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Today’s Topics

• Ray Tracing
 Ray-Sphere Intersection
 Light: Diffuse Reflection
 Shadows
 Phong Shading

• More Math
 Matrices
 Transformations
 Homogeneous Coordinates
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Ray Tracing
a World of Spheres
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What is a Sphere
Vector3D center; // 3 doubles
double radius;
double R, G, B; // for RGB colors between 0 and 1
double kd; // diffuse coeficient
double ks; // specular coefficient
int specExp; // specular exponent 0 if ks = 0
(double ka; // ambient light coefficient)
double kgr; // global reflection coefficient
double kt;  // transmitting coefficient
int pic; // > 0 if picture texture is used
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-.01 .01 500 800 // transform theta phi mu distance
1 // antialias
1 // numlights
100 500 800 // Lx, Ly, Lz
9 // numspheres
//cx   cy cz radius R  G  B ka kd ks specExp kgr kt pic
-100 -100  0 40    .9  0  0 .2 .9 .0    4     0   0  0
-100    0  0 40    .9  0  0 .2 .8 .1    8    .1   0  0
-100  100  0 40    .9  0  0 .2 .7 .2   12    .2   0  0
   0 -100  0 40    .9  0  0 .2 .6 .3   16    .3   0  0
   0    0  0 40    .9  0  0 .2 .5 .4   20    .4   0  0
   0  100  0 40    .9  0  0 .2 .4 .5   24    .5   0  0
 100 -100  0 40    .9  0  0 .2 .3 .6   28    .6   0  0
 100    0  0 40    .9  0  0 .2 .2 .7   32    .7   0  0
 100  100  0 40    .9  0  0 .2 .1 .8   36    .8   0  0
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World of Spheres
Vector3D VP; // the viewpoint
int numLights;
Vector3D theLights[5]; // up to 5 white lights
double ka; // ambient light coefficient
int numSpheres;
Sphere theSpheres[20]; // 20 sphere max

int ppmT[3]; // ppm texture files
View sceneView; // transform data
double distance; // view plane to VP
bool antialias; // if true antialias
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Simple Ray Casting for
Detecting Visible Surfaces

select window on viewplane and center of projection
for (each scanline in image) {

for (each pixel in the scanline) {
determine ray from center of projection

through pixel;
for (each object in scene) {

if (object is intersected and
     is closest considered thus far)

record intersection and object name;
}
set pixel’s color to that of closest object intersected;

}
}
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Ray Trace 1
Finding Visible Surfaces
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Ray-Sphere Intersection

• Given
 Sphere

• Center (cx, cy, cz)
• Radius, R

 Ray from P0 to P1
• P0 = (x0, y0, z0) and P1 = (x1, y1, z1)

 View Point
• (Vx, Vy, Vz)

• Project to window from (0,0,0) to (w,h,0)
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Sphere Equation
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Ray Equation

P0 = (x0, y0, z0) and P1 = (x1, y1, z1)

The ray from P0 to P1 is given by:
P(t) = (1 - t)P0 + tP1 0 <= t <= 1
       = P0 + t(P1 - P0)

P0

P1

t →
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Intersection Equation
P(t) = P0 + t(P1 - P0) 0 <= t <= 1

is really three equations
x(t) = x0 + t(x1 - x0) 
y(t) = y0 + t(y1 - y0) 
z(t) = z0 + t(z1 - z0) 0 <= t <= 1

Substitute x(t), y(t), and z(t) for x, y, z, respectively in

( ) ( ) ( )

( )( )( ) ( )( )( ) ( )( )( )

22 2 2

22 2
2

0 1 0 0 1 0 0 1 01

- - -

  -   -   -

z
+ + =

+ ! + + ! + + ! =

x y

x y z

x c y c z c R

x t x x c y t y y c z t z z c R
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Solving the Intersection
Equation

( )( )( ) ( )( )( ) ( )( )( )
22 2

2

0 1 0 0 1 0 0 1 01
  -   -   -+ ! + + ! + + ! =x y zx t x x c y t y y c z t z z c R

is a quadratic equation in variable t.

For a fixed pixel, VP, and sphere,

x0, y0, z0, x1, y1, z1, cx, cy, cz, and R

   eye        pixel     sphere

are all constants.

We solve for t using the quadratic formula.
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The Quadratic Coefficients

( )( )( ) ( )( )( ) ( )( )( )
22 2

2

0 1 0 0 1 0 0 1 01
  -   -   -+ ! + + ! + + ! =x y zx t x x c y t y y c z t z z c R

Set dx = x1 - x0

dy = y1 - y0

dz = z1 -  z0

Now find the  the coefficients:

2
0+ + =At Bt C
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Computing Coefficients
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The Coefficients
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Solving the Equation

( )

( )

!
"
#
"
$

2

2

At +Bt +C = 0

discriminant = D A,B,C = B - 4AC

< 0 no intersection

D A,B,C = 0 ray is tangent to the sphere

> 0 ray intersects sphere in two points
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The intersection nearest P0 is given by:

To find the coordinates of the intersection
point:

2 - 4ACB-B -
t =

2A

0 x

0 y

0 z

x = x  + td

y = y  + td

z = z  + td



January 11, 2009 19©College of Computer and Information Science, Northeastern University

First Lighting Model
• Ambient light is a global constant.

Ambient Light = ka (AR, AG, AB)
ka is in the “World of Spheres”
0 ≤ ka ≤ 1
(AR, AG, AB) = average of the light sources

(AR, AG, AB) = (1, 1, 1) for white light
• Color of object S = (SR, SG, SB)
• Visible Color of an object S with only ambient light

CS= ka (AR SR, AG SG, AB SB)
• For white light

CS= ka (SR, SG, SB)
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Visible Surfaces
Ambient Light
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Second Lighting Model
• Point source light L = (LR, LG, LB) at (Lx, Ly, Lz)
• Ambient light is also present.
• Color at point p on an object S with ambient & diffuse

reflection
Cp= ka (AR SR, AG SG, AB SB)+ kd kp(LR SR, LG SG, LB SB)

• For white light, L = (1, 1, 1)
Cp= ka (SR, SG, SB) + kd kp(SR, SG, SB)

• kp depends on the point p on the object and (Lx, Ly, Lz)
• kd depends on the object (sphere)
• ka is global
• ka + kd ≤ 1
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Diffuse Light
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Lambertian Reflection Model
Diffuse Shading

• For matte (non-shiny) objects
• Examples

 Matte paper, newsprint
 Unpolished wood
 Unpolished stones

• Color at a point on a matte object does not
change with viewpoint.
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Physics of
Lambertian Reflection

• Incoming light is partially absorbed and partially
transmitted equally in all directions
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Geometry of Lambert’s Law

N

N

L dA
dA

90 - θ

θ

90 - θ

dAcos(θ)

θ
L

Surface 1 Surface 2
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cos(θ)=N⋅L

Surface 2

dA

90 - θ

θ

90 - θ

dAcos(θ)

θ
L

N

Cp= ka (SR, SG, SB) + kd N⋅L (SR, SG, SB)
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Finding N

radius
(cx, cy, cz)

(x, y, z)

normal

N = (x-cx, y-cy, z-cz)
      |(x-cx, y-cy, z-cz)|
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Diffuse Light 2
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Shadows on Spheres
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More Shadows
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Finding Shadows

P

Sha
do

w R
ay

Pixel gets
shadow color
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Shadow Color

• Given
Ray from P (point on sphere S) to L (light)

P= P0 = (x0, y0, z0) and L = P1 = (x1, y1, z1)

• Find out whether the ray intersects
any other object (sphere).
 If it does, P is in shadow.
 Use only ambient light for pixel.
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Shape of Shadows
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Different Views
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Planets
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Starry Skies
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Shadows on the Plane
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Finding Shadows
on the Back Plane

P

Shadow Ray

Pixel in Shadow
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Close up
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On the Table
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Phong Highlight
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Phong Lighting Model

L
N

R

V

Light

Normal

Reflected

View

θ θ α

Surface

The viewer only sees
the light when α is 0.

We make the highlight
maximal when α is 0,
but have it fade off
gradually.
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Phong Lighting Model

Cp= ka (SR, SG, SB) + kd N⋅L (SR, SG, SB) + ks (R⋅V)n(1, 1, 1)     

L
N

R

V

cos(α) = R⋅V

We use cosn(α).

The higher n is, the
faster the drop off.

θ θ α

Surface

For white light
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Powers of cos(α)

cos10(α)

cos20(α)

cos40(α)

cos80(α)



January 11, 2009 45©College of Computer and Information Science, Northeastern University

Computing R

L

N

R

θ θ

LR

L+R

L + R = (2 L⋅N) N

R = (2 L⋅N) N - L

L⋅N

L⋅N
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The Halfway Vector

Cp= ka (SR, SG, SB) + kd N⋅L (SR, SG, SB) + ks (H⋅N)n (1, 1, 1)      

L
N H

V

H = L+ V
      |L+ V|
Use H⋅N
instead of R⋅V.

H is less
expensive to
compute than
R.

θ α

Surface

R
ϕ

θ

From the picture

θ + ϕ = θ - ϕ + α

So ϕ = α/2.

This is not
generally true.
Why?
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Varied Phong Highlights
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Varying Reflectivity
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Time for a Break
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More Math

• Matrices
• Transformations
• Homogeneous Coordinates
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Matrices

11 12 13 14

11 12 13

21 22 23 2411 12

21 22 23

31 32 33 3421 22

31 32 33

41 42 43 44

c c c c
b b b

c c c ca a
A B b b b C

c c c ca a
b b b

c c c c

! "
! " # $

! " # $ # $= = =# $ # $ # $% & # $ # $% &
% &

• We use 2x2, 3x3, and 4x4 matrices in computer
graphics.

• We’ll start with a review of 2D matrices and
transformations.
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Basic 2D Linear Transforms

11 12 11 12

21 22 21 22

a a a x a yx

a a a x a yy

+! " ! "! "
=# $ # $# $

+% &% & % &

11 12 11 11 12 12

21 22 21 21 22 22

1 0

0 1

a a a a a a

a a a a a a

! " ! " ! " ! "! " ! "
= =# $ # $ # $ # $# $ # $

% & % &% & % & % & % &
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Scale by .5

( )scale .5,.5

.5 0

0 .5

=

! "
# $
% &

(1, 0) (0.5, 0)

(0, 1)
(0, 0.5)
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Scaling by .5

y

x

y

x

0.5 0

0 0.5

! "
# $
% &
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General Scaling

y

x

y

x

0 1

0 0 0

x x

y

s s

s

! " ! " ! "
=# $ # $ # $

% & % &% &

0 00

0 1

x

y y

s

s s

! " ! "! "
=# $ # $# $

% &% & % &
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General Scaling

sx1

1

sy

y

x

y

x

( ),

0

0

x y

x

y

scale s s

s

s

=

! "
# $
% &
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Rotation

φ

φ

sin(φ)
cos(φ)

( )

( ) ( )

( ) ( )

rot

cos sin

sin cos

!

! !

! !

=

"# $
% &
' (

-sin(φ)

cos(φ)
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Rotation

y

x

y

x

( )

( ) ( )

( ) ( )

rot

cos sin

sin cos

!

! !

! !

=

"# $
% &
' (

φ
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Reflection in y-axis

reflect-y

1 0

0 1

=

!" #
$ %
& '
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Reflection in y-axis

y

x

y

x

reflect-y

1 0

0 1

=

!" #
$ %
& '



January 11, 2009 61©College of Computer and Information Science, Northeastern University

Reflection in x-axis

reflect-x

1 0

0 1

=

! "
# $%& '
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Reflection in x-axis
y

x

reflect-x

1 0

0 1

=

! "
# $%& '

y

x
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Shear-x

( )shear-x

1

0 1

s

s

=

! "
# $
% &

s
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Shear x

y

x

y

x

1

0 1

s! "
# $
% &
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Shear-y

( )shear-y

1 0

1

s

s

=

! "
# $
% &

s
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Shear y

y

x

y

x

1 0

1s

! "
# $
% &
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Linear Transformations

• Scale, Reflection, Rotation, and Shear are
all linear transformations

• They satisfy: T(au + bv) = aT(u) + bT(v)
 u and  v are vectors
 a and b are scalars

• If T is a linear transformation
 T((0, 0)) = (0, 0)
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Composing Linear
Transformations

• If T1 and T2 are transformations
 T2 T1(v) =def T2( T1(v))

• If T1 and T2 are linear and are represented
by matrices M1 and M2
 T2 T1 is represented by M2 M1

 T2 T1(v) = T2( T1(v)) = (M2 M1)(v)
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Reflection About an
Arbitrary Line (through the origin)

y

x

y

x
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Reflection as a Composition
y

x



January 11, 2009 71©College of Computer and Information Science, Northeastern University

Decomposing
Linear Transformations

• Any 2D Linear Transformation can be
decomposed into the product of a rotation,
a scale, and a rotation if the scale can
have negative numbers.

• M = R1SR2
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Rotation about
an Arbitrary Point

y

x
φ

y

x
φ

This is not a linear transformation.  The origin moves.
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Translation

y

x

y

x

(a, b)

This is not a linear transformation.  The origin moves.

(x, y)→(x+a,y+b)
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Homogeneous Coordinates

x

x

y

z

y Embed the xy-plane in R3 at z = 1.

(x, y) ↔ (x, y, 1)
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2D Linear Transformations
as 3D Matrices

11 12 11 12

21 22 21 22

a a a x a yx

a a a x a yy

+! " ! "! "
=# $ # $# $

+% &% & % &

Any 2D linear transformation can be
represented by a 2x2 matrix

11 12 11 12

21 22 21 22

0

0

0 0 1 1 1

a a x a x a y

a a y a x a y

+! " ! " ! "
# $ # $ # $

= +
# $ # $ # $
# $ # $ # $% & % & % &

or a 3x3 matrix
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2D Linear Translations
as 3D Matrices

Any 2D translation can be represented by
a 3x3 matrix.

1 0

0 1

0 0 1 1 1

a x x a

b y y b

+! " ! " ! "
# $ # $ # $

= +
# $ # $ # $
# $ # $ # $% & % & % &

This is a 3D shear that acts as a
translation on the plane z = 1.
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Translation as a Shear

x

x

y

z

y
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2D Affine Transformations
• An affine transformation is any transformation

that preserves co-linearity (i.e., all points lying on
a line initially still lie on a line after
transformation) and ratios of distances (e.g., the
midpoint of a line segment remains the midpoint
after transformation).

• With homogeneous coordinates, we can
represent all 2D affine transformations as 3D
linear transformations.

• We can then use matrix multiplication to
transform objects.



January 11, 2009 79©College of Computer and Information Science, Northeastern University

y

x

Rotation about
an Arbitrary Point

y

x

φ φ
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φ

y

x

Rotation about
an Arbitrary Point

φφ

φ

T(-cx, -cy)R(φ)T(cx, cy)
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Windowing Transforms

(a,b)

(A,B)

(c,d)

(C,D)
(C-c,D-d)

(A-a,B-b)translate

scale

translate
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3D Transformations

1

x
x

y
y

z
z

! "
! " # $
# $ # $%
# $ # $
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& '

11 12 13

11 12 13

21 22 22

21 22 23

31 32 33

31 32 33

0

0

0

0 0 0 1

a a a
a a a

a a a
a a a

a a a
a a a

! "
! " # $
# $ # $%
# $ # $
# $ # $& '

& '

Remember:

A 3D linear transformation can be represented by a
3x3 matrix.
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3D Affine Transformations

( )

0 0 0

0 0 0
scale , ,

0 0 0

0 0 0 1

x

y

x y z

z

s

s
s s s

s
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( )

1 0 0

0 1 0
translate , ,

0 0 1

0 0 0 1

x

y

x y z

z

t

t
t t t

t
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3D Rotations

( )
( ) ( )

( ) ( )
x

1 0 0 0

0 cos sin 0
rotate

0 sin cos 0

0 0 0 1

! !
!
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" #
$ %&
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$ %
$ %
' (

( )

( ) ( )
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z

cos sin 0 0

sin cos 0 0
rotate

0 0 1 0

0 0 0 1

! !
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!
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% &
% &=
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y

cos 0 sin 0

0 1 0 0
rotate

sin 0 cos 0

0 0 0 1
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