CS5310
 Graduate Computer Graphics

Prof. Harriet Fell Spring 2011
Lecture 9 - March 23, 2011

Today's Topics

- Morphing
- Fractals

Morphing History

- Morphing is turning one image into another through a seamless transition.
- Early films used cross-fading picture of one actor or object to another.
- In 1985, "Cry" by Godley and Crème, parts of an image fade gradually to make a smother transition.
- Early-1990s computer techniques distorted one image as it faded into another.
- Mark corresponding points and vectors on the "before" and "after" images used in the morph.
- E.g. key points on the faces, such as the contour of the nose or location of an eye
- Michael Jackson's "Black or White" (1991)
" http://en.wikipedia.org/wiki/Morphing

Morphing History

- 1992 Gryphon Software's "Morph" became available for Apple Macintosh.
- For high-end use, "Elastic Reality" (based on Morph Plus) became the de facto system of choice for films and earned two Academy Awards in 1996 for Scientific and Technical Achievement.
- Today many programs can automatically morph images that correspond closely enough with relatively little instruction from the user.
- Now morphing is used to do cross-fading.

Harriet George Harriet...

Feature Based Image Metamorphosis

Thaddeus Beier and Shawn Neely 1992

- The morph process consists
- warping two images so that they have the same "shape"
- cross dissolving the resulting images
- cross-dissolving is simple
- warping an image is hard

Harriet \& Mandrill

Harriet
276×293

Mandrill 256x256

Warping an Image

There are two ways to warp an image:

- forward mapping - scan through source image pixel by pixel, and copy them to the appropriate place in the destination image.
- some pixels in the destination might not get painted, and would have to be interpolated.
- reverse mapping - go through the destination image pixel by pixel, and sample the correct pixel(s) from the source image.
- every pixel in the destination image gets set to something appropriate.

Forward Mapping

Forward Mapping Harriet \rightarrow Mandrill

Forward Mapping Mandrill \rightarrow Harriet

Inverse Mapping

Inverse Mapping Mandrill \rightarrow Harriet

Inverse Mapping Harriet \rightarrow Mandrill

(harrietINV + mandrill)/2

Matching Points

Matching Ponts Rectangular Transforms

Halfway Blend

Image1

Image2

(1-t)Image1 + (t)Image2

$$
\text { T = . } 5
$$

Caricatures Extreme Blends

Harriet \& Mandrill Matching Eyes

Match the endpoints of a line in the source with the endpoints of a line in the destination.

Harriet 276x293

Mandrill 256x256

Line Pair Map

The line pair map takes the source image to an image the same size as the destinations and take the line segment in the source to the line segment in the destination.

Finding u and v

u is the proportion of the distance from DP to DQ.
v is the distance to travel in the perpendicular direction.

linePairMap.m header

\% linePairMap.m
\% Scale image Source to one size DW, DH with line pair mapping
function Dest = forwardMap(Source, DW, DH, SP, SQ, DP, DQ);
\% Source is the source image
\% DW is the destination width
\% DH is the destination height
\% SP, SQ are endpoints of a line segment in the Source $[y, x]$
\% DP, DQ are endpoints of a line segment in the Dest $[y, x]$

linePairMap.m body

Dest $=$ zeros(DH, DW,3); \% rows x columns \times RGB SW = length(Source(1,:,1)); \% source width SH = length(Source(:,1,1)); \% source height for $y=1: D H$
for $x=1: D W$
$\mathrm{u}=([\mathrm{x}, \mathrm{y}]-\mathrm{DP})^{*}(\mathrm{DQ}-\mathrm{DP})^{\prime} /\left((\mathrm{DQ}-\mathrm{DP})^{*}(\mathrm{DQ}-\mathrm{DP})^{\prime}\right) ;$
$\mathrm{v}=([\mathrm{x}, \mathrm{y}]-\mathrm{DP})^{*} \mathrm{perp}(\mathrm{DQ}-\mathrm{DP})^{\prime} / \mathrm{norm}(\mathrm{DQ}-\mathrm{DP})$; SourcePoint $=$ SP+u*(SQ-SP) + v*perp(SQ-SP)/norm(SQ-SP); SourcePoint $=\max ([1,1], \min ([S W, S H]$, SourcePoint));

Dest($\mathrm{y}, \mathrm{x},:$:)=Source(round(SourcePoint(2)),round(SourcePoint(1)),:); end; end;

linePairMap.m extras

\% display the image
figure, image(Dest/255,'CDataMapping','scaled');
axis equal;
title('line pair map');
xlim([1,DW]); ylim([1,DH]);
function Vperp $=\operatorname{perp}(\mathrm{V})$
Vperp $=[\mathrm{V}(2),-\mathrm{V}(1)]$;

Line Pair Map

Line Pair Blend

Line Pair Map 2

Line Pair Blend 2

Weighted Blends

Line Pair Blend Mostly Harriet

Line Pair Blend Mostly Mandrill

Multiple Line Pairs

Find Xi ' for the ith pair of lines.
Di = Xi' - X
Use a weighted average of the Di .
Weight is determined by the distance from X to the line.

$$
\text { weight }=\left(\frac{\text { length }^{p}}{(a+\text { dist })}\right)^{b}
$$

length $=$ length of the line
dist is the distance from the pixel to the line
a, b, and p are used to change the relative effect of the lines.
Add average displacement to X to determine X^{\prime}.

Let's Morph

MorphX

Time for a Break

Fractals

The term fractal was coined in 1975 by Benoît Mandelbrot, from the Latin fractus, meaning "broken" or "fractured".
(colloquial) a shape that is recursively constructed or self-similar, that is, a shape that appears similar at all scales of magnification.
(mathematics) a geometric object that has a Hausdorff dimension greater than its topological dimension.

Mandelbrot Set

Mandelbrotset, rendered with Evercat's program.

Mandelbrot Set

What is the Mandelbrot Set?

We start with a quadratic function on the complex numbers.

$$
\begin{aligned}
& f_{c}: \mathbb{C} \rightarrow \mathbb{C} \\
& z \mapsto z^{2}+c
\end{aligned}
$$

The Mandelbrot Set is the set of complex c such that

$$
\begin{aligned}
& f_{c}^{n}(0) \nrightarrow \infty \\
& \text { where } f_{c}^{n} \text { is the } n \text {-fold composition of } f_{c} \text { with itself. }
\end{aligned}
$$

Example

$f(z)=z^{2}-1$
$f(0)=-1$
$f^{2}(0)=f(-1)=1-1=0$
$f^{n}(0)=\left\{\begin{array}{cc}-1 & n \text { odd } \\ 0 & n \text { even }\end{array}\right.$
$f(2)=4-1=3 \quad f^{2}(2)=f(3)=9-1=8$
$f^{n}(2)$ tend to ∞ as n tends to ∞.
$f(i)=i^{2}-1=-2 \quad f^{2}(i)=f(-2)=4-1=3$
$f^{n}(i)$ tend to ∞ as n tends to ∞.

(Filled-in) Julia Sets

$c=-5+.5 i$

$$
c=-5+.5 i
$$

$$
c=-1
$$

$f_{c}: \mathbb{C} \rightarrow \mathbb{C}$
$z \mapsto z^{2}+c$

The Julia Set of f_{c} is the set of points with 'chaotic' behavior under iteration.
The filled-in Julia set (or Prisoner Set), is the set of all z whos orbits do not tend towards infinity. The "normal" Julia set is the boundary of the filled-in Julia set.

Julia Sets and the Mandelbrot Set

Some Julia sets are connected others are not.

The Mandelbrot set is the set of complex c for which the Julia set of f_{c} $(z)=z^{2}+c$ is connected.

Map of 121 Julia sets in position over the Mandelbrot set (wikipedia)

A fractal is formed when pulling apart two glue-covered acrylic sheets.

Fractal Form of a Romanesco Broccoli photo by Jon Sullivan

L-Systems

- An L-system or Lindenmayer system, after Aristid Lindenmayer (1925-1989), is a formal grammar (a set of rules and symbols) most famously used to model the growth processes of plant development, though able to model the morphology of a variety of organisms.
- L-systems can also be used to generate selfsimilar fractals such as iterated function systems.

L-System References

- Przemyslaw Prusinkiewicz \& Aristid Lindenmayer, "The Algorithmic Beauty of Plants," Springer, 1996.
- http://en.wikipedia.org/wiki/L-System

L-System Grammar

- $\mathbf{G}=\{V, S, \omega, P\}$, where
- V (the alphabet) is a set of variables
- \mathbf{S} is a set of constant symbols
- $\boldsymbol{\omega}$ (start, axiom or initiator) is a string of symbols from \mathbf{V} defining the initial state of the system
- \mathbf{P} is a set of rules or productions defining the way variables can be replaced with combinations of constants and other variables.
- A production consists of two strings - the predecessor and the successor.

L-System Examples

- Koch curve (from wikipedia)
- A variant which uses only right-angles.
- variables: F
- constants : + -
- start : F
- rules : ($F \rightarrow F+F-F-F+F)$
- Here, F means "draw forward", + means "turn left 90° ", and - means "turn right 90° " (see turtle graphics).

Turtle Graphics

class Turtle \{

 double angle; // direction of turtle motion in degrees double X; double Y; // current x position// current y position
double step; // step size of turtle motion boolean pen; // true if the pen is down

public void forward(Graphics g)

// moves turtle forward distance step in direction angle
public void turn(double ang)
// sets angle = angle + ang;
public void penDown(), public void penUp()
// set pen to true or false
\}

My L-System Data Files

Koch Triangle Form
4
90
F
F:F+F-F-F+F

// title
// number of levels to iterate
// angle to turn
// starting shape
// a rule

F F+F-F-F+F
$\mathrm{F}+\mathrm{F}-\mathrm{F}-\mathrm{F}+\mathrm{F}+\mathrm{F}+\mathrm{F}-\mathrm{F}-\mathrm{F}+\mathrm{F}-\mathrm{F}+\mathrm{F}-\mathrm{F}-\mathrm{F}+\mathrm{F}-\mathrm{F}$
$+F-F-F+F+F+F-F-F+F$

More Variables

Dragon
When drawing, treat L and R just like F. 10 90
L
L:L+R+
R:-L-R
$L \quad L+R+\quad L+R++-L-R+\quad L+R++-L-R++-L$

$$
+R+--L-R+
$$

A Different Angle

Sierpinski Gasket
 6
 60
 R
 L:R+L+R
 R:L-R-L

R

Moving with Pen Up

Islands and Lakes
2
90
$\mathrm{F}+\mathrm{F}+\mathrm{F}+\mathrm{F}$
$F: F+f-F F+F+F F+F f+F F-f+F F-F-F F-F f-F F F$
f:ffffff
// f means move forward with the pen up

$$
F+f-F F+F+F F+F f+F F-f+F F-F-F F-F f-F F F
$$

$F+F+F+F$

Islands and Lakes One Side of the Box

F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF

Using a Stack to Make Trees

Tree1
4
22.5 and I add leaves here

```
F
\(F: F F-[-F+F+F]+[+F-F-F]\)
```

[push the turtle state onto the stack] pop the turtle state from the stack

Stochastic L-Systems

http://algorithmicbotany.org/Istudio/CPFGman.pdf

seed: 2454 // different seeds for different trees derivation length: 3
axiom: F
F--> F[+F]F[-F]F : 1/3
F--> F[+F]F: 1/3
F--> F[-F]F: 1/3

3D Turtle Rotations

Heading, Left, or, Up vector tell turtle direction.
$+(\theta) \quad$ Turn left by angle θ° around the U axis.
$-(\theta) \quad$ Turn right by angle θ° around the U axis.
$\&(\theta)$ Pitch down by angle θ° around the L axis.
$\Lambda(\theta)$ Pitch up by angle θ° around the L axis.
$1(\theta) \quad$ Rollleftbyangle θ° around the H axis.
$/(\theta) \quad$ Roll right by angle θ° around the H axis.
| Turn around 180° around the U axis.
@v Roll the turtle around the H axis so that H and U lie in a common vertical plane with U closest to up.

A Mint

http://algorithmicbotany.org/papers/

A model of a member of the mint family that exhibits a basipetal flowering sequence.

