CS5310
 Graduate Computer Graphics

Prof. Harriet Fell Spring 2011
Lecture 6 - February 23, 2011

Today's Topics

- Bezier Curves and Splines
- Parametric Bicubic Surfaces
- Quadrics

Curves

A curve is the continuous image of an interval in n-space.

Curve Fitting

We want a curve that passes through control points.

How do we create a good curve?

What makes a good curve?

Axis Independence

If we rotate the set of control points, we should get the rotated curve.

Variation:Diminishing

Continuity

G^{2} continuity

Not C^{2} continuity

How do we Fit Curves?

The Lagrange interpolating polynomial is the polynomial of degree $n-1$ that passes through the n points,

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

and is given by

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})= y_{1} \frac{\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}{\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)}+y_{2} \frac{\left(x-x_{1}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \cdots\left(x_{2}-x_{n}\right)}+\cdots \\
&+y_{n} \frac{\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)} \\
&=\sum_{i=1}^{n} y_{i} \prod_{j \neq i} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right) \quad \quad \text { Lagrange Interpolating Polynomial from mathworld }}
\end{aligned}
$$

Example 1

Polynomial Fit

Piecewise Fit

Spline Curves

Splines and Spline Ducks

Marine Drafting Weights
http://www.frets.com/FRETSPages/Luthier/TipsTricks/DraftingWeights/draftweights.html

Drawing Spline Today (esc)

Hermite Cubics

$$
\left.\boldsymbol{p}\right|_{\boldsymbol{p}} \underbrace{\boldsymbol{D} \boldsymbol{q}} \begin{aligned}
& \boldsymbol{P}(t)=a t^{3}+b t^{2}+c t+d \\
& \boldsymbol{q} \\
& \\
& \\
& \\
& \\
& \\
& \boldsymbol{P}^{\prime}(0)=\boldsymbol{p}(1)=\boldsymbol{q} \\
& \boldsymbol{P}^{\prime}(1)=\boldsymbol{D} \boldsymbol{q}
\end{aligned}
$$

Hermite Coefficients

$$
\begin{array}{lc}
\hline \boldsymbol{P}(t)=a t^{3}+b t^{2}+c t+d \\
\boldsymbol{P}(0)=\boldsymbol{p} \\
\boldsymbol{P}(1)=\boldsymbol{q} \\
\boldsymbol{P}^{\prime}(0)=\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{P}^{\prime}(1)=\boldsymbol{D} \boldsymbol{q}
\end{array} \quad \boldsymbol{P}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

For each coordinate, we have 4 linear equations in 4 unknowns

Boundary Constraint Matrix

$$
\begin{aligned}
& \boldsymbol{P}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \quad\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D q}
\end{array}\right]=\left[\begin{array}{l}
\\
\boldsymbol{P}^{\prime}(t)=\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
\end{aligned}
$$

Hermite Matrix

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\boldsymbol{M}_{\boldsymbol{H}}} \underbrace{\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D} \boldsymbol{q}
\end{array}\right]}_{\boldsymbol{G}_{\boldsymbol{H}}}
$$

Hermite Blending Functions

$$
\begin{aligned}
& \boldsymbol{P}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \boldsymbol{M}_{H}\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D} \boldsymbol{q}
\end{array}\right]=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{D} \boldsymbol{p} \\
\boldsymbol{D} \boldsymbol{q}
\end{array}\right] \\
& \boldsymbol{P}(t)=\boldsymbol{p} 3+\boldsymbol{q}
\end{aligned}
$$

Splines of Hermite Cubics

a C^{1} spline of Hermite curves

a G^{1} but not C^{1} spline of Hermite curves
The vectors shown are $1 / 3$ the length of the tangent vectors.

Computing the Tangent Vectors Catmull-Rom Spline

Cardinal Spline

The Catmull-Rom spline

$$
\begin{array}{ll}
\boldsymbol{P}(0)=\boldsymbol{p}_{3} & \text { is a special case of the Cardinal spline } \\
\boldsymbol{P}(1)=\boldsymbol{p}_{4} & \boldsymbol{P}(0)=\boldsymbol{p}_{3} \\
\boldsymbol{P}^{\prime}(0)=\frac{1}{2}\left(\boldsymbol{p}_{4}-\boldsymbol{p}_{2}\right) & \boldsymbol{P}(1)=\boldsymbol{p}_{4} \\
\boldsymbol{P}^{\prime}(1)=\frac{1}{2}\left(\boldsymbol{p}_{5}-\boldsymbol{p}_{3}\right) & \boldsymbol{P}^{\prime}(0)=(1-t)\left(\boldsymbol{p}_{4}-\boldsymbol{p}_{2}\right) \\
& \boldsymbol{P}^{\prime}(1)=(1-t)\left(\boldsymbol{p}_{5}-\boldsymbol{p}_{3}\right) \\
& 0 \leq t \leq 1 \text { is the tension. }
\end{array}
$$

Drawing Hermite Cubics

$$
\boldsymbol{P}(t)=\boldsymbol{p}\left(2 t^{3}-3 t^{2}+1\right)+\boldsymbol{q}\left(-2 t^{3}+3 t^{2}\right)+\boldsymbol{D} \boldsymbol{p}\left(t^{3}-2 t^{2}+t\right)+\boldsymbol{D} \boldsymbol{q}\left(t^{3}-t^{2}\right)
$$

- How many points should we draw?
- Will the points be evenly distributed if we use a constant increment on t ?
- We actually draw Bezier cubics.

General Bezier Curves

Given $n+1$ control points \boldsymbol{p}_{i}

$$
\boldsymbol{B}(t)=\sum_{k=0}^{n}\binom{n}{k} \boldsymbol{p}_{k}(1-t)^{n-k} t^{k} \quad 0 \leq t \leq 1
$$

where

$$
\begin{aligned}
& b_{k, n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k} \quad k=0, \cdots n \\
& b_{k, n}(t)=(1-t) b_{k, n-1}(t)+t b_{k-1, n-1}(t) \quad 0 \leq k<n
\end{aligned}
$$

We will only use cubic Bezier curves, $n=3$.

Low Order Bezier Curves

$$
\begin{aligned}
& \boldsymbol{p}_{0}{ }^{\bigcirc} \quad n=0 \\
& b_{0,0}(t)=1 \\
& \boldsymbol{B}(t)=\boldsymbol{p}_{\boldsymbol{0}} b_{0,0}(t)=\boldsymbol{p}_{0} \quad 0 \leq t \leq 1 \\
& p_{0} \oint_{p_{1}} n=1 \\
& b_{0,1}(t)=1-t \quad b_{1,1}(t)=t \\
& \boldsymbol{B}(t)=(1-t) \boldsymbol{p}_{0}+t \boldsymbol{p}_{1} \quad 0 \leq t \leq 1 \\
& \boldsymbol{p}_{0} \underbrace{}_{\boldsymbol{p}_{2}} \quad \begin{array}{lll}
n=2 & b_{0,2}(t)=(1-t)^{2} & b_{1,2}(t)=2 t(1-t)
\end{array} b_{2,2}(t)=t^{2}\} \\
& p_{1}
\end{aligned}
$$

Bezier Curves

Bezier Matrix

$$
\begin{aligned}
& \boldsymbol{B}(t)=(1-t)^{3} \boldsymbol{p}+3 t(1-t)^{2} \boldsymbol{q}+3 t^{2}(1-t) \boldsymbol{r}+t^{3} \boldsymbol{s} \\
& \boldsymbol{B}(t)=\boldsymbol{a} \boldsymbol{t}^{3}+\boldsymbol{b} \mathrm{t}^{2}+\boldsymbol{c t}+\boldsymbol{d} \\
& {\left[\begin{array}{l}
a \leq t \leq 1 \\
b \\
c \\
d
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]}_{\boldsymbol{M}_{\boldsymbol{B}}} \underbrace{\left[\begin{array}{c}
\boldsymbol{p} \\
\boldsymbol{q} \\
\boldsymbol{r} \\
\boldsymbol{s}
\end{array}\right]}_{\boldsymbol{G}_{\boldsymbol{B}}}}
\end{aligned}
$$

Geometry Vector

The Hermite Geometry Vector $G_{H}=\left[\begin{array}{c}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{D} \boldsymbol{p} \\ \boldsymbol{D} \boldsymbol{q}\end{array}\right] \quad H(t)=T M_{H} G_{H}$
The Bezier Geometry Vector $G_{B}=\left[\begin{array}{c}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r} \\ \boldsymbol{s}\end{array}\right] \quad B(t)=T M_{B} G_{B}$
$T=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]$

Properties of Bezier Curves

$$
\begin{array}{ll}
\boldsymbol{P}(0)=\boldsymbol{p} & \boldsymbol{P}(1)=\boldsymbol{s} \\
\boldsymbol{P}^{\prime}(0)=3(\boldsymbol{q}-\boldsymbol{p}) & \boldsymbol{P}^{\prime}(1)=3(\boldsymbol{s}-\boldsymbol{r})
\end{array}
$$

The curve is tangent to the segments $\boldsymbol{p q}$ and $\boldsymbol{r} \boldsymbol{s}$.

The curve lies in the convex hull of the control points since

$$
\sum_{k=1}^{3} b_{k, 3}(t)=\sum_{k=1}^{3}\binom{3}{k}(1-t)^{k} t^{3-k}=((1-t)+t)^{3}=1
$$

Geometry of Bezier Arches

Geometry of Bezier Arches

We only use $t=1 / 2$.

```
drawArch(P, Q, R, S) {
    if (ArchSize(P, Q, R, S) <= .5 ) Dot(P);
    else{
        PQ = (P + Q)/2;
        QR = (Q + R)/2;
        RS = (R + S)/2;
        PQR = (PQ + QR)/2;
        QRS = (QR + RS)/2;
        PQRS = (PQR + QRS)/2
        drawArch(P, PQ, PQR, PQRS);
        drawArch(PQRS, QRS, RS, S);
    }
}
```


Putting it All Together

- Bezier Arches and Catmull-Rom Splines

Time for a Break

Surface Patch

A patch is the continuous image of a square in n-space.

Bezier Patch Geometry

Bezier Patch

Bezier Patch Computation

$$
\begin{aligned}
& \boldsymbol{Q}(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{3} \boldsymbol{P}_{i j} B_{i}(u) B_{j}(v)=\left[\begin{array}{lll}
u^{3} & u^{2} & u
\end{array} 1\right]\left[M_{B} \boldsymbol{P}_{B}{ }^{T}\right]\left[\begin{array}{c}
v^{3} \\
v^{2} \\
v \\
1
\end{array}\right] \\
& M_{B}=M_{B}^{T}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \boldsymbol{P}=\left[\begin{array}{llll}
\boldsymbol{P}_{00} & \boldsymbol{P}_{01} & \boldsymbol{P}_{02} & \boldsymbol{P}_{03} \\
\boldsymbol{P}_{10} & \boldsymbol{P}_{11} & \boldsymbol{P}_{12} & \boldsymbol{P}_{13} \\
\boldsymbol{P}_{20} & \boldsymbol{P}_{21} & \boldsymbol{P}_{22} & \boldsymbol{P}_{23} \\
\boldsymbol{P}_{30} & \boldsymbol{P}_{31} & \boldsymbol{P}_{32} & \boldsymbol{P}_{33}
\end{array}\right]
\end{aligned}
$$

Bezier Patch

Properties of Bezier Surfaces

- A Bézier patch transforms in the same way as its control points under all affine transformations
- All $u=$ constant and $v=$ constant lines in the patch are Bézier curves.
- A Bézier patch lies completely within the convex hull of its control points.
- The corner points in the patch are the four corner control points.
- A Bézier surface does not in general pass through its other control points.

Rendering Bezier Patches with a mesh

1. Consider each row of control points as defining 4 separate Bezier curves: $\boldsymbol{Q}_{0}(u) \ldots \boldsymbol{Q}_{3}(u)$

$$
\left[\begin{array}{llll}
\boldsymbol{Q}_{0}(u) & \boldsymbol{Q}_{1}(u) & \boldsymbol{Q}_{2}(u) & \boldsymbol{Q}_{3}(u)
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] B \boldsymbol{P}
$$

2. For some value of \mathbf{u}, say 0.1 , for each Bezier curve, calculate $\boldsymbol{Q}_{0}(u) \ldots \boldsymbol{Q}_{3}(u)$.
3. Use these derived points as the control points for new Bezier curves running in the \mathbf{v} direction
4. Generate edges and polygons from grid of surface points.

Chris Bently - Rendering Bezier Patches

Subdividing Bezier Patch

Blending Bezier Patches

Teapot Data

$$
\begin{aligned}
& \text { double teapot_data[][] = \{ } \\
& \text { \{ } \\
& \text {-80.00, } 0.00,30.00 \text {, } \\
& -44.80,-80.00,30.00 \text {, } \\
& \text {-80.00, 0.00, 12.00, } \\
& 12.00 \text {, } \\
& \text {-60.00, } 0.00,3.00 \text {, } \\
& -33.60,-60.00,3.00 \text {, } \\
& \text {-60.00, 0.00, 0.00, } \\
& -33.60,-60.00 \text {, 0.00, } \\
& \text { \}, ... } \\
& \text {-80.00, -44.80, 30.00, } \\
& 0.00,-80.00,30.00 \text {, } \\
& \text {-80.00, -44.80, 12.00, } \\
& \text { 0.00, -80.00, 12.00, } \\
& \text {-60.00, -33.60, 3.00, } \\
& 0.00 \text {, }-60.00,3.00 \text {, } \\
& \text {-60.00, -33.60, 0.00, } \\
& 0.00 \text {, -60.00, 0.00, }
\end{aligned}
$$

Bezier Patch Continuity

If these sets of control points are colinear, the surface will have G^{1} continuity.

Quadric Surfaces

Quadric Surfaces

1-sheet hyperboloid

College of Computer and Information Science, Northeastern University

Quadric Surfaces

hyperbolic parabaloid

elliptic parabaloid

Quadric Surfaces

Ray Quadric Intersection Quadratic Coefficients

$$
\begin{aligned}
A= & a^{*} x d^{*} x d+b^{*} y d^{*} y d+c^{*} z d^{*} z d \\
& \quad+2\left[d^{*} x d^{*} y d+e^{*} y d^{*} z d+f^{*} x d^{*} z d\right. \\
B= & 2^{*}\left[a^{*} x 0^{*} x d+b^{*} y 00^{*} y d+c^{*} z 0^{*} z d\right. \\
+ & d^{*}\left(x 0^{*} y d+x d^{*} y 0\right)+e^{*}\left(y 0^{*} z d+y d^{*} z 0\right)+f^{*}\left(x 0^{*} z d+x d^{*} z 0\right) \\
+ & \left.g^{*} x d+h^{*} y d+j^{*} z d\right] \\
C= & a^{*} x 0^{*} x 0+b^{*} y 0 * y 0+c^{*} z 0^{*} z 0 \\
+ & 2^{*}\left[d^{*} x 0^{*} y 0+e^{*} y 0 * z 0+f^{*} x 0^{*} z 0+g^{*} x 0+h * y 0+j^{*} z 0\right]+k
\end{aligned}
$$

Quadric Normals

$$
\begin{aligned}
& Q(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z+2 g x+2 h y+2 j z+k \\
& \frac{\partial Q}{\partial x}=2 a x+2 d y+2 f z+2 g=2(a x+d y+f z+g) \\
& \frac{\partial Q}{\partial y}=2 b y+2 d x+2 e z+2 h=2(b y+d x+e z+h) \\
& \frac{\partial Q}{\partial z}=2 c z+2 e y+2 f x+2 j=2(c z+e y+f x+j)
\end{aligned}
$$

$$
N=\left(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial Q}{\partial z}\right)
$$

Normalize N and change its sign if necessary.

MyCylinders

Student Images

Student Images

