

CS5310 Graduate Computer Graphics

Prof. Harriet Fell Spring 2011 Lecture 5 – February 16, 2011

February 16, 2011

College of Computer and Information Science, Northeastern University

Comments

- "NOTHING else" means nothing else.
- Do you want your pictures on the web?
 - If not, please send me an email.

Today's Topics

- Bump Maps
- Texture Maps
- 2D-Viewport Clipping

- Cohen-Sutherland
- Liang-Barsky

Bump Maps - Blinn 1978

One dimensional Example

The New Surface B(u) $\boldsymbol{P}'(\boldsymbol{u}) = \boldsymbol{P}(\boldsymbol{u}) + B(\boldsymbol{u})\boldsymbol{N}$

The New Surface Normals

Bump Maps - Formulas

A parametric Surface (x(u,v), y(u,v), z(u,v)) = P(u,v)

$$N = \frac{\partial \boldsymbol{P}}{\partial u} \times \frac{\partial \boldsymbol{P}}{\partial v}$$

The new surface

$$\boldsymbol{P}'(\boldsymbol{u},\boldsymbol{v}) = \boldsymbol{P}(\boldsymbol{u},\boldsymbol{v}) + B(\boldsymbol{u},\boldsymbol{v})N$$

$$N' = P'_{u} \times P'_{v}$$
$$P'_{u} = P_{u} + B_{u}N + B(u, v)N_{u}$$
$$P'_{v} = P_{v} + B_{v}N + B(u, v)N_{v}$$

The New Normal

$$N' = (P_u + B_u N + B(u, v) N_u) \times (P_v + B_v N + B(u, v) N_v)$$

$$= P_u \times P_v + B_v P_u \times N + B(u, v) P_u \times N_v$$

$$+ B_u N \times P_v + B_u B_v N \times N + B_u B(u, v) N \times N_v$$

$$+ B(u, v) N_u \times P_v + B(u, v) B_v N_u \times N + B(u, v)^2 N_u \times N_v$$

This term is 0.
These terms are small if $B(u, v)$ is small.
We use $N' = P_u \times P_v + B_v P_u \times N + B_u N \times P_v$
College of Computer and Information Science, Northeastern University

Tweaking the Normal Vector

$$N' = P_u \times P_v + B_v P_u \times N + B_u N \times P_v$$
$$= N + B_v P_u \times N + B_u N \times P_v$$

$$\boldsymbol{A} = \boldsymbol{N} \times \boldsymbol{P}_{v} \qquad \boldsymbol{B} = \boldsymbol{N} \times \boldsymbol{P}_{u}$$

 $\boldsymbol{D} = B_u \boldsymbol{A} - B_v \boldsymbol{B}$ is the difference vector.

N' = N + DD lies in the tangent plane to the surface.

Plane with Spheres

Plane with Horizontal Wave

Plane with Vertical Wave

Plane with Ripple

Plane with Mesh

Plane with Waffle

Plane with Dimples

Plane with Squares

Dots and Dimples

Plane with Ripples

Sphere on Plane with Spheres

Sphere on Plane with Horizontal Wave

Sphere on Plane with Vertical Wave

Sphere on Plane with Ripple

Sphere on Plane with Mesh

Sphere on Plane with Waffle

Sphere on Plane with Dimples

Sphere on Plane with Squares

Sphere on Plane with Ripples

Wave with Spheres

Parabola with Spheres

Parabola with Dimples

Big Sphere with Dimples

Parabola with Squares

Big Sphere with Squares

Big Sphere with Vertical Wave

Big Sphere with Mesh

Cone Vertical with Wave

Cone with Dimples

Cone with Ripple

Cone with Ripples

Student Images

Bump Map - Plane

x = h - 200; y = v - 200; z = 0;

> N.Set(0, 0, 1); Du.Set(-1, 0, 0); Dv.Set(0, 1, 0); uu = h; vv = v; zz = z;

Bump Map Code – Big Sphere

```
radius = 280.0;
z = sqrt(radius radius - y^*y - x^*x);
N.Set(x, y, z);
N = Norm(N);
Du.Set(z, 0, -x);
Du = -1*Norm(Du);
Dv.Set(-x*y, x*x +z*z, -y*z);
Dv = -1*Norm(Dv);
vv = acos(y/radius)*360/pi;
uu = (pi/2 + atan(x/z))^{*}360/pi;
ZZ = Z:
```


Bump Map Code – Dimples

```
Bu = 0; Bv = 0;
iu = (int)uu % 30 - 15;
iv = (int)vv % 30 - 15;
r2 = 225.0 - (double)iu^*iu - (double)iv^*iv;
if (r2 > 100) {
       if (iu == 0) Bu = 0;
       else Bu = (iu)/sqrt(r2);
       if (iv == 0) Bv = 0;
       else Bv = (iv)/sqrt(r2);
```


Image as a Bump Map

A bump map is a gray scale image; any image will do. The lighter areas are rendered as raised portions of the surface and darker areas are rendered as depressions. The bumping is sensitive to the direction of light sources.

http://www.cadcourse.com/winston/BumpMaps.html

Time for a Break

Bump Map from an Image Victor Ortenberg

College of Computer and Information Science, Northeastern University

Simple Textures on Planes Parallel to Coordinate Planes

Checks

Stripes and Checks

Red and Blue Stripes if ((x % 50) < 25) color = red else color = blue

Cyan and Magenta Checks if (((x % 50) < 25 && (y % 50) < 25)) || (((x % 50) >= 25 && (y % 50) >= 25))) color = cyanelse color = magenta What happens when you cross x = 0 or y = 0? February 16, 201 College of Computer and Information Science, Northeastern University

Stripes, Checks, Image

Mona Scroll

Textures on 2 Planes

Mapping a Picture to a Plane

- Use an image in a ppm file.
- Read the image into an array of RGB values. Color myImage[width][height]
- For a point on the plane (x, y, d) theColor(x, y, d) = myImage(x % width, y % height)
- How do you stretch a small image onto a large planar area?

Other planes and Triangles

Given a normal and 2 points on the plane:

Make **u** from the two points.

 $\mathbf{v} = \mathbf{N} \times \mathbf{u}$

Express **P** on the plane as

 $\mathbf{P} = \mathbf{P}_0 + \mathbf{a}\mathbf{u} + \mathbf{b}\mathbf{v}.$

Image to Triangle - 1

Image to Triangle - 3

Mandrill Sphere

Mona Spheres

Tova Sphere

More Textured Spheres

Spherical Geometry

// for texture map – in lieu of using sphere color double phi, theta; // for spherical coordinates double x, y, z; // sphere vector coordinates int h, v; // ppm buffer coordinates Vector3D V;

```
V = SP - theSpheres[hitObject].center;
V.Get(x, y, z);
phi = acos(y/theSpheres[hitObject].radius);
if (z != 0) theta = atan(x/z); else phi = 0; // ???
v = (phi)*ppmH/pi;
h = (theta + pi/2)*ppmW/pi;
```

```
if (v < 0) v = 0; else if (v >= ppmH) v = ppmH - 1;

v = ppmH - v - 1; //v = (v + 85*ppmH/100)%ppmH;//9

if (h < 0) h = 0; else if (h >= ppmW) h = ppmW - 1;

h = ppmW - h - 1; //h = (h + 1*ppmW/10)%ppmW;
```

rd = fullFactor*((double)(byte)myImage[h][v][0]/255); clip(rd); gd = fullFactor*((double)(byte)myImage[h][v][1]/255); clip(gd); bd = fullFactor*((double)(byte) myImage[h][v][2]/255); clip(bd);

February 16, 2011

Intersections

Cohen-Sutherland Clipping

1.	Assign a 4 bit <i>outcode</i> to each endpoint.	1100	1000	1001
2.	Identify lines that are trivially accepted or trivially rejected. if (outcode(P) = outcode(Q) = 0) accept	0100	0000	0001
	else if (outcode(P) & outcode (Q)) ≠ 0) reject else test further	0110 at	0010	0011
		above left below right		

Cohen-Sutherland continued

Clip against one boundary at a time, top, left, bottom, right.

Check for trivial accept or reject.

If a line segment PQ falls into the "test further" category then

if (outcode(P) & 1000 \neq 0) replace P with PQ intersect y = top else if (outcode(Q) & 1000 \neq 0) replace Q with PQ intersect y = top go on to next boundary

Liang-Barsky Clipping

Clip window interior is defined by:

 $x = x \le x \le x$

ybottom $\leq y \leq ytop$

Liang-Barsky continued

Liang-Barsky continued

Put the parametric equations into the inequalities: $x = x_0 + t\Delta x \le x = x = y_0 + t\Delta y \le y = y = y_0$

$$\begin{aligned} -t\Delta x \leq x_0 - x \text{ left} & t\Delta x \leq x \text{ right} - x_0 \\ -t\Delta y \leq y_0 - y \text{ bottom} & t\Delta y \leq y \text{ top} - y_0 \end{aligned}$$

These decribe the interior of the clip window in terms of t.

Liang-Barsky continued

- $\begin{aligned} -t\Delta x \leq x_0 x \text{left} & t\Delta x \leq x \text{right} x_0 \\ -t\Delta y \leq y_0 y \text{bottom} & t\Delta y \leq y \text{top} y_0 \end{aligned}$
- These are all of the form tp ≤ q
- For each boundary, we decide whether to accept, reject, or which point to change depending on the sign of p and the value of t at the intersection of the line with the boundary.

Liang-Barsky Rules

- 0 < t < 1, p < 0 replace V₀
- 0 < t < 1, p > 0 replace V₁
- t < 0, p < 0 no change
- t < 0, p > 0 reject
- t > 1, p > 0 no change
- t > 1, p < 0 reject