

CS5310 Graduate Computer Graphics

Prof. Harriet Fell Spring 2011 Lecture 4 – February 9, 2011

February 11, 2011

College of Computer and Information Science, Northeastern University

Today's Topics

- Raster Algorithms
 - Lines Section 3.5 in Shirley et al.
 - Circles
 - Antialiasing
- RAY Tracing Continued
 - Ray-Plane
 - Ray-Triangle
 - Ray-Polygon

Pixel Coordinates

College of Computer and Information Science, Northeastern University

What Makes a Good Line?

- Not too jaggy
- Uniform thickness along a line
- Uniform thickness of lines at different angles
- Symmetry, Line(P,Q) = Line(Q,P)
- A good line algorithm should be fast.

Line Drawing

Line Drawing

Which Pixels Should We Color?

- We could use the equation of the line:
 - y = mx + b
 - $m = (y_1 y_0)/(x_1 x_0)$
 - $b = y_1 mx_1$
- And a loop

for $x = x_0$ to x_1 This calls for real multiplicationy = mx + bfor each pixeldraw(x, y)

This only works if $x_1 \le x_2$ and $|m| \le 1$.

Midpoint Algorithm

- Pitteway 1967
- Van Aiken and Nowak 1985
- Draws the same pixels as the *Bresenham Algorithm* 1965.
- Uses integer arithmetic and incremental computation.
- Draws the thinnest possible line from (x₀, y₀) to (x₁, y₁) that has no gaps.
- A diagonal connection between pixels is not a gap.

Basic Form of the Algotithm

Above or Below the Midpoint?

Finding the Next Pixel

Assume we just drew (x, y). For the next pixel, we must decide between (x+1, y) and (x+1, y+1). The midpoint between the choices is (x+1, y+0.5). If the line passes below (x+1, y+0.5), we draw the bottom pixel. Otherwise, we draw the upper pixel.

The Decision Function

if f(x+1, y+0.5) < 0
 // midpoint below line
 y = y + 1</pre>

$$f(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0$$

How do we compute f(x+1, y+0.5)
incrementally?
using only integer arithmetic?

Incremental Computation

$$\begin{aligned} f(x,y) &= (y_0 - y_1)x + (x_1 - x_0)y + x_0 y_1 - x_1 y_0 \\ f(x + 1, y) &= f(x, y) + (y_0 - y_1) \\ f(x + 1, y + 1) &= f(x, y) + (y_0 - y_1) + (x_1 - x_0) \\ y &= y_0 \\ d &= f(x_0 + 1, y + 0.5) \\ \textbf{for } x &= x_0 \text{ to } x_1 \textbf{ do} \\ draw (x, y) \\ \textbf{if } d &< 0 \textbf{ then} \\ y &= y + 1 \\ d &= d + (y_0 - y_1) + (x_1 - x_0) \\ else \\ d &= d + (y_0 - y_1) \end{aligned}$$

Integer Decision Function

$$f(x,y) = (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0$$

$$f(x_0 + 1, y_0 + 0.5)$$

$$= (y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(y_0 + 0.5) + x_0y_1 - x_1y_0$$

$$2f(x_0 + 1, y_0 + 0.5) = 2(y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(2y_0 + 1) + 2x_0y_1 - 2x_1y_0$$

$$2f(x, y) = 0$$
 if (x, y) is on the line.
< 0 if (x, y) is below the line.
> 0 if (x, y) is above the line.

Incremental Computation

$$\begin{aligned} f(x,y) &= (y_0 - y_1)x + (x_1 - x_0)y + x_0 y_1 - x_1 y_0 \\ f(x + 1, y) &= f(x, y) + (y_0 - y_1) \\ f(x + 1, y + 1) &= f(x, y) + (y_0 - y_1) + (x_1 - x_0) \end{aligned}$$

$$\begin{aligned} y &= y_0 \\ d &= 2f(x_0 + 1, y + 0.5) \\ \textbf{for } x &= x_0 \text{ to } x_1 \textbf{ do} \\ draw (x, y) \\ \textbf{if } d &< 0 \textbf{ then} \\ y &= y + 1 \\ d &= d + 2(y_0 - y_1) + 2(x_1 - x_0) \end{aligned}$$

else
$$\begin{aligned} d &= d + 2(y_0 - y_1) \end{aligned}$$

February 11, 2011

College of Computer and Information Science, Northeastern University

Midpoint Line Algorithm

$$y = y_0$$

$$d = 2(y_0 - y_1)(x_0 + 1) + (x_1 - x_0)(2y_0 + 1) + 2x_0y_1 - 2x_1y_0$$

for $x = x_0$ to x_1 do
draw (x, y)
if $d < 0$ then
 $y = y + 1$
 $d = d + 2(y_0 - y_1) + 2(x_1 - x_0)$
else
 $d = d + 2(y_0 - y_1)$

Some Lines

Some Lines Magnified

Antialiasing by Downsampling

Drawing Circles 2

Circular Symmetry

Midpoint Circle Algorithm

IN THE TOP OCTANT:

If (x, y) was the last pixel plotted, either

(x + 1, y) or (x + 1, y - 1) will be the next pixel.

Making a Decision Function:

$$d(x, y) = x^2 + y^2 - R^2$$

If
$$\begin{cases} d(x, y) < 0 & (x, y) \text{ is inside the circle.} \\ d(x, y) = 0 & (x, y) \text{ is on the circle.} \\ d(x, y) > 0 & (x, y) \text{ is outside the circle.} \end{cases}$$

Decision Function

Evaluate d at the midpoint of the two possible pixels.

$$d(x + 1, y - \frac{1}{2}) = (x + 1)^2 + (y - \frac{1}{2})^2 - R^2$$

If
$$\begin{cases} d(x + 1, y - \frac{1}{2}) < 0 & midpoint inside circle & choose y \\ d(x + 1, y - \frac{1}{2}) = 0 & midpoint on circle & choose y \\ d(x + 1, y - \frac{1}{2}) > 0 & midpoint outside circle & choose y - 1 \end{cases}$$

Computing D(x,y) Incrementally

 $D(x,y) = d(x + 1, y - \frac{1}{2}) = (x + 1)^2 + (y - \frac{1}{2})^2 - R^2$

$$D(x + 1,y) - D(x, y) = (x+2)^2 + (y - \frac{1}{2})^2 - R^2 - ((x + 1)^2 + (y - \frac{1}{2})^2 - R^2) = 2(x + 1) + 1$$

$$D(x + 1,y - 1) - D(x, y) = (x+2)^2 + (y - 3/2)^2 - R^2 - ((x + 1)^2 + (y - \frac{1}{2})^2 - R^2) = 2(x+1) + 1 - 2(y - 1)$$

You can also compute the differences incrementally.

February 11, 2011

College of Computer and Information Science, Northeastern University

Time for a Break

College of Computer and Information Science, Northeastern University

Equation of a Plane

Ray/Plane Intersection

Planes in Your Scenes

- Planes are specified by
 - A, B, C, D or by N and P
 - Color and other coefficients are as for spheres
- To search for the nearest object, go through all the spheres and planes and find the smallest t.
- A plane will not be visible if the normal vector (A, B, C) points away from the light.

Ray/Triangle Intersection

Using the Ray/Plane intersection:

- Given the three vertices of the triangle,
 - Find **N**, the normal to the plane containing the triangle.
 - Use **N** and one of the triangle vertices to describe the plane, i.e. Find A, B, C, and D.
 - If the Ray intersects the Plane, find the intersection point and its β and γ .
 - If $0 \le \beta$ and $0 \le \gamma$ and $\beta + Y \le 1$, the Ray hits the Triangle.

Ray/Triangle Intersection

Using barycentric coordinates directly: (Shirley pp. 206-208) Solve

$$\mathbf{e} + t\mathbf{d} = \mathbf{a} + \beta(\mathbf{b}-\mathbf{a}) + \gamma(\mathbf{c}-\mathbf{a})$$

for t, β , and γ .

The x, y, and z components give you 3 linear equations in 3 unknowns.

If $0 \le t \le 1$, the Ray hits the Plane.

```
If 0 \le \beta and 0 \le \gamma and \beta + \gamma \le 1,
the Ray hits the Triangle.
```


Ray/Polygon Intersection

A polygon is given by n co-planar points. Choose 3 points that are not co-linear to find **N**. Apply Ray/Plane intersection procedure to find P. Determine whether P lies inside the polygon.

Parity Check

Draw a horizontal half-line from P to the right.

Count the number of times the half-line crosses an edge.

Images with Planes and Polygons

Images with Planes and Polygons

Scan Line Polygon Fill

Polygon Data Structure

Polygon Data Structure

Edge Table (ET) has a list of edges for each scan line.

12 11 $10 \rightarrow e6$ 9 8 7 $\rightarrow e4 \rightarrow e5$ 6 $\rightarrow e3 \rightarrow e7 \rightarrow e8$ 5 4 3 2

13

 $1 \rightarrow e2 \rightarrow e1 \rightarrow e11$

 $0 \rightarrow e10 \rightarrow e9$

Preprocessing the edges

For a closed polygon, there should be an even number of crossings at each scan line.

13	
12	
11	\rightarrow e6
10	
9	
8	
7	\rightarrow e3 \rightarrow e4 \rightarrow e5
6	\rightarrow e7 \rightarrow e8
5	
4	
3	
2	
1	\rightarrow e2 \rightarrow e11
0	\rightarrow e10 \rightarrow e9

Polygon Data Structure after preprocessing Edge Table (ET) has a list of edges for each scan line.

The Algorithm

- 1. Start with smallest nonempty y value in ET.
- 2. Initialize SLB (Scan Line Bucket) to *nil*.
- 3. While current $y \le top y$ value:
 - a. Merge y bucket from ET into SLB; sort on xmin.
 - b. Fill pixels between rounded pairs of x values in SLB.
 - c. Remove edges from SLB whose ytop = current y.
 - d. Increment xmin by 1/m for edges in SLB.
 - e. Increment y by 1.

ET 13 12 11 \rightarrow e6 10 9 8 7 $\rightarrow e3 \rightarrow e4 \rightarrow e5$ 6 \rightarrow e7 ve8 5 4 3 2 1 \rightarrow e2 \rightarrow e11 0 \rightarrow e10 \rightarrow e9 xmin ymax 1/m 2 6 -2/5 e2 e3 1/3 12 1/3 e4 4 12 -2/5 e

e5	4	13	0
e6	6 2/3	13	-4/3
e7	10	10	-1/2
e8	10	8	2
e9	11	8	3/8
e10	11	4	-3/4
e11	6	4	2/3

15

e8

e9

e11 and e10 are removed.

Ray Box Intersection

http://courses.csusm.edu/cs697exz/ray_box.htm

or see Watt pages 21-22

Box: minimum extent Bl = (xl, yl, zl) maximum extent Bh = (xh, yh, zh)Ray: R0 = (x0, y0, z0), Rd= (xd, yd, zd) ray is R0 + tRd

Algorithm:

- 1. Set tnear = -INFINITY, tfar = +INFINITY
- 2. For the pair of X planes
 - 1. if zd = 0, the ray is parallel to the planes so:
 - if x0 < x1 or x0 > xh return FALSE (origin not between planes)
 - 2. else the ray is not parallel to the planes, so calculate intersection distances of planes
 - t1 = (x1 x0) / xd (time at which ray intersects minimum X plane)
 - $t^2 = (xh x0) / xd$ (time at which ray intersects maximum X plane)
 - if t1 > t2, swap t1 and t2
 - if t1 > tnear, set tnear = t1
 - if $t^2 < tfar$, set $tfar = t^2$
 - if tnear > tfar, box is missed so return FALSE
 - if tfar < 0, box is behind ray so return FALSE
- 3. Repeat step 2 for Y, then Z
- 4. All tests were survived, so return TRUE