

CS5310 Graduate Computer Graphics

Prof. Harriet Fell Spring 2011 Lecture 6 – February 23, 2011

Today's Topics

Bezier Curves and Splines

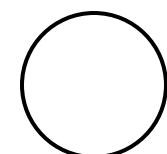
- Parametric Bicubic Surfaces
- Quadrics

Curves

A *curve* is the continuous image of an interval in *n*-space.

Implicit

$$f(x, y) = 0$$

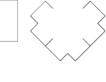


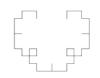
$$x^2 + y^2 - R^2 = 0$$

Parametric
$$(x(t), y(t)) = P(t)$$

$$P(t) = tA + (1-t)B$$

Generative proc
$$\rightarrow$$
 (x, y)



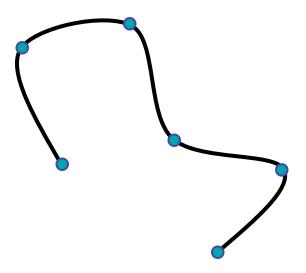


Curve Fitting

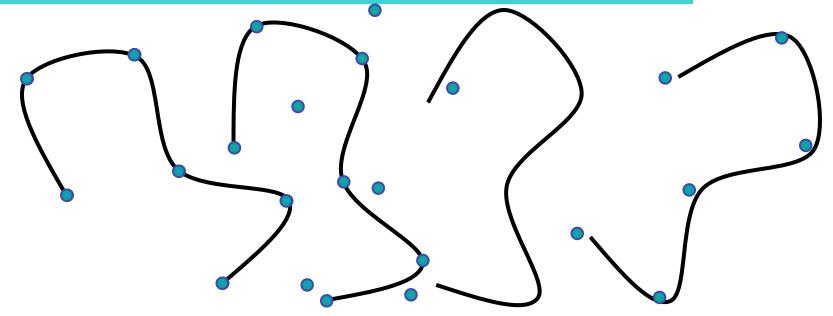
We want a curve that passes through control points.

How do we create a good curve?

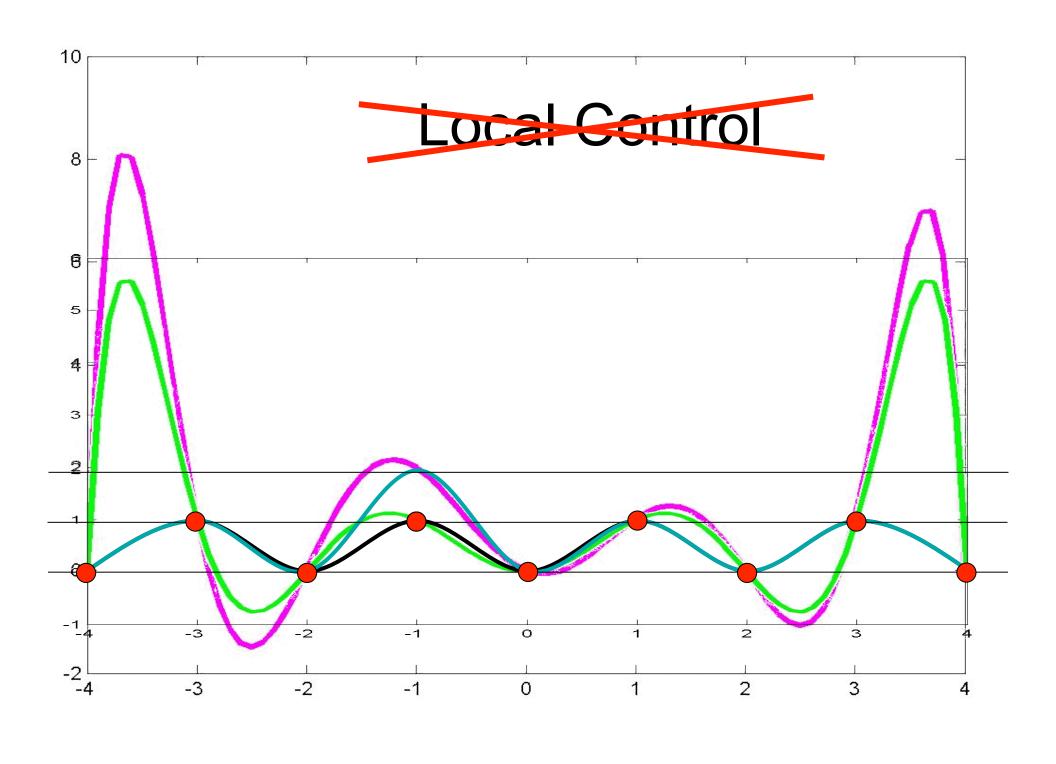
What makes a good curve?



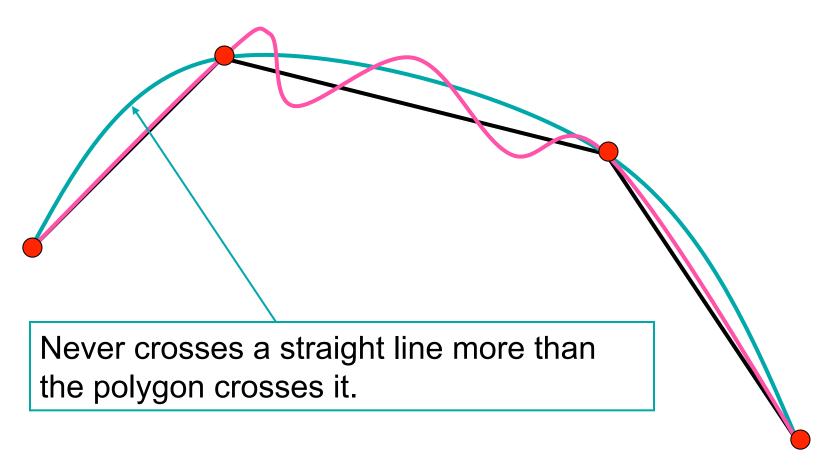
Axis Independence



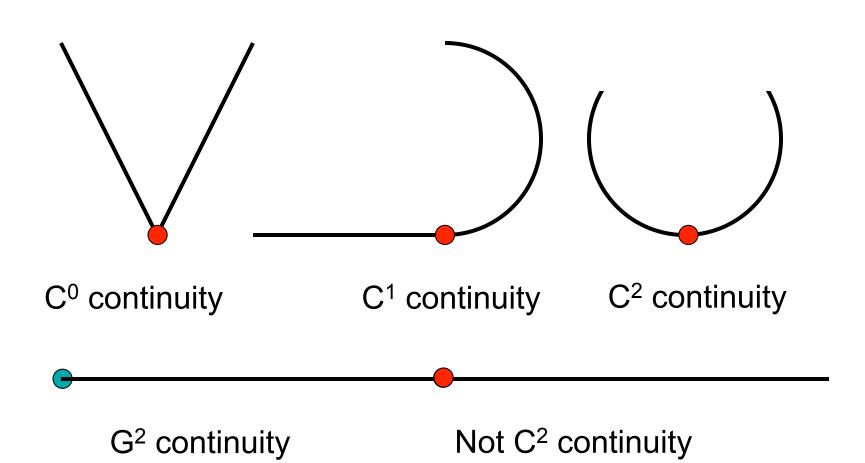
If we rotate the set of control points, we should get the rotated curve.



Variation Diminishing



Continuity



How do we Fit Curves?

The Lagrange interpolating polynomial is the polynomial of degree n-1 that passes through the n points,

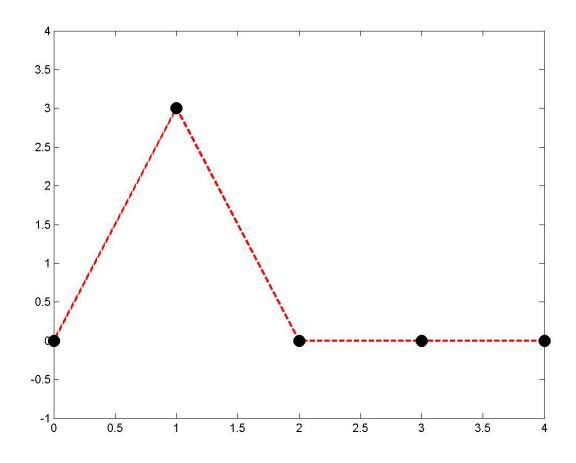
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n),$$
 and is given by

$$P(x) = y_1 \frac{(x - x_2) \cdots (x - x_n)}{(x_1 - x_2) \cdots (x_1 - x_n)} + y_2 \frac{(x - x_1)(x - x_3) \cdots (x - x_n)}{(x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)} + \cdots + y_n \frac{(x - x_1) \cdots (x - x_{n-1})}{(x_n - x_1) \cdots (x_n - x_{n-1})}$$

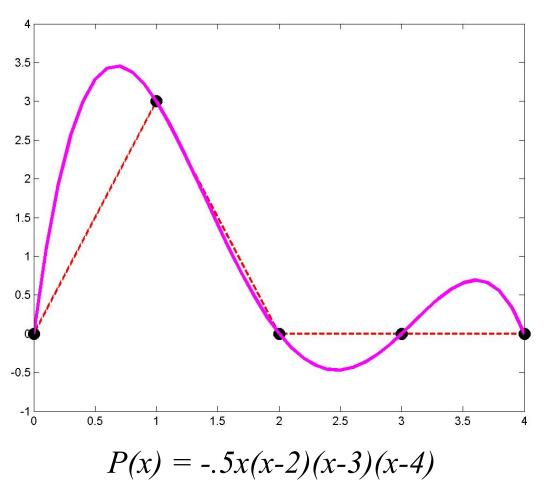
$$= \sum_{i=1}^n y_i \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

Lagrange Interpolating Polynomial from mathworld

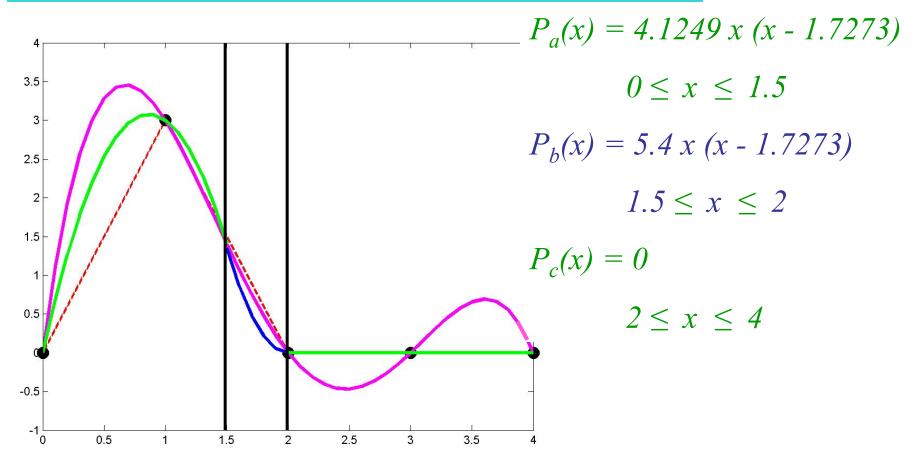
Example 1



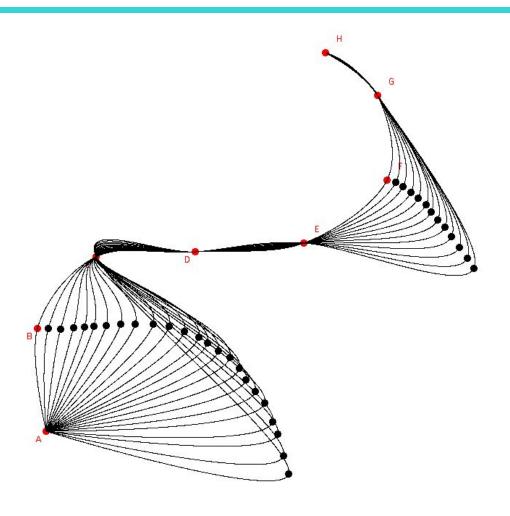
Polynomial Fit



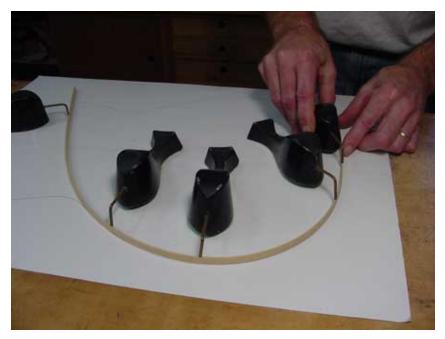
Piecewise Fit



Spline Curves



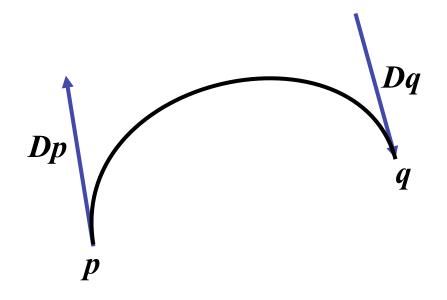
Splines and Spline Ducks



Marine Drafting Weights
http://www.frets.com/FRETSPages/Luthier/TipsTricks/DraftingWeights/draftweights.html

Drawing Spline Today (esc)

Hermite Cubics



$$\mathbf{P}(t) = at^3 + bt^2 + ct + d$$

$$P(0) = p$$

$$P(1) = q$$

$$P'(0) = Dp$$

$$P'(1) = Dq$$

Hermite Coefficients

$$\mathbf{P}(t) = at^3 + bt^2 + ct + d$$

$$P(0) = p$$

$$P(1) = q$$

$$P'(0) = Dp$$

$$P'(1) = Dq$$

$$\boldsymbol{P}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\mathbf{P'}(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

For each coordinate, we have 4 linear equations in 4 unknowns

Boundary Constraint Matrix

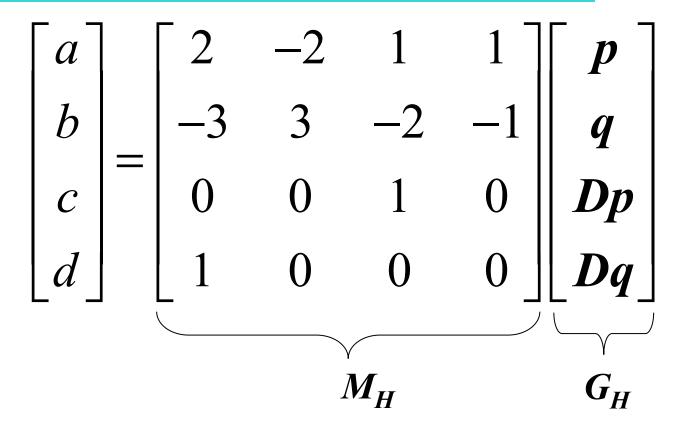
$$P(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad \begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix} = \begin{bmatrix} p \\ Dp \\ Dq \end{bmatrix}$$

$$\mathbf{P'}(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$egin{bmatrix} p \ q \ Dp \ Dq \end{bmatrix} = egin{bmatrix} 1 \ Dq \ Dq \ Dq \ Dq \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Hermite Matrix



Hermite Blending Functions

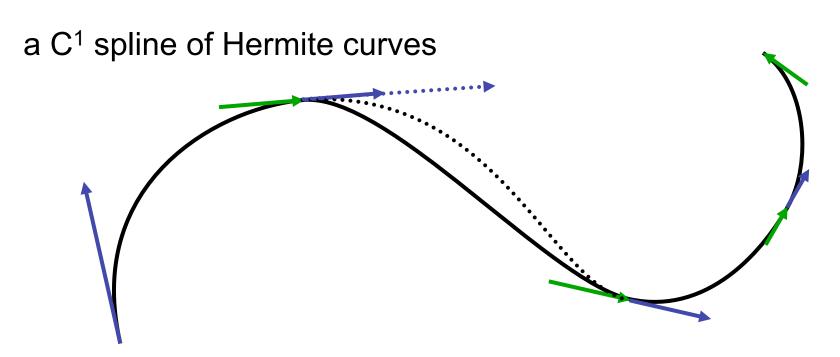
$$P(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} M_H \begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix}$$

$$P(t) = p + q$$

$$+ Dp$$

$$+Dq$$

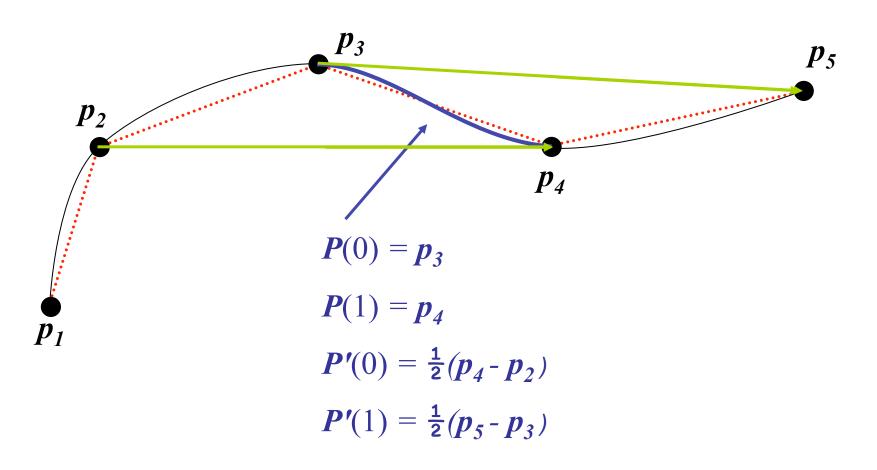
Splines of Hermite Cubics



a G¹ but not C¹ spline of Hermite curves

The vectors shown are 1/3 the length of the tangent vectors.

Computing the Tangent Vectors Catmull-Rom Spline



Cardinal Spline

The Catmull-Rom spline

$$P(0) = p_3$$

$$\boldsymbol{P}(1) = \boldsymbol{p_4}$$

$$P'(0) = \frac{1}{2}(p_4 - p_2)$$

$$P'(1) = \frac{1}{2}(p_5 - p_3)$$

is a special case of the Cardinal spline

$$P(0) = p_3$$

$$\boldsymbol{P}(1) = \boldsymbol{p_4}$$

$$P'(0) = (1 - t)(p_4 - p_2)$$

$$P'(1) = (1 - t)(p_5 - p_3)$$

 $0 \le t \le 1$ is the *tension*.

Drawing Hermite Cubics

$$P(t) = p(2t^3 - 3t^2 + 1) + q(-2t^3 + 3t^2) + Dp(t^3 - 2t^2 + t) + Dq(t^3 - t^2)$$

- How many points should we draw?
- Will the points be evenly distributed if we use a constant increment on t?
- We actually draw Bezier cubics.

General Bezier Curves

Given n+1 control points p_i

$$\boldsymbol{B}(t) = \sum_{k=0}^{n} {n \choose k} \boldsymbol{p}_{k} (1-t)^{n-k} t^{k} \qquad 0 \le t \le 1$$

where

$$b_{k,n}(t) = \binom{n}{k} t^k (1-t)^{n-k} \qquad k = 0, \dots n$$

$$b_{k,n}(t) = (1-t)b_{k,n-1}(t) + tb_{k-1,n-1}(t) \quad 0 \le k < n$$

We will only use cubic Bezier curves, n = 3.

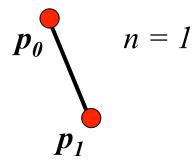
Low Order Bezier Curves

$$n = 0$$

$$b_{0,0}(t) = 1$$

$$B(t) = p_{\theta} b_{0.0}(t) = p_{\theta}$$

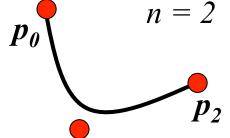
$$0 \le t \le 1$$



$$b_{0,1}(t) = 1 - t$$
 $b_{1,1}(t) = t$

$$\mathbf{B}(t) = (1 - t) \, \mathbf{p_0} + t \, \mathbf{p_1} \qquad 0 \le t \le 1$$

$$0 \le t \le 1$$



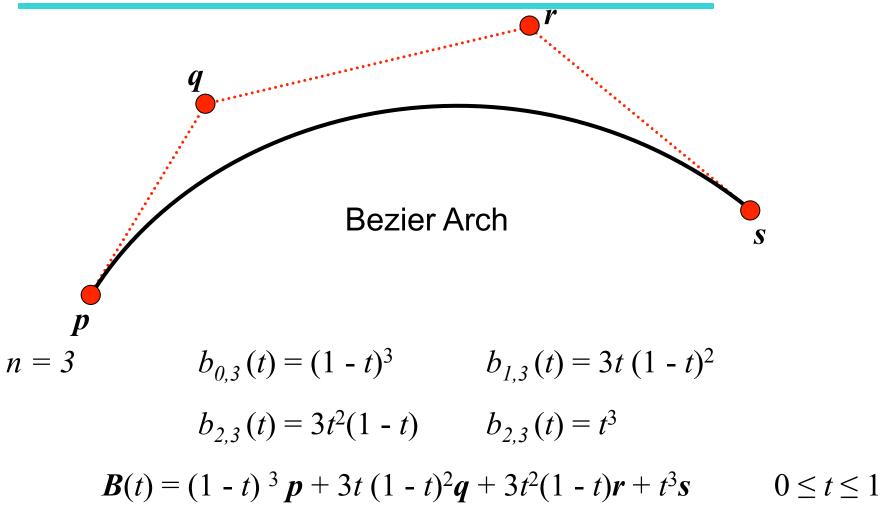
$$n = 2 \quad b_{0,2}(t) = (1 - t)^2 \quad b_{1,2}(t) = 2t (1 - t) \quad b_{2,2}(t) = t^2$$

$$\mathbf{B}(t) = (1 - t)^2 \mathbf{p_0} + 2t (1 - t)\mathbf{p_1} + t^2 \mathbf{p_2} \quad 0 \le t \le 1$$

$$\mathbf{B}(t) = (1 - t)^{2} \mathbf{p_0} + 2t (1 - t)\mathbf{p_1} + t^{2} \mathbf{p_2}$$

$$0 \le t \le 1$$

Bezier Curves



Bezier Matrix

$$B(t) = (1 - t)^{3} p + 3t (1 - t)^{2} q + 3t^{2} (1 - t) r + t^{3} s \qquad 0 \le t \le 1$$

$$B(t) = a t^{3} + b t^{2} + c t + d \qquad 0 \le t \le 1$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix}$$

$$M_{P} \qquad G_{P}$$

Geometry Vector

The Hermite Geometry Vector
$$G_H = \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{D}\boldsymbol{p} \end{bmatrix}$$
 $H(t) = TM_H G_H$

The Bezier Geometry Vector
$$G_B = \begin{bmatrix} q \\ r \end{bmatrix}$$

$$G_{B} = \begin{vmatrix} \mathbf{r} \\ \mathbf{q} \\ \mathbf{r} \end{vmatrix} \qquad B(t) = TM_{B}G_{B}$$

$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

Properties of Bezier Curves

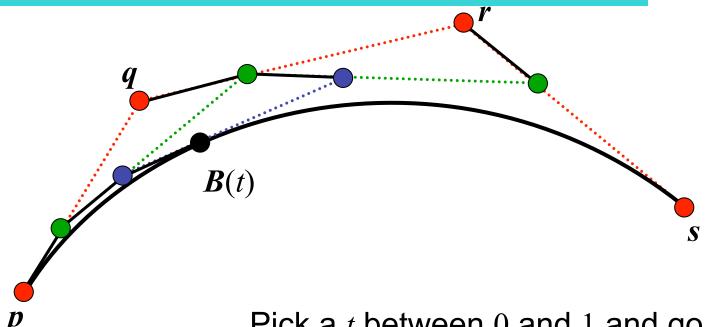
$$P(0) = p$$
 $P(1) = s$
 $P'(0) = 3(q-p)$ $P'(1) = 3(s-r)$

The curve is tangent to the segments *pq* and *rs*.

The curve lies in the convex hull of the control points since

$$\sum_{k=1}^{3} b_{k,3}(t) = \sum_{k=1}^{3} {3 \choose k} (1-t)^{k} t^{3-k} = ((1-t)+t)^{3} = 1$$

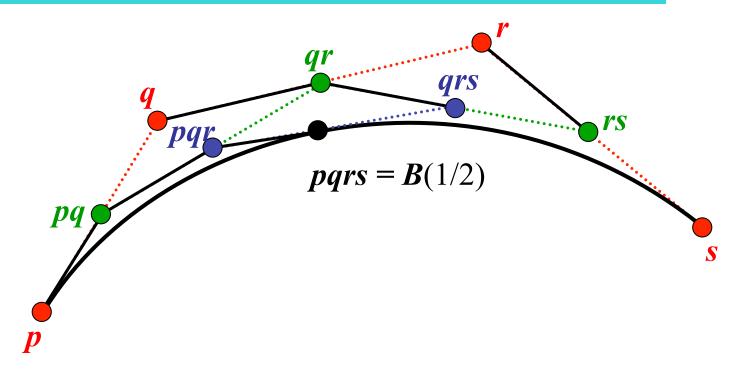
Geometry of Bezier Arches



Pick a *t* between 0 and 1 and go *t* of the way along each edge.

Join the endpoints and do it again.

Geometry of Bezier Arches



We only use t = 1/2.

```
drawArch(P, Q, R, S) {
 if (ArchSize(P, Q, R, S) \le .5) Dot(P);
 else{
  PQ = (P + Q)/2;
  QR = (Q + R)/2;
  RS = (R + S)/2;
  PQR = (PQ + QR)/2;
  QRS = (QR + RS)/2;
  PQRS = (PQR + QRS)/2
  drawArch(P, PQ, PQR, PQRS);
  drawArch(PQRS, QRS, RS, S);
```

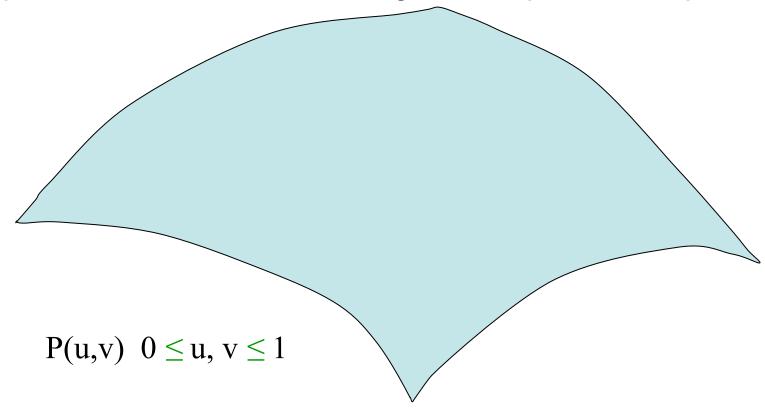

Putting it All Together

Bezier Arches and Catmull-Rom Splines

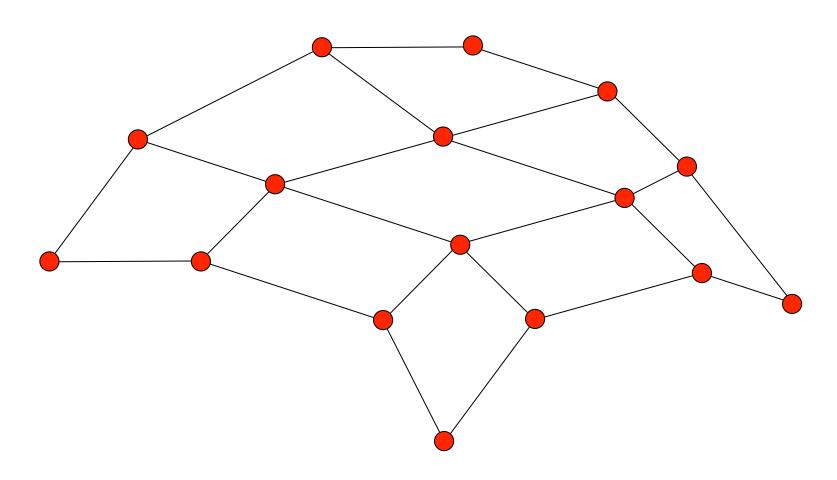
Time for a Break

Surface Patch

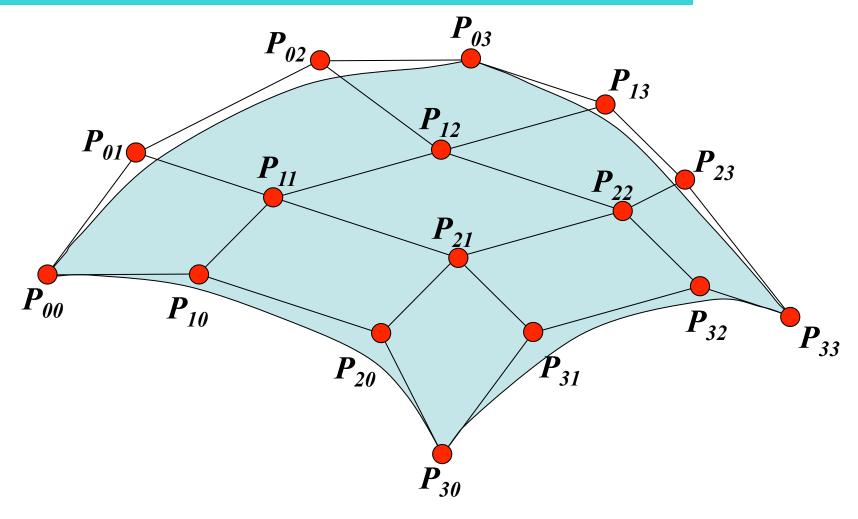
A patch is the continuous image of a square in n-space.



Bezier Patch Geometry



Bezier Patch

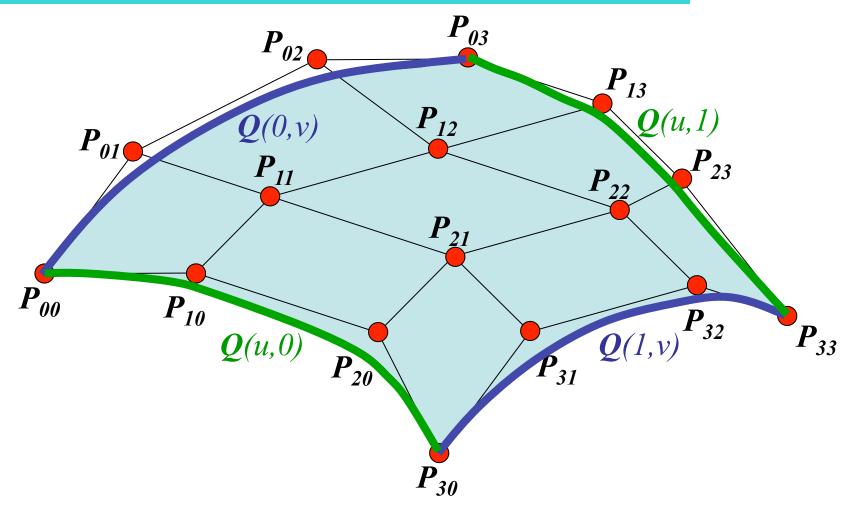


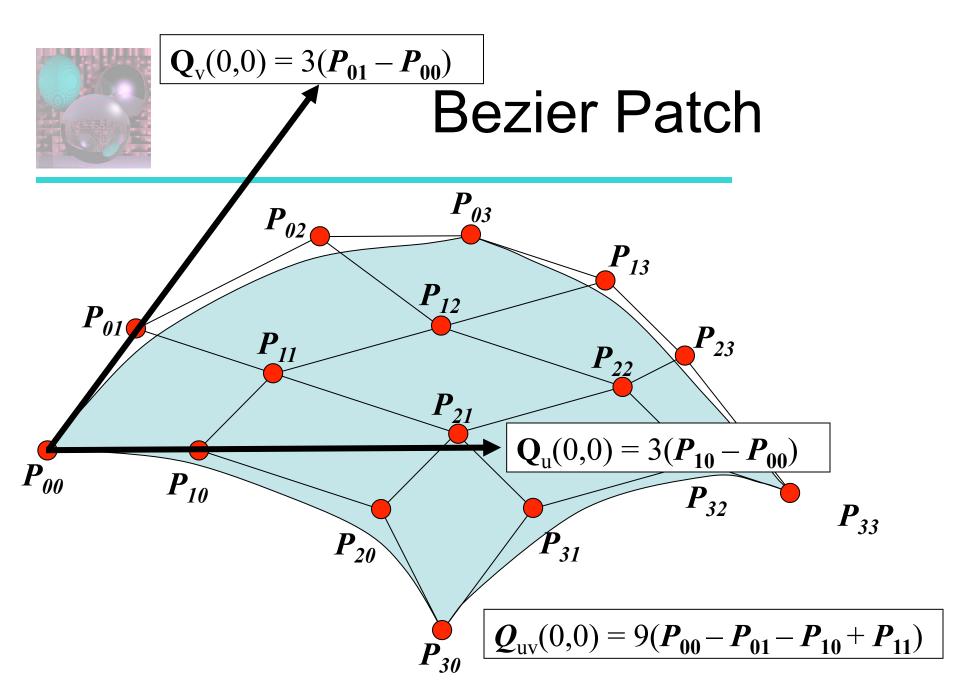
Bezier Patch Computation

$$Q(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} P_{ij} B_i(u) B_j(v) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} M_B P M_B^T \end{bmatrix} \begin{bmatrix} v^3 \\ v^2 \\ v \end{bmatrix}$$

$$M_{B} = M_{B}^{T} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad P = \begin{bmatrix} P_{00} & P_{01} & P_{02} & P_{03} \\ P_{10} & P_{11} & P_{12} & P_{13} \\ P_{20} & P_{21} & P_{22} & P_{23} \\ P_{30} & P_{31} & P_{32} & P_{33} \end{bmatrix}$$

Bezier Patch





Properties of Bezier Surfaces

- A Bézier patch transforms in the same way as its control points under all affine transformations
- All u = constant and v = constant lines in the patch are Bézier curves.
- A Bézier patch lies completely within the convex hull of its control points.
- The corner points in the patch are the four corner control points.
- A Bézier surface does not in general pass through its other control points.

Rendering Bezier Patches with a mesh

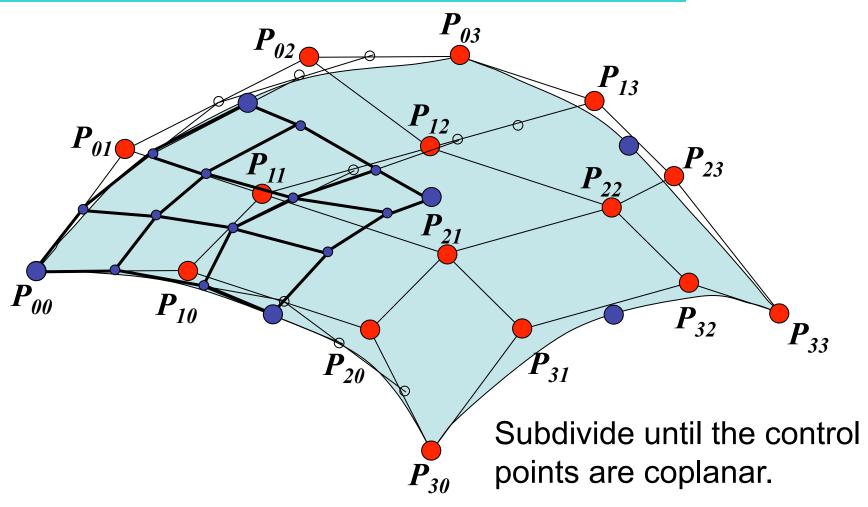
1. Consider each row of control points as defining 4 separate Bezier curves: $\mathbf{Q}_0(u) \dots \mathbf{Q}_3(u)$

$$\begin{bmatrix} \mathbf{Q}_{\theta}(u) & \mathbf{Q}_{1}(u) & \mathbf{Q}_{2}(u) & \mathbf{Q}_{3}(u) \end{bmatrix} = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} B\mathbf{P}$$

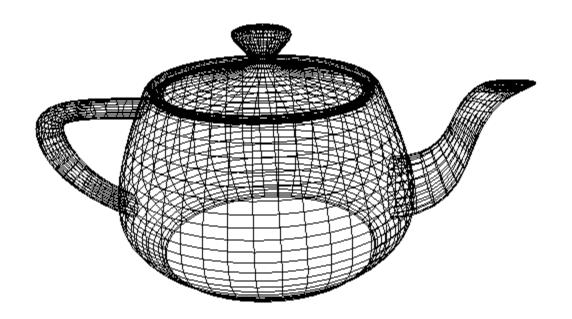
- 2. For some value of \mathbf{u} , say 0.1, for each Bezier curve, calculate $\mathbf{Q}_0(u) \dots \mathbf{Q}_3(u)$.
- 3. Use these derived points as the control points for new Bezier curves running in the **v** direction
- 4. Generate edges and polygons from grid of surface points.

Chris Bently - Rendering Bezier Patches

Subdividing Bezier Patch



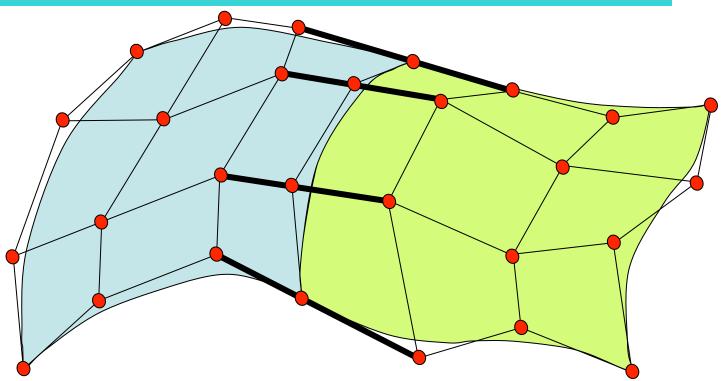
Blending Bezier Patches



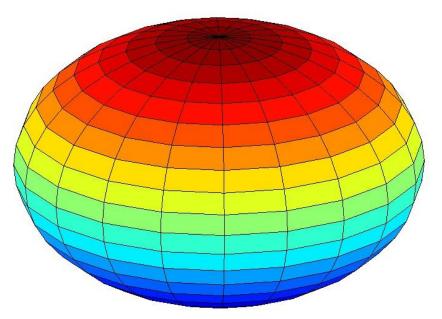
Teapot Data

```
double teapot data[][] = {
   -80.00, 0.00, 30.00,
                              -80.00, -44.80, 30.00,
-44.80, -80.00, 30.00,
                             0.00, -80.00, 30.00,
   -80.00, 0.00, 12.00,
                               -80.00, -44.80, 12.00,
-44.80, -80.00, 12.00,
                             0.00, -80.00, 12.00,
                              -60.00, -33.60, 3.00,
   -60.00, 0.00, 3.00,
                             0.00, -60.00, 3.00,
-33.60, -60.00, 3.00,
   -60.00, 0.00, 0.00,
                              -60.00, -33.60, 0.00,
-33.60, -60.00, 0.00,
                             0.00, -60.00, 0.00,
}, ...
```


Bezier Patch Continuity

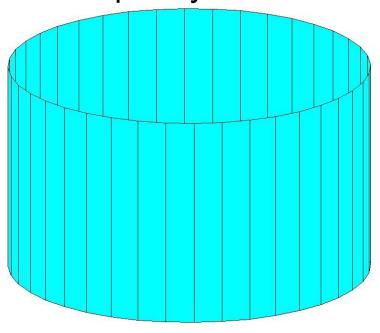


If these sets of control points are colinear, the surface will have G¹ continuity.



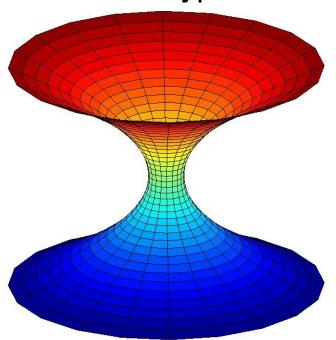
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

elliptic cylinder



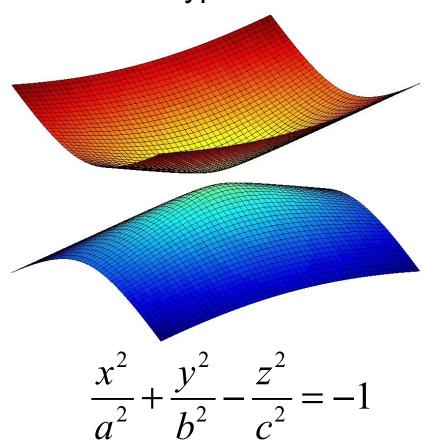
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

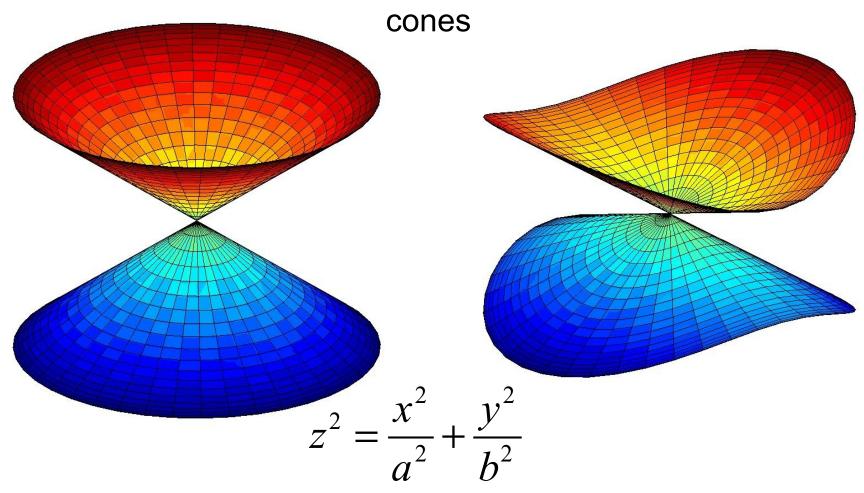
1-sheet hyperboloid



$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

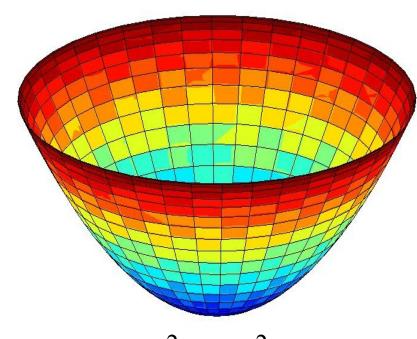
2-sheet hyperboloid



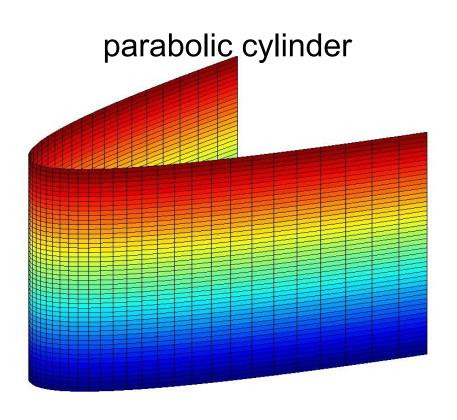


hyperbolic parabaloid

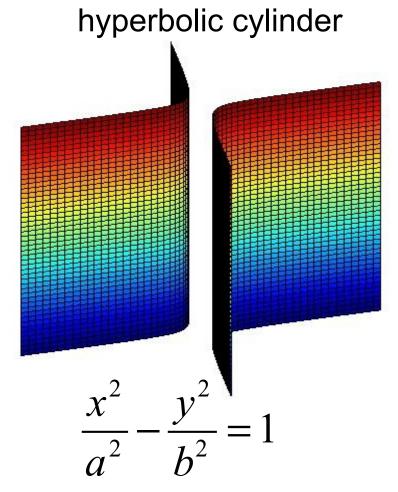
elliptic parabaloid

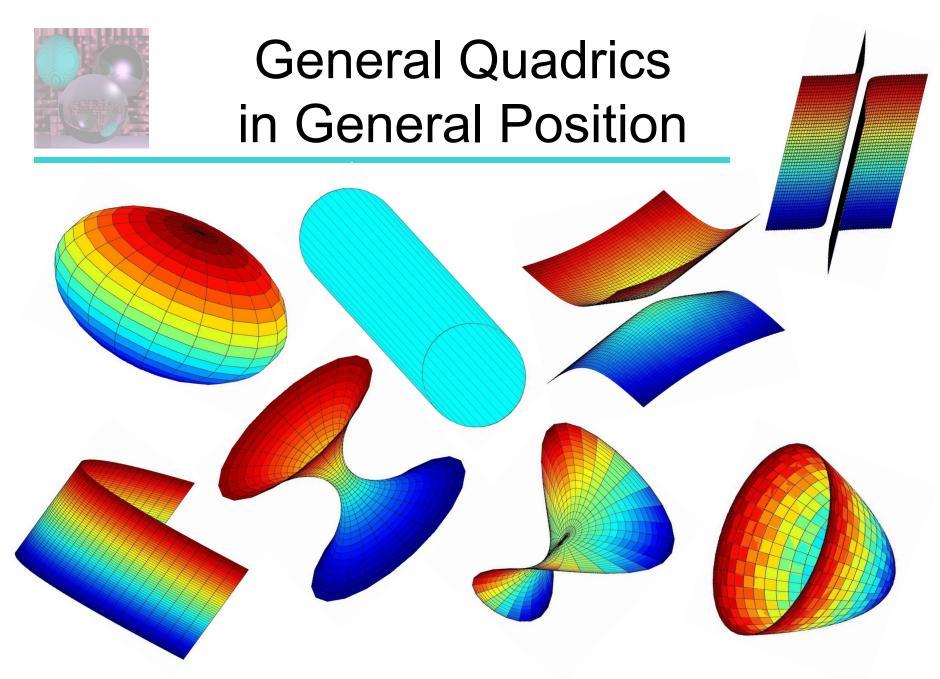


$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$



$$x^2 + 2y = 0$$





General Quadric Equation

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k = 0$$

Ray Equations

$$x(t) = x_0 + tx_d \qquad x_d = x_1 - x_0$$

$$y(t) = y_0 + ty_d \qquad y_d = y_1 - y_0$$

$$z(t) = z_0 + tz_0 \qquad z_1 = z_1 - z_0$$

$$a(x_0 + tx_d)^2 + b(y_0 + ty_d)^2 + c(z_0 + tz_d)$$

$$+2d(x_0+tx_d)(y_0+ty_d)+2e(y_0+ty_d)(z_0+tz_d)+2f(x_0+tx_d)(z_0+tz_d)$$

$$+2g(x_0 + tx_d) + 2h(y_0 + ty_d) + 2j(z_0 + tz_d) + (k) = 0$$

$$A = ax_d^2 + by_d^2 + cz_d^2 + 2dx_d y_d + 2ey_d z_d + 2fx_d z_d$$

$$B \neq 2ax_0x_d + 2by_0y_d + 2cz_0z_d$$

$$-2d(x_0y_d + x_dy_0) + 2e(y_0z_d + y_dz_0) + 2f(x_0z_d + x_dz_0) + 2gx_d) + (2hy_d)(2jz_d)$$

$$C = ax_0^2 + by_0^2 + cz_0^2 + 2dx_0y_0 + 2ey_0z_0 + 2fx_0z_0 + 2gx_0 + 2hy_0 + 2jz_0 + k$$

Ray Quadric Intersection Quadratic Coefficients

$$A = a*xd*xd + b*yd*yd + c*zd*zd$$
$$+ 2[d*xd*yd + e*yd*zd + f*xd*zd$$

$$\begin{split} B &= 2*[a*x0*xd + b*y0*yd + c*z0*zd \\ &+ d*(x0*yd + xd*y0) + e*(y0*zd + yd*z0) + f*(x0*zd + xd*z0) \\ &+ g*xd + h*yd + j*zd] \end{split}$$

$$C = a*x0*x0 + b*y0*y0 + c*z0*z0$$

$$+ 2*[d*x0*y0 + e*y0*z0 + f*x0*z0 + g*x0 + h*y0 + j*z0] + k$$

Quadric Normals

$$Q(x,y,z) = ax^{2} + by^{2} + cz^{2} + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k$$

$$\frac{\partial Q}{\partial x} = 2ax + 2dy + 2fz + 2g = 2(ax + dy + fz + g)$$

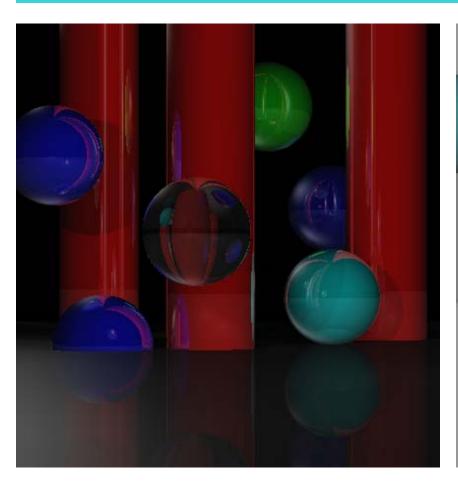
$$\frac{\partial Q}{\partial y} = 2by + 2dx + 2ez + 2h = 2(by + dx + ez + h)$$

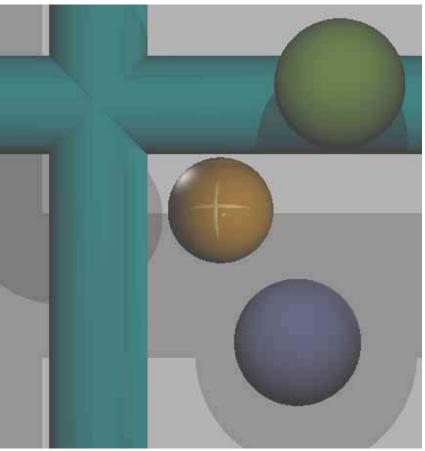
$$\frac{\partial Q}{\partial z} = 2cz + 2ey + 2fx + 2j = 2(cz + ey + fx + j)$$

$$N = \left(\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial Q}{\partial z}\right)$$

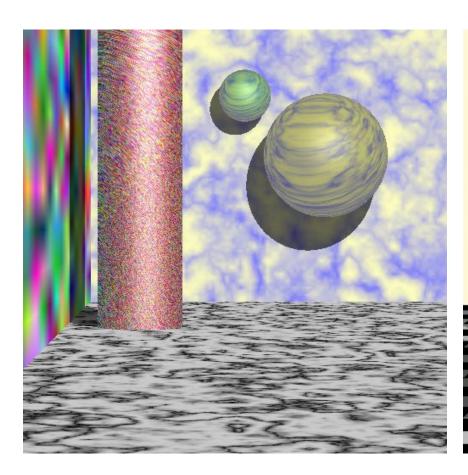
Normalize N and change its sign if necessary.

MyCylinders





Student Images



Student Images

