
College of Computer and Information Science, Northeastern University February 11, 2011 1

CS5310
Graduate Computer Graphics

Prof. Harriet Fell
Spring 2011

Lecture 4 – February 9, 2011

College of Computer and Information Science, Northeastern University February 11, 2011 2

Today’s Topics

•  Raster Algorithms
  Lines - Section 3.5 in Shirley et al.
 Circles
  Antialiasing

•  RAY Tracing Continued
 Ray-Plane
 Ray-Triangle
 Ray-Polygon

College of Computer and Information Science, Northeastern University February 11, 2011 3

(3,2)

(0,0)

(0,3)

Pixel Coordinates
y

x

x = -0.5

y = 4.5

y = -03.5
x = 4.5

College of Computer and Information Science, Northeastern University February 11, 2011 4

What Makes a Good Line?

•  Not too jaggy
•  Uniform thickness along a line
•  Uniform thickness of lines at different

angles
•  Symmetry, Line(P,Q) = Line(Q,P)

•  A good line algorithm should be fast.

College of Computer and Information Science, Northeastern University February 11, 2011 5

Line Drawing

College of Computer and Information Science, Northeastern University February 11, 2011 6

Line Drawing

College of Computer and Information Science, Northeastern University February 11, 2011 7

Which Pixels Should We
Color?

•  We could use the equation of the line:
  y = mx + b
  m = (y1 – y0)/(x1 – x0)
  b = y1 - mx1

•  And a loop
for x = x0 to x1

 y = mx + b
 draw (x, y)

This calls for real multiplication
for each pixel

This only works if x1 ≤ x2 and |m| ≤ 1.

College of Computer and Information Science, Northeastern University February 11, 2011 8

Midpoint Algorithm
•  Pitteway 1967
•  Van Aiken and Nowak 1985
•  Draws the same pixels as the Bresenham

Algorithm 1965.
•  Uses integer arithmetic and incremental

computation.
•  Draws the thinnest possible line from

 (x0, y0) to (x1, y1) that has no gaps.
•  A diagonal connection between pixels is not a

gap.

College of Computer and Information Science, Northeastern University February 11, 2011 9

Implicit Equation of a Line

(x0, y0)

(x1, y1) f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

We will assume x0 ≤ x1

and that m = (y1 – y0)/(x1 - x0)

is in [0, 1].

f(x,y) > 0

f(x,y) < 0

College of Computer and Information Science, Northeastern University February 11, 2011 10

Basic Form of the Algotithm

 y = y0

 for x = x0 to x1 do
 draw (x, y)
 if (some condition) then
 y = y + 1

 Since 0 ≤ m ≤ 1, as we move from x to x+1,
 the y value stays the same or goes up by 1.

We want to compute this
condition efficiently.

College of Computer and Information Science, Northeastern University February 11, 2011 11

Above or Below the Midpoint?

College of Computer and Information Science, Northeastern University February 11, 2011 12

Finding the Next Pixel

Assume we just drew (x, y).
For the next pixel, we must decide between

 (x+1, y) and (x+1, y+1).
The midpoint between the choices is

 (x+1, y+0.5).
If the line passes below (x+1, y+0.5), we

draw the bottom pixel.
Otherwise, we draw the upper pixel.

College of Computer and Information Science, Northeastern University February 11, 2011 13

The Decision Function

if f(x+1, y+0.5) < 0
 // midpoint below line
 y = y + 1

f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

How do we compute f(x+1, y+0.5)
 incrementally?
 using only integer arithmetic?

College of Computer and Information Science, Northeastern University February 11, 2011 14

Incremental Computation
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

 f(x + 1, y) = f(x, y) + (y0 – y1)
 f(x + 1, y + 1) = f(x, y) + (y0 – y1) + (x1 - x0)

y = y0
d = f(x0 + 1, y + 0.5)
for x = x0 to x1 do

 draw (x, y)
 if d < 0 then
 y = y + 1
 d = d + (y0 – y1) + (x1 - x0)
 else
 d = d + (y0 – y1)

College of Computer and Information Science, Northeastern University February 11, 2011 15

Integer Decision Function
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

f(x0 + 1, y0 + 0.5)
 = (y0 – y1)(x0 + 1) +(x1 - x0)(y0 + 0.5) + x0 y1 - x1 y0

2f(x0 + 1, y0 + 0.5)
 = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y0 + 1) + 2x0 y1 - 2x1 y0

2f(x, y) = 0 if (x, y) is on the line.

 < 0 if (x, y) is below the line.
 > 0 if (x, y) is above the line.

College of Computer and Information Science, Northeastern University February 11, 2011 16

Incremental Computation
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0

 f(x + 1, y) = f(x, y) + (y0 – y1)
 f(x + 1, y + 1) = f(x, y) + (y0 – y1) + (x1 - x0)

y = y0
d = 2f(x0 + 1, y + 0.5)
for x = x0 to x1 do

 draw (x, y)
 if d < 0 then
 y = y + 1
 d = d + 2(y0 – y1) + 2(x1 - x0)
 else
 d = d + + 2(y0 – y1)

College of Computer and Information Science, Northeastern University February 11, 2011 17

Midpoint Line Algorithm
y = y0
d = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y0 + 1) + 2x0 y1 - 2x1 y0
for x = x0 to x1 do

 draw (x, y)
 if d < 0 then
 y = y + 1
 d = d + 2(y0 – y1) + 2(x1 - x0)
 else
 d = d + 2(y0 – y1)

College of Computer and Information Science, Northeastern University February 11, 2011 18

Some Lines

College of Computer and Information Science, Northeastern University February 11, 2011 19

Some Lines Magnified

College of Computer and Information Science, Northeastern University February 11, 2011 20

Antialiasing by Downsampling

College of Computer and Information Science, Northeastern University February 11, 2011 21

Circles

R

(0, 0)

(x, y)

(x+a, y+b)

R

(a, b)

College of Computer and Information Science, Northeastern University February 11, 2011 22

Drawing Circles - 1

(0, 0)

(x, y)

R

θ

x = Rcos(θ)

y = Rsin(θ)

For θ = 0 to 360 do
 x = Rcos(θ)
 y = Rsin(θ)
 draw(x, y)

College of Computer and Information Science, Northeastern University February 11, 2011 23

Drawing Circles 2

(0, 0)

(x, y)

R

θ

y2 + y2 = R2

for x = -R to R do
 y = sqrt(R2 - x2)
 draw(x, y)
 draw(x, -y)

College of Computer and Information Science, Northeastern University February 11, 2011 24

Circular Symmetry

(0, 0)

(x, y)

(y, x)

(x, -y)

(y, -x)

(-x, y)

(-y, x)

(-x, -y)

(-y, -x)

College of Computer and Information Science, Northeastern University February 11, 2011 25

Midpoint Circle Algorithm

IN THE TOP OCTANT:

If (x, y) was the last pixel plotted, either

 (x + 1, y) or (x + 1, y - 1) will be the next pixel.

Making a Decision Function:

 d(x, y) = x2 + y2 – R2

 d(x, y) < 0 (x, y) is inside the circle.

If d(x, y) = 0 (x, y) is on the circle.

 d(x, y) > 0 (x, y) is outside the circle.

College of Computer and Information Science, Northeastern University February 11, 2011 26

Decision Function

Evaluate d at the midpoint of the two possible
pixels.

d(x + 1, y - ½) = (x + 1)2 + (y - ½)2 – R2

 d(x + 1, y - ½) < 0 midpoint inside circle choose y

If d(x + 1, y - ½) = 0 midpoint on circle choose y

 d(x + 1, y - ½) > 0 midpoint outside circle choose y - 1

College of Computer and Information Science, Northeastern University February 11, 2011 27

Computing D(x,y)
Incrementally

D(x,y) = d(x + 1, y - ½) = (x + 1)2 + (y - ½)2 – R2

D(x + 1,y) – D(x, y)=
(x+2)2 + (y - ½)2 – R2 – ((x + 1)2 + (y - ½)2 – R2)
=2(x + 1)+ 1

D(x + 1,y - 1) – D(x, y)=
(x+2)2 + (y – 3/2)2 – R2 – ((x + 1)2 + (y - ½)2 – R2)
=2(x+1) + 1 – 2(y – 1)

You can also compute the differences incrementally.

College of Computer and Information Science, Northeastern University February 11, 2011 28

Time for a Break

College of Computer and Information Science, Northeastern University February 11, 2011 29

More Ray-Tracing

Ray/Plane Intersection

Ray/Triangle
Intersection

Ray/Polygon
Intersection

College of Computer and Information Science, Northeastern University February 11, 2011 30

Equation of a Plane

N = (A, B, C)

P0 = (a, b, c)

(x, y, z)

Given a point P0 on
the plane and a
normal to the plane N.

(x, y, z) is on the
plane if and only if

(x-a, y-b, z-c)·N = 0.

Ax + By + Cz –(Aa + Bb + Cc) = 0
D

College of Computer and Information Science, Northeastern University February 11, 2011 31

Ray/Plane Intersection

Ax + By + Cz = D
P0 = (x0, y0, z0)

P1 = (x1, y1, z1)

Ray Equation

x = x0 + t(x1 - x0)

y = y0 + t(y1 - y0)

z = z0 + t(z1 - z0)

A(x0 + t(x1 - x0)) + B(y0 + t(y1 - y0)) + C(z0 + t(z1 - z0)) = D

Solve for t. Find x, y, z.

College of Computer and Information Science, Northeastern University February 11, 2011 32

Planes in Your Scenes

•  Planes are specified by
  A, B, C, D or by N and P
 Color and other coefficients are as for spheres

•  To search for the nearest object, go
through all the spheres and planes and
find the smallest t.

•  A plane will not be visible if the normal
vector (A, B, C) points away from the light.

College of Computer and Information Science, Northeastern University February 11, 2011 33

Ray/Triangle Intersection

Using the Ray/Plane intersection:
 Given the three vertices of the triangle,

•  Find N, the normal to the plane containing the
triangle.

•  Use N and one of the triangle vertices to describe
the plane, i.e. Find A, B, C, and D.

•  If the Ray intersects the Plane, find the intersection
point and its β and γ.

•  If 0 ≤ β and 0 ≤ γ and β + Υ ≤ 1, the Ray hits the
Triangle.

College of Computer and Information Science, Northeastern University February 11, 2011 34

Ray/Triangle Intersection
Using barycentric coordinates

directly: (Shirley pp. 206-208)
Solve

e + td = a + β(b-a) + γ (c-a)
for t, β, and γ.

The x, y, and z components
give you 3 linear equations
in 3 unknowns.
If 0 ≤ t ≤ 1, the Ray hits the Plane.
If 0 ≤ β and 0 ≤ γ and β + γ ≤ 1,
the Ray hits the Triangle. (xe, ye, ze)

(xd, yd, zd)
(xd, yd, zd)

a
b

c

College of Computer and Information Science, Northeastern University February 11, 2011 35

Ray/Polygon Intersection

A polygon is given by
 n co-planar points.

Choose 3 points that are
not co-linear to find N.

Apply Ray/Plane
intersection procedure
to find P.

Determine whether P lies
inside the polygon.

P

College of Computer and Information Science, Northeastern University February 11, 2011 36

Parity Check
Draw a horizontal half-line from P to the right.
Count the number of times the half-line crosses an edge.

1 in

4 out
7 in

7 in

College of Computer and Information Science, Northeastern University February 11, 2011 37

Images with
Planes and Polygons

College of Computer and Information Science, Northeastern University February 11, 2011 38

Images with
Planes and Polygons

College of Computer and Information Science, Northeastern University February 11, 2011 39

Scan Line Polygon Fill

College of Computer and Information Science, Northeastern University February 11, 2011 40

Polygon Data Structure

edges
xmin ymax 1/m

1 6 8/4

(1, 2)

(9, 6)

xmin = x value at lowest y

ymax = highest y

Polygon
Data Structure

Edge Table (ET) has a list of
edges for each scan line.

e1

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

13

12

11

10 e6

9

8

7 e4 e5

6 e3 e7 e8

5

4

3

2

1 e2 e1 e11

0 e10 e9

College of Computer and Information Science, Northeastern University February 11, 2011 42

Preprocessing the edges

count twice,
once for each
edge

chop lowest pixel
to only count
once delete

horizontal
edges

For a closed polygon, there should be an even number
of crossings at each scan line.

We fill between each successive pair.

13

12

11

10 e6

9

8

7 e4 e5

6 e3 e7 e8

5

4

3

2

1 e2 e1 e11

0 e10 e9
e11

7 e3 e4 e5

6 e7 e8

11 e6

10

Polygon
Data Structure
after preprocessing

Edge Table (ET) has a list of
edges for each scan line.

e1

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

College of Computer and Information Science, Northeastern University February 11, 2011 44

The Algorithm

1.  Start with smallest nonempty y value in ET.
2.  Initialize SLB (Scan Line Bucket) to nil.
3.  While current y ≤ top y value:

a.  Merge y bucket from ET into SLB; sort on xmin.
b.  Fill pixels between rounded pairs of x values in SLB.
c.  Remove edges from SLB whose ytop = current y.
d.  Increment xmin by 1/m for edges in SLB.
e.  Increment y by 1.

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

ET
13
12

11 e6
10
9
8

7 e3 e4 e5
6 e7 ve8
5
4
3
2

1 e2 e11
0 e10 e9

 xmin ymax 1/m
e2 2 6 -2/5
e3 1/3 12 1/3
e4 4 12 -2/5
e5 4 13 0
e6 6 2/3 13 -4/3
e7 10 10 -1/2
e8 10 8 2
e9 11 8 3/8
e10 11 4 -3/4
e11 6 4 2/3

5 0 10 15

College of Computer and Information Science, Northeastern University February 11, 2011 46

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

5 0 10 15

y=0

SCB 11 4 -3/4

11 8 3/8
e9

e10
10 1/4

11 3/8

College of Computer and Information Science, Northeastern University February 11, 2011 47

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

5 0 10 15

y=1

SLB 2 6 -2/5

6 4 2/3
e11

e2
1 3/5

10 1/4 4 -3/4

11 3/8 8 3/8
e9

e10

6 2/3

9 1/2

11 6/8

College of Computer and Information Science, Northeastern University February 11, 2011 48

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

5 0 10 15

y=2

SLB 1 3/5 6 -2/5

6 2/3 4 2/3
e11

e2

9 1/2 4 -3/4

11 6/8 8 3/8
e9

e10

12 1/8

8 3/4

7 1/3

1 1/5

College of Computer and Information Science, Northeastern University February 11, 2011 49

Running the
Algorithm

e3
e4

e5

e6

e7
e8

e9

e10
0

5

10

13

5 0 10 15

y=3

SLB 1 1/5 6 -2/5

7 1/3 4 2/3
e11

e2

8 3/4 4 -3/4

12 1/8 8 3/8
e9

e10

12 4/8

8

8

4/5

e11 e2

College of Computer and Information Science, Northeastern University February 11, 2011 50

Running the
Algorithm

e3
e4

e5

e6

e7
e8

e10
0

5

10

13

5 0 10 15

y=4

SLB 4/5 6 -2/5

8 4 2/3
e11

e2

8 4 -3/4

12 4/8 8 3/8
e9

e10 e11 e2
e9

Remove these edges.

College of Computer and Information Science, Northeastern University February 11, 2011 51

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=4

SLB 4/5 6 -2/5
e2

12 4/8 8 3/8
e9

12 7/8

2/5

e2 e11
e10

e9
e11 and e10 are removed.

College of Computer and Information Science, Northeastern University February 11, 2011 52

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=5

SLB 2/5 6 -2/5
e2

12 7/8 8 3/8
e9

13 2/8

0

e2 e11
e10

e9

College of Computer and Information Science, Northeastern University February 11, 2011 53

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=6

SLB 0 6 -2/5
e2

10 10 -1/2
e7

e2 e11
e10

e9

Remove this edge.

10 8 2
e8

13 2/8 8 3/8
e9

9 1/2

12

13 5/8

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=7

SLB

4 13 0
e5

9 1/2 10 -1/2
e7

e2 e11
e10

e9

12 8 2
e8

13 5/8 8 3/8
e9

Add these edges.

4 12 -2/5
e4

1/3 12 1/3
e3

College of Computer and Information Science, Northeastern University February 11, 2011 55

Ray Box Intersection

(xl, yl, zl)	

(x0, y0, z0) + t (xd, yd, zd)	

(xd, yd, zd) a unit vector	

(xh, yh, zh)	

(x0, y0, z0)	

t1 = (xl - x0) / xd	

College of Computer and Information Science, Northeastern University February 11, 2011 56

Ray Box Intersection
http://courses.csusm.edu/cs697exz/ray_box.htm

or see Watt pages 21-22
Box: minimum extent Bl = (xl, yl, zl) maximum extent Bh = (xh, yh, zh)	

Ray: R0 = (x0, y0, z0) , Rd= (xd, yd, zd) ray is R0 + tRd	

Algorithm:	

1.  Set tnear = -INFINITY , tfar = +INFINITY	

2.  For the pair of X planes	

1.  if zd = 0, the ray is parallel to the planes so:	

  if x0 < x1 or x0 > xh return FALSE (origin not between planes)	

2.  else the ray is not parallel to the planes, so calculate intersection distances of planes	

  t1 = (xl - x0) / xd (time at which ray intersects minimum X plane)	

  t2 = (xh - x0) / xd (time at which ray intersects maximum X plane)	

  if t1 > t2 , swap t1 and t2	

  if t1 > tnear , set tnear = t1	

  if t2 < tfar, set tfar= t2	

  if tnear > tfar, box is missed so return FALSE 	

  if tfar < 0 , box is behind ray so return FALSE	

3.  Repeat step 2 for Y, then Z	

4.  All tests were survived, so return TRUE	

