CS5800 Algorithms Professor Fell
Fall 2009 October 28, 2009

CS 5800 - Final - Review material

Old stuff

Big-O notation Though you won’t be quizzed directly on Big-O notation, you should be able to
apply it to analyzing algorithms, e.g. ones that you produce a problem solutions.

Recurrence relations As with Big-O.
Binary search Never forget this.

Merge sort, Partition in quicksort, Insertion sort You really should be able to tell me about
these ten years from now even if you don’t remember all the details.

Priority queues - binary heaps You really should be able to tell me that you remember having
heard about these ten years.

Greedy algorithms, Dynamic programming Methods that you are likely to use throughout
your careers.

New stuff

You should know these algorithms and how to analyze their running times.
e Tables - Amortized algorithms
e Binary search trees
e Decomposition of Graphs

— Adjacency list and adjacency matrix representation
— Depth-first search in undirected graphs

— Depth-first search in directed graphs
Topological sort

— Strongly connected components
e Paths in Graphs

— Distances
— Breadth-first search

Lengths on edges (weighted graphs)

Dijkstras algorithm
— NO - Shortest paths in the presence of negative edges

— Shortest paths in dags .
e Minimum spanning trees

— Kruskal
- Data structure for disjoint sets: Union/Find

— Prim
e Flows in Networks

— Flows and cuts

Graphs

A undirected graph G = (V, E) where each edge e € F is 2-way and represented by a set {u, v} with
u,v € V. We also write (u,v) when we are talking about following the edge from u to v.

A graph G = (V, E) where each edge e € E is 1-way and represented by an ordered pair (u,v) with
u,v € V. The edge (u,v) goes from u to v.

A graph can be represented by an n x n adjacency matriz where n = |V|. The (i,)th entry is

- 1 if there is an edge from v; to v;
1 0 otherwise.

or an adjacency list that consists of |V linked lists, one per vertex. The linked list for vertexu
holds the names of vertices to which u has an outgoing edge, i.e. vertices v for which (u,v) € E.

Depth-first search
You should understand procedures explore(G,v) on page 84 and dfs(G) on page 85 using the
previsit and postvisit on page 87.

You should be able to perform depth-first search in a directed or undirected graph, label the vertices
with pre and post numbers and label the edges as tree or back in an undirected graph, tree, forward,
back, or cross in a directed graph.

Tree edges are actually part of the DFS forest.
Forward edges lead from a node to a non-child descendant in the DFS tree.
Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they therefore lead to a node that has
already been completely explored (that is, already post-visited).

Strongly connected components - the algorithm

1. Run DFS on GE.

2. Run DFS on G from vertex in 1 with highest POST number. Remove those vertices from
G (or their component from the dag) and repeat starting with the remaining vertex highest
POST number from step 1.

Breadth-first search

BFS(G, s)
for allu e V
dist(u) = 0o
dist(u) =0
@ = [s] (queue containing just s)
while @ is not empty
u=eject(Q)
for all edges (u,v) € E
if dist(v) = 00
inject(Q,v)
dist(v) = dist(u) +1

Shortest Path

DIJKSTRA(G, s)
Initialize dist(s) = 0, other dist(-) values to co, R = { } (the “known region”)
while R # V:

Pick the node v ¢ V' with smallest dist(-)

Add v to R

for all edges (v,z) € E:

if dist(z) > dist(v) + (v, 2):
dist(z) = dist(v) + (v, 2)

Minimum spanning trees
Kruskal’s algorithm
Repeatedly add the next lightest edge that doesnt produce a cycle.

KRUSKAL(G, w)
Input: A connected undirected graph G = (V, FE) with edge weights we
Output: A minimum spanning three defined by the edges X

for all u € V:
MAKESET (u)
X ={}

sort the edges E by weight
for all edges {u,v} € E,in increasing order of weight:
if FIND(u) # FIND(v):
add edge {u,v} to X
UNION(u, v)

Data structure for disjoint sets

Union by rank:

store a set is as a directed tree. Nodes of the tree are elements of the set, in no particular order,
and each has parent pointers that eventually lead up to the root of the tree. This root element is
a representative, or name, for the set. It is distinguished from the other elements by the fact that
its parent pointer is a self-loop.

MAKESET(x)
() =x
rank(z) =0

FIND(z)
if x # w(z): 7(z) = find(7(x))

return 7(z)

UNION(z, y)
ry = find(x)
ry = find(y)

if r, = r, return
if rank(r;) > rank(ry)
m(ry) =72
else
m(rz) =1y
if rank(r,) = rank(r,): rank(r,) = rank(r,) + 1

The amortized cost of a sequence of n union find operations starting from an empty data structure
averages O(1) down from O(logn).

Prims algorithm for MST
The intermediate set of edges X always forms a subtree, and S is chosen to be the set of this trees
vertices.

On each iteration, the subtree defined by X grows by one edge, namely, the lightest edge between
a vertex in S and a vertex outside S.

Shortest path in dags

initialize all dist(-) values to oo

dist(s) =0

for each v € V\{s}, in linearized order:
dist(v) = min, ,)ep{dist(u) + I(u,v)}

Flow networks
G = (V, E) directed.
Each edge (u,v) has a capacity c(u,v) > 0.
If (u,v) € E, then ¢(u,v) = 0.

If (u,v) € E, then reverse edge (v,u) ¢ E.
(Can work around this restriction.)
Source = vertex s, sink = vertex t, assume s ~ v ~ t for all v € V, so every vertex lies on
some path from source to sink.

/]
Z f(S,'l))— Z f(U,S)
Value of flow veV veV
flow into w flow out of u

= flow out of source — flow into source.
In the example above, value of flow f = |f| = 3.

Maximum-flow problem
Given G, s,t, and ¢, find a flow whose value is maximum.

Cuts
A cut (5,T) of a flow network G = (V, E) is a partition of V into S and 7" = V — S such that
seSandteT.

The net flow across cut (S,T) is

f(S7T) = Z Zf(u,v) - Z Zf(v,u)

ueSveT ueSveT

Capacity of a cut

c(S,T) = Z Z c(u,v).

ueS veT
A minimum cut of G is a cut whose capacity is minimum over all cuts of G.

Maximum flow < capacity of minimum cut.
Given a flow f in network G = (V, E).

That’s the residual capacity,

c(u,v) — f(u,v) if (u,v) € E
cr(u,v) =19 f(u,v) if (v,u) € E
0 otherwise (i.e, (u,v),(v,u) € E) € E).

The residual networkis Gy = (V, Ey), where
E¢ ={(u,v) € VxV :cp(u,v) > 0}.

Ford-Fulkerson algorithm
Keep augmenting flow along an augmenting path until there is no augmenting path.
Represent the flow attribute using the usual dot-notation, but on an edge: (u,v);.

FORD-FULKERSON(G, s,)

for all (u,v) € G.E
(u,v).f =0

while there is an augmenting path p in Fy
augment f by cy(P)

