0 & 0 & 1
\end{array}\right] } \\
& {\left[\begin{array}{c}
x_{\text {pixel }} \\
y_{\text {pixel }} \\
z_{\text {canonical }} \\
1
\end{array}\right]=M_{o}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] }
\end{aligned}
$$

Arbitrary View Positions

Arbitrary Position Geometry

Arbitrary Position Transformation

Move e to the origin and align ($u, v, w)$ with (x, y, z).

$$
M_{v}=\left[\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & 0 \\
x_{v} & y_{v} & z_{v} & 0 \\
x_{w} & y_{w} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{e} \\
0 & 1 & 0 & -y_{e} \\
0 & 0 & 1 & -z_{e} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Compute $M=M_{o} M_{v}$.
For each line segment (a, b)

$$
p=M a, q=M b, \operatorname{drawline}(p, q) .
$$

Perspective Projection

Lines to Lines

Perspective Geometry

Perspective Transformation

The perspective transformation should take

$$
\left.\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
n x / z \\
n y / z \\
p(z) \\
1
\end{array}\right] \quad \begin{array}{l}
\text { Where } \\
\text { and } \begin{array}{l}
p(n)=n \\
p(f)=f
\end{array} \\
\\
\text { implies } n \geq z_{1}>z_{2} \geq f
\end{array}\right] \begin{gathered}
p\left(z_{1}\right)>p\left(z_{2}\right) .
\end{gathered}
$$

$P(z)=n+f-f n / z$ satisfies these requirements.

Perspective Transformation

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
n x / z \\
n y / z \\
n+f-f n / z \\
1
\end{array}\right] \text { is not a linear transformation. }} \\
& {\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
n x \\
n y \\
n z+f z-f n \\
z
\end{array}\right] \text { is a linear transformation. }}
\end{aligned}
$$

The Whole Truth about Homogeneous Coordinates

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \leftrightarrow\left\{\left.\left[\begin{array}{l}
h x \\
h y \\
h
\end{array}\right] \right\rvert\, h \neq 0\right\} \begin{aligned}
& \text { A point in 2-space corresponds } \\
& \text { to a line through the origin in } \\
& \text { 3-space minus the origin itself. }
\end{aligned}
$$

A point in 3-space corresponds to a line through the origin in 4-space minus the origin itself.

Homogenize

$$
\begin{aligned}
& \left.\left[\begin{array}{c}
6 \\
14 \\
2
\end{array}\right] \xrightarrow[\text { homogenize }]{3} \begin{array}{l}
7 \\
7
\end{array}\right] \leftrightarrow\left[\begin{array}{l}
3 \\
7
\end{array}\right] \quad\left[\begin{array}{c}
27 \\
63 \\
9
\end{array}\right] \stackrel{\text { homogenize }}{\rightarrow}\left[\begin{array}{l}
3 \\
7 \\
1
\end{array}\right] \leftrightarrow\left[\begin{array}{l}
3 \\
7
\end{array}\right] \\
& {\left[\begin{array}{c}
22 \\
121 \\
77 \\
11
\end{array}\right] \xrightarrow{\text { homogenize }}\left[\begin{array}{c}
2 \\
11 \\
7 \\
1
\end{array}\right] \leftrightarrow\left[\begin{array}{c}
2 \\
11 \\
7
\end{array}\right] \quad\left[\begin{array}{c}
1 \\
5.5 \\
3.5 \\
.5
\end{array}\right] \xrightarrow{\text { homogenize }}\left[\begin{array}{c}
2 \\
7 \\
7
\end{array}\right] \leftrightarrow\left[\begin{array}{c}
2 \\
11 \\
7
\end{array}\right]}
\end{aligned}
$$

Perspective Transformation Matrix

$$
M_{p}=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -f n \\
0 & 0 & 1 & 0
\end{array}\right] \quad M_{p}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
n x \\
n y \\
n z+f z-f n \\
z
\end{array}\right]
$$

Compute $M=M_{o} M_{p} M_{v}$.
For each line segment (a, b)

$$
p=M a, q=M b \text {, drawline(homogenize(p), homogenize(q)). }
$$

Viewing for Ray-Tracing Simplest Views

A Viewing System for Ray-Tracing
perp

You need a transformation that sends

Time for a Break

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Specular Highlight on Outside of Shere

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Specular Highlight on Inside of Sphere

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Reflection and Refraction of Checkerboard

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Refraction Hitting Background

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Local Diffuse Plus Reflection from Checkerboard

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Local Diffuse in Complete Shadow

Recursive Ray Tracing

Adventures of the 7 Rays - Watt

Local Diffuse in Shadow from Transparent Sphere

Recursive Ray-Tracing

- How do we know which rays to follow?
- How do we compute those rays?
- How do we organize code so we can follow all those different rays?
select center of projection(cp) and window on view plane; for (each scan line in the image) \{ for (each pixel in scan line) \{ determine ray from the cp through the pixel; pixel = RT_trace(ray, 1);\}\}
// intersect ray with objects; compute shade at closest intersection
// depth is current depth in ray tree
RT_color RT_trace (RT_ray ray; int depth)\{
determine closest intersection of ray with an object;
if (object hit) \{
compute normal at intersection;
return RT_shade (closest object hit, ray, intersection, normal, depth);\}
else return BACKGROUND_VALUE;
// Compute shade at point on object,
// tracing rays for shadows, reflection, refraction.
RT_color RT_shade (
RT_object object, // Object intersected
RT_ray ray, // Incident ray
RT_point point, // Point of intersection to shade
RT_normal normal,// Normal at point
int depth) // Depth in ray tree
\{
RT_color color; // Color of ray
RT_ray rRay, tRay, sRay;// Reflected, refracted, and shadow ray color = ambient term ; for (each light) \{
sRay = ray from point to light ;
if (dot product of normal and direction to light is positive) \{ compute how much light is blocked by opaque and transparent surfaces, and use to scale diffuse and specular terms before adding them to color;\}\}

```
if ( depth < maxDepth ) { // return if depth is too deep
    if ( object is reflective ) {
            rRay = ray in reflection direction from point;
            rColor = RT_trace(rRay, depth + 1);
            scale rColor by specular coefficient and add to color;
    }
    if ( object is transparent ) {
            tRay = ray in refraction direction from point;
            if ( total internal reflection does not occur ) {
                tColor = RT_trace(tRay, depth + 1);
                scale tColor by transmission coefficient
                and add to color;
            }
    }
return color; // Return the color of the ray
```


Computing \mathbf{R}

$\mathbf{V}+\mathbf{R}=(2 \mathbf{V} \cdot \mathbf{N}) \mathbf{N}$
 $$
\mathbf{R}=(2 \mathbf{V} \cdot \mathbf{N}) \mathbf{N}-\mathbf{V}
$$

Reflections, no Highlight

Second Order Reflection

Refelction with Highlight

Nine Red Balls

Refraction

Refraction and Wavelength

Computing T

Computing T

Total Internal Reflection

$$
\cos \left(\theta_{T}\right)=\sqrt{1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2}\left(1-(N \cdot I)^{2}\right)}
$$

When is $\cos \left(\theta_{T}\right)$ defined?
When $1-\left(\frac{\eta_{I}}{\eta_{T}}\right)^{2}\left(1-(N \cdot I)^{2}\right) \geq 0$.
If $\eta_{I}>\eta_{T}$ and $N \cdot I$ is close to $0, \cos \left(\theta_{T}\right)$ may not be defined.
Then there is no transmitting ray and we have total internal reflection.

Index of Refraction

The speed of all electromagnetic radiation in vacuum is the same, approximately 3×108 meters per second, and is denoted by c. Therefore, if v is the phase velocity of radiation of a specific frequency in a specific material, the refractive index is given by

$$
\eta=\frac{c}{v}
$$

http://en.wikipedia.org/wiki/Refractive_index

Indices of Refraction

Material	η at $\boldsymbol{\lambda = 5 8 9 . 3 ~ \mathbf { ~ n m }}$
vacuum	1 (exactly)
helium	1.000036
air at STP	1.0002926
water ice	1.31
liquid water $\left(20^{\circ} \mathrm{C}\right)$	1.333
ethanol	1.36
glycerine	1.4729
rock salt	1.516
glass (typical)	1.5 to 1.9
cubic zirconia	2.15 to 2.18
diamond	2.419
	College of Computer and Information Science, Northeastern University

One Glass Sphere

Five Glass Balls

A Familiar Scene

Bubble

Milky Sphere

Lens - Carl Andrews 1999

