

CS5310 Graduate Computer Graphics

Prof. Harriet Fell Spring 2011 Lecture 8 – March 16, 2011

March 22, 2011

Today's Topics

- A little more Noise
- ------
- Gouraud and Phong Shading
- Color Perception mostly ala Shirley et al.
 - Light Radiometry

- Color Theory
- Visual Perception

Plane Flame Code (MATLAB)

w = 300; h = w + w/2; x=1:w; y=1:h;

flameColor = zeros(w,3); % Set a color for each x flameColor(x,:)=... [1-2*abs(w/2-x)/w; max(0,1-4*abs(w/2-x)/w); zeros(1,w)]';

```
flame=zeros(h,w,3); % Set colors for whole flame
% 1 <= x=j <= 300=h, 1 <= y=451-i <= 450=h+h/2
for i = 1:h
for j = 1:w
flame(i,j,:)=(1-(h-i)/h)*flameColor(j,:);
end
```

end

March 22, 2011

Turbulent Flame Code (MATLAB)

```
function Tarray = turbulenceArray(m,n)
noise1 = rand(39, 39);
noise2 = rand(39,39);
noise3 = rand(39, 39);
divisor = 64;
Tarray = zeros(m,n);
for i = 1:m
  for j = 1:n
     Tarray(i,j,1) = LinearTurbulence2(i/divisor, j/divisor, noise1, divisor);
     Tarray(i,j,2) = LinearTurbulence2(i/divisor, j/divisor, noise2, divisor);
    Tarray(i,j,3) = LinearTurbulence2(i/divisor, j/divisor, noise3, divisor);
   end
```

end

Flat Shading

- A single normal vector is used for each polygon.
- The object appears to have facets.

http://en.wikipedia.org/wiki/Phong_shading

Gouraud Shading

- Average the normals for all the polygons that meet a vertex to calculate its surface normal.
- Compute the color intensities at vertices base on the Lambertian diffuse lighting model.
- Average the color intensities across the faces.

This image is licensed under the <u>Creative Commons</u> <u>Attribution License v. 2.5.</u>

Phong Shading

- Gouraud shading lacks specular highlights except near the vertices.
- Phong shading eliminates these problems.
- Compute vertex normals as in Gouraud shading.
- Interpolate vertex normals to compute normals at each point to be rendered.
- Use these normals to compute the Lambertian diffuse lighting.

http://en.wikipedia.org/wiki/Phong_shading

Color Systems

- RGB
- CMYK
- HVS
- YIQ
- CIE = XYZ for standardized color

Light – Radiometry Things You Can Measure

- Think of light as made up of a large number of photons.
- A *photon* has position, direction, and wavelength λ .
 - λ is usually measured in nanometers
 - 1 nm = 10⁻⁹ m = 10 angstroms
- A photon has a speed *c* that depends only on the refractive index of the medium.
- The *frequency* $f = c/\lambda$.
 - The *frequency* does not change with medium.

Spectral Energy

- The energy q of a photon is given by $q = hf = \frac{hc}{\lambda}$
- $h = 6.63 \times 10^{-34}$ Js, is Planck's Constant.

$$Q_{\lambda} \left[\Delta \lambda \right] = \frac{\sum_{\substack{\text{all photons with} \\ \text{wavelength within} \\ \Delta \lambda / 2 \text{ of } \lambda}}{\Delta \lambda} q \text{ (photon)}$$

Spectral Energy

$$Q_{\lambda} = \lim_{\Delta \lambda \to 0} Q_{\lambda} \left[\Delta \lambda \right]$$

We just use small $\Delta\lambda$ for computation, but not so small that the quantum nature of light interferes.

For theory we let $\Delta \lambda \rightarrow 0$.

Radiance

- Radiance and spectral radiance describe the amount of light that passes through or is emitted from a particular area, and falls within a given solid angle in a specified direction.
- Radiance characterizes total emission or reflection, while spectral radiance characterizes the light at a single wavelength or frequency.
 - http://en.wikipedia.org/wiki/Radiance

Radiance Definition

Radiance is defined by

$$L = \frac{d^2 \Phi}{dA d\Omega \cos \theta} \simeq \frac{\Phi}{\Omega A \cos \theta}$$

where

the approximation holds for small A and Ω ,

L is the radiance (W·m⁻²·sr⁻¹),

 Φ is the radiant flux or power (W),

 θ is the angle between the surface normal and the specified direction,

A is the area of the source (m²), and

 Ω is the solid angle (sr).

The spectral radiance (radiance per unit wavelength) is written L_{λ} .

SI radiometry units						
Quantity	Symbol	SI unit	Abbr.	Notes		
Radiant energy	Q	joule	<u> </u>	energy		
Radiant flux	Φ	watt	<u>W</u>	radiant energy per unit time, also called <i>radiant</i> <i>power</i>		
Radiant intensity	1	watt per steradian	W·sr ⁻¹	power per unit solid angle		
Radiance	L	watt per steradian per square metre	W·sr ⁻¹ ·m ⁻²	power per unit solid angle per unit <i>projected</i> source area.		

Irradiance	E	watt per	W·m ^{−2}	power incident
		square metre		on a surface.
				Sometimes confusingly called "intensity".
Radiant	Μ	watt per	W·m ^{−2}	power emitted
emittance /		square metre		from a
Radiant				surface.
exitance				Sometimes confusingly called " <u>intensity</u> ".
Spectral	L _λ	watt per	W·sr ⁻¹ ·m ⁻³	commonly
radiance	or	steradian per	or	measured in
	Lv	metre ³ or	W·sr ⁻¹ ·m ⁻² ·Hz ⁻¹	W·sr ⁻¹ ·m ⁻² ·nm
		watt per steradian per square metre per <u>Her</u> tz		-1
Spectral	Ελ	watt per	W·m ^{−s}	commonly
irradiance	or	metre ³ or	or	measured in
	Ev	watt per	$W \cdot m^{-2} \cdot Hz^{-1}$	$W \cdot m^{-2} \cdot nm^{-1}$
		square metre		
		per hertz		

http://en.wikipedia.org/wiki/Radiance

SI Units

Spectral radiance has SI units W.sr⁻¹.m⁻³

when measured per unit wavelength, and W.sr⁻¹.m⁻²Hz⁻¹

when measured per unit frequency interval.

Photometry Usefulness to the Human Observer

Given a spectral radiometric quantity $f_r(\lambda)$ there is a related photometric quantity

$$f_{p} = 683 \frac{lm}{W} \int_{\lambda=380 \text{ nm}}^{800 \text{ nm}} \overline{y}(\lambda) f_{r}(\lambda) d\lambda$$

where \overline{y} is the *luminous efficiency function* of the human visual system.

 \overline{y} is 0 for λ < 380 nm, the *ultraviolet range*.

 \overline{y} then increases as λ increases until $\lambda = 555$ nm, pure green. \overline{y} then decreases, reaching 0 when $\lambda = 800$ nm, the boundary with the *infrared region*.

1931 CIE Luminous Efficiency Function

Luminance

$$Y = 683 \frac{lm}{W} \int_{\lambda=380 \text{ nm}}^{800 \text{ nm}} \overline{y}(\lambda) L(\lambda) d\lambda$$

Y is *luminance* when *L* is spectral radiance. *Im* is for *lumens* and *W* is for *watts*.

Luminance describes the amount of light that passes through or is emitted from a particular area, and falls within a given solid angle.

Color

Given a detector, e.g. eye or camera,

response =
$$k \int w(\lambda) L(\lambda) d\lambda$$

The eye has three type of sensors, *cones*, for daytime color vision.

This was verified in the 1800's.

Wyszecki & Stiles, 1992 show how this was done.

Tristimulus Color Theory

Assume the eye has three independent sensors. Then the response of the sensors to a spectral radiance $A(\lambda)$ is

Blue receptors = Short $S = \int s(\lambda) A(\lambda) d\lambda$

Green receptors = Medium $M = \int m(\lambda)A(\lambda)d\lambda$

Red Receptors = Long
$$L = \int l(\lambda) A(\lambda) d\lambda$$

If two spectral radiances A_1 and A_2 produce the same (*S*, *M*, *L*), they are indistinguishable and called *metamers*.

Matching Lights

a subject uses control knobs to set the fraction of $R(\lambda)$, $G(\lambda)$, and $B(\lambda)$ to match the given color.

March 22, 2011

Matching Lights

Assume the sensor responses to $C(\lambda)$ are

 (S_C, M_C, L_C) , then $S_C = rS_R + gS_G + bS_B$ $M_C = rM_R + gM_G + bS_B$ $L_C = rL_R + gL_G + bL_B$

Users could make the color matches.

So there really are three sensors.

But, there is no guarantee in the equations that *r*, *g*, and *b* are positive or less than 1.

Matching Lights

Not all test lights can be matched with positive r, g, b.

- Allow the subject to mix combinations of $R(\lambda)$, $G(\lambda)$, and $B(\lambda)$ with the test color.
- If $C(\lambda) + 0.3R(\lambda)$ matches $0 \cdot R(\lambda) + gG(\lambda) + bB(\lambda)$ then r = -0.3.
- Two different spectra can have the same *r*, *g*, *b*.
- Any three independent lights can be used to specify a color.
- What are the best lights to use for standardizing color matching?

The Monochromatic Primaries

- The three monochromatic primaries are at standardized wavelengths of
 - 700 nm (red)
 - Hard to reproduce as a monchromatic beam, resulting in small errors.
 - Max of human visual range.
 - 546.1 nm (green)
 - 435.8 nm (blue).
 - The last two wavelengths are easily reproducible monochromatic lines of a mercury vapor discharge.
 - http://en.wikipedia.org/wiki/CIE_1931_color_space

March 22, 2011

CIE Tristimulus Values ala Shirley

- The CIE defined the *XYZ* system in the 1930s.
- The lights are imaginary.
- One of the lights is grey no hue information.
- The other two lights have zero luminance and provide only hue information, *chromaticity*.

Chromaticity and Luminance

Luminance

Chromaticity

CIE 1931 xy Chromaticity Diagram Gamut and Location of the CIE RGB primaries

represents all of the chromaticities visible to the average person

March 22, 2011

CIE XYZ color space color matching functions $\overline{x}(\lambda), \overline{y}(\lambda), \overline{z}(\lambda)$

- 1. Color matching functions were to be everywhere greater than or equal to zero.
- 2. The $\overline{y}(\lambda)$ color matching function = the photopic luminous efficiency function.
- 3. x=y=1/3 is the the *white point*.
- 4. Gamut of all colors is inside the triangle [1,0], [0,0], [0,1].
- 5. $\overline{z}(\lambda)$ = zero above 650 nm.

http://en.wikipedia.org/wiki/CIE_1931_color_space

CIE 1931 Standard Observer Colorimetric XYZ Functions

between 380 nm and 780 nm

XYZ Tristimulus Values for a Color

with Spectral Distribution $I(\lambda)$

 $X = \int_0^\infty I(\lambda) \overline{x}(\lambda)$ $Y = \int_0^\infty I(\lambda) \overline{y}(\lambda)$ $Z = \int_0^\infty I(\lambda) \overline{z}(\lambda)$

Chromaticity =
$$(x, y) = \left(\frac{X}{X + Y + Z}, \frac{Y}{X + Y + Z}\right)$$

Luminance = Y
 $(X, Y, Z) = \left(\frac{xY}{y}, Y, \frac{(1 - x - y)Y}{y}\right)$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

March 22, 2011

CIE XYZ color space

Adding R, G, and B Values

http://en.wikipedia.org/wiki/RGB

March 22, 2011

CMY Complements of **RGB**

- CMYK are commonly used for inks.
- They are called the subtractive colors.
- Yellow ink removes blue light.

Subtractive Color Mixing

$\begin{array}{c} \mathsf{CMYK} \rightarrow \mathsf{CMY} \rightarrow \mathsf{RGB} \\ \\ \text{in Theory} \end{array}$

 $C_{CMYK} = (C, M, Y, K)$ Ψ $C_{CMY} = (C, M, Y) = (C(1 - K) + K, M(1 - K) + K, Y(1 - K) + K))$ Ψ $C_{RGB} = (R, G, B) = (1 - C, 1 - M, 1 - Y)$ = (1 - (C(1 - K) + K), 1 - (M(1 - K) + K), 1 - (Y(1 - K) + K)))

RGB → CMY → CMYK in Theory

RGB \rightarrow **CMYK** is not unique.

C_{RGB} = (**R**, **G**, **B**) ↓

if min(C, M, Y) == 1 then C_{CMYK} = (0, 0, 0, 1) else K = min(C, M, Y)

 $C_{CMYK} = ((C - K)/(1 - K), (M - K)/(1 - K), (Y - K)/(1 - K), K)$

This uses as much black as possible.

$\begin{array}{c} \mathsf{CMYK} \rightarrow \mathsf{CMY} \rightarrow \mathsf{RGB} \\ \text{ in Practice} \end{array}$

- **RGB** is commonly used for displays.
- CMYK is commonly used for 4-color printing.
- **CMYK** or **CMY** can be used for displays.
 - CMY colours mix more naturally than RGB colors for people who grew up with crayons and paint.
- Printing inks do not have the same range as **RGB** display colors.

Time for a Break

Color Spaces

- RGB and CMYK are color models.
- A mapping between the color model and an *absolute reference color space* results a gamut, defines a new color space.

ADOBE RGB and RGBs

College of Computer and Information Science, Northeastern University

RGB vs CMYK Space

Blue

RGB(0, 0, 255) converted in Photoshop to CMYK becomes CMYK(88, 77, 0, 0) = RGB(57, 83, 164).

March 22, 2011

Color Spaces for Designers

- Mixing colors in RGB is not natural.
- Mixing colors in CMY is a bit more natural but still not very intuitive.
- How do you make a color paler?
- How do you make a color brighter?
- How do you make this **color**?
- How do you make this **color**?
- HSV (HSB) and HSL (HSI) are systems for designers.

HSV (Hue, Saturation, Value) **HSB** (Hue, Saturation, Brightness)

- <u>Hue</u> (e.g. red, blue, or yellow):
 - Ranges from 0-360
- <u>Saturation</u>, the "vibrancy" or "purity" of the color:
 - Ranges from 0-100%
 - The lower the saturation of a color, the more "grayness" is present and the more faded or pale the color will appear.
- <u>Value</u>, the <u>brightness</u> of the color:
 - Ranges from 0-100%

HSV

http://en.wikipedia.org/wiki/HSV color space

Created in the GIMP by Wapcaplet

March 22, 2011

HSV Cylinder

HSV Annulus

 $RGB \rightarrow HSV$

Given (R, G, B) $0.0 \le R, G, B \le 1.0$ MAX = max(R, G, B) MIN = min(R, G, B)

$$H = \begin{cases} 60 \times \frac{G-B}{MAX - MIN} + 0 & \text{if } MAX = R \text{ and } G \ge B \\ 60 \times \frac{G-B}{MAX - MIN} + 360 & \text{if } MAX = R \text{ and } G < B \\ 60 \times \frac{B-R}{MAX - MIN} + 120 & \text{if } MAX = G \\ 60 \times \frac{R-G}{MAX - MIN} + 240 & \text{if } MAX = B \end{cases}$$
$$S = \frac{MAX - MIN}{MAX}$$
$$V = MAX$$

March 22, 2011

Given color (*H*, *S*, *V*) $0.0 \le H \le 360.0$, $0.0 \le S$, $V \le 1.0$ if S == 0.0 then R = G = B = V and H and S don't matter. else $H_i = \left| \frac{H}{60} \right| \mod 6$ $f = \frac{H}{60} - H_i$ p = V(1-S) q = V(1-fS) t = V(1-(1-f)S)if $H_i == 0 \rightarrow R = V, G = t, B = p$ if $H_i == 1 \rightarrow R = q, G = V, B = p$ if $H_i = 2 \rightarrow R = p, G = V, B = t$ if $H_i = 3 \rightarrow R = p, G = q, B = V$ if $H_i == 4 \rightarrow R = t, G = p, B = V$ if $H_i = 5 \rightarrow R = V, G = p, B = q$

March 22, 2011

YIQ

NTSC Television YIQ is a linear transformation of RGB.

- exploits characteristics of human visual system
- maximizes use of fixed bandwidth
- provides compatibility with B&W receivers
- Y = 0.299R + 0.587G + 0.114B luminance
- I = 0.74(R Y) 0.27(B Y) chrominance Q = 0.48(R Y) + 0.41(B Y)
- See http://en.wikipedia.org/wiki/YIQ and discussion

YIQ

- Y is all that is used for B&W TV
- B-Y and R-Y small for dark and low saturation colors
- Y is transmitted at bandwidth 4.2 MHz
- I at 1.3 MHz
- Q at .7 MHz.

Y = 0.299*R + 0.587*G + 0.114*B

I = 0.596*R - 0.274*G - 0.322*B orange-cyan - caucasian flesh tones

Q = 0.212*R - 0.523*G + 0.311*B