
College of Computer and Information Science, Northeastern University February 11, 2011 1 

CS5310 
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Spring 2011 

Lecture 4 – February 9, 2011 
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Today’s Topics 

•  Raster Algorithms 
  Lines - Section 3.5 in Shirley et al. 
 Circles 
  Antialiasing  

•  RAY Tracing Continued 
 Ray-Plane 
 Ray-Triangle 
 Ray-Polygon  
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What Makes a Good Line? 

•  Not too jaggy 
•  Uniform thickness along a line 
•  Uniform thickness of lines at different 

angles 
•  Symmetry, Line(P,Q) = Line(Q,P) 

•  A good line algorithm should be fast. 
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Line Drawing 
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Line Drawing 
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Which Pixels Should We 
Color? 

•  We could use the equation of the line: 
  y = mx + b 
  m = (y1 – y0)/(x1 – x0) 
  b = y1 - mx1 

•  And a loop 
for x = x0 to x1 

 y = mx + b 
 draw (x, y) 

This calls for real multiplication 
for each pixel 

This only works if x1 ≤ x2 and |m| ≤ 1. 
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Midpoint Algorithm 
•  Pitteway 1967 
•  Van Aiken and Nowak 1985 
•  Draws the same pixels as the Bresenham 

Algorithm 1965. 
•  Uses integer arithmetic and incremental 

computation. 
•  Draws the thinnest possible line from  

 (x0, y0) to (x1, y1) that has no gaps. 
•  A diagonal connection between pixels is not a 

gap. 
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Implicit Equation of a Line 

(x0, y0) 

(x1, y1) f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

We will assume x0 ≤ x1 

and that m = (y1 – y0 )/(x1 - x0 ) 

is in [0, 1]. 

f(x,y) > 0 

f(x,y) < 0 
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Basic Form of the Algotithm 

 y = y0 

 for x = x0 to x1 do 
  draw (x, y) 
  if (some condition) then 
   y = y + 1 

 Since 0 ≤ m ≤ 1, as we move from x to x+1,  
 the y value stays the same or goes up by 1. 

We want to compute this 
condition efficiently. 
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Above or Below the Midpoint? 
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Finding the Next Pixel 

Assume we just drew (x, y). 
For the next pixel, we must decide between  

  (x+1, y) and (x+1, y+1). 
The midpoint between the choices is 

   (x+1, y+0.5). 
If the line passes below (x+1, y+0.5), we 

draw the bottom pixel. 
Otherwise, we draw the upper pixel. 
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The Decision Function 

if f(x+1, y+0.5) < 0   
  // midpoint below line 
  y = y + 1 

f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

How do we compute f(x+1, y+0.5)  
  incrementally? 
  using only integer arithmetic? 
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Incremental Computation 
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

 f(x + 1, y) = f(x, y) + (y0 – y1) 
 f(x + 1, y + 1) = f(x, y) + (y0 – y1) + (x1 - x0) 

y = y0 
d = f(x0 + 1, y + 0.5) 
for x = x0 to x1 do 

  draw (x, y) 
  if d < 0 then 
   y = y + 1 
   d = d + (y0 – y1) + (x1 - x0) 
  else 
   d = d + (y0 – y1) 
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Integer Decision Function 
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

f(x0 + 1, y0 + 0.5)  
 = (y0 – y1)(x0 + 1) +(x1 - x0)(y0 + 0.5) + x0 y1 - x1 y0 

2f(x0 + 1, y0 + 0.5)  
 = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y0 + 1) + 2x0 y1 - 2x1 y0 

    
2f(x, y)  = 0 if (x, y) is on the line. 

  < 0 if (x, y) is below the line. 
  > 0 if (x, y) is above the line. 
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Incremental Computation 
f(x,y) = (y0 – y1)x +(x1 - x0)y + x0 y1 - x1 y0 

 f(x + 1, y) = f(x, y) + (y0 – y1) 
 f(x + 1, y + 1) = f(x, y) + (y0 – y1) + (x1 - x0) 

y = y0 
d = 2f(x0 + 1, y + 0.5) 
for x = x0 to x1 do 

  draw (x, y) 
  if d < 0 then 
   y = y + 1 
   d = d + 2(y0 – y1) + 2(x1 - x0) 
  else 
   d = d + + 2(y0 – y1) 
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Midpoint Line Algorithm 
y = y0 
d = 2(y0 – y1)(x0 + 1) +(x1 - x0)(2y0 + 1) + 2x0 y1 - 2x1 y0 
for x = x0 to x1 do 

  draw (x, y) 
  if d < 0 then 
   y = y + 1 
   d = d + 2(y0 – y1) + 2(x1 - x0) 
  else 
   d = d + 2(y0 – y1) 
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Some Lines 
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Some Lines Magnified 
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Antialiasing by Downsampling 



College of Computer and Information Science, Northeastern University February 11, 2011 21 

Circles 

R 

(0, 0) 

(x, y) 

(x+a, y+b) 

R 

(a, b) 
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Drawing Circles - 1 

(0, 0) 

(x, y) 

R 

θ 

x = Rcos(θ) 

y = Rsin(θ) 

For θ = 0 to 360 do 
 x = Rcos(θ) 
 y = Rsin(θ) 
 draw(x, y) 
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Drawing Circles 2 

(0, 0) 

(x, y) 

R 

θ 

y2 + y2 = R2 

for x = -R to R do 
 y = sqrt(R2 - x2) 
 draw(x, y) 
 draw(x, -y) 
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Circular Symmetry 

(0, 0) 

(x, y) 

(y, x) 

(x, -y) 

(y, -x) 

(-x, y) 

(-y, x) 

(-x, -y) 

(-y, -x) 
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Midpoint Circle Algorithm 

IN THE TOP OCTANT: 

If (x, y) was the last pixel plotted, either  

 (x + 1, y) or (x + 1, y - 1) will be the next pixel. 

Making a Decision Function: 

 d(x, y) = x2 + y2 – R2 

 d(x, y) < 0  (x, y) is inside the circle. 

If  d(x, y) = 0  (x, y) is on the circle. 

 d(x, y) > 0  (x, y) is outside the circle. 
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Decision Function 

Evaluate d at the midpoint of the two possible 
pixels. 

d(x + 1, y - ½) = (x + 1)2 + (y - ½)2 – R2 

  d(x + 1, y - ½) < 0  midpoint inside circle  choose y 

If   d(x + 1, y - ½) = 0  midpoint on circle  choose y 

  d(x + 1, y - ½) > 0  midpoint outside circle  choose y - 1 
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Computing D(x,y) 
Incrementally 

D(x,y) = d(x + 1, y - ½) = (x + 1)2 + (y - ½)2 – R2 

D(x + 1,y) – D(x, y)= 
(x+2)2 + (y - ½)2 – R2 – ((x + 1)2 + (y - ½)2 – R2) 
=2(x + 1)+ 1 

D(x + 1,y - 1) – D(x, y)= 
(x+2)2 + (y – 3/2)2 – R2 – ((x + 1)2 + (y - ½)2 – R2) 
=2(x+1) + 1 – 2(y – 1) 

You can also compute the differences incrementally. 
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Time for a Break 



College of Computer and Information Science, Northeastern University February 11, 2011 29 

More Ray-Tracing 

Ray/Plane Intersection 

Ray/Triangle 
Intersection 

Ray/Polygon 
Intersection 
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Equation of a Plane 

N = (A, B, C) 

P0 = (a, b, c) 

(x, y, z) 

Given a point P0 on 
the plane and a 
normal to the plane N. 

(x, y, z) is on the 
plane if and only if 

(x-a, y-b, z-c)·N = 0. 

Ax + By + Cz –(Aa + Bb + Cc) = 0 
D 
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Ray/Plane Intersection 

Ax + By + Cz = D 
P0 = (x0, y0, z0) 

P1 = (x1, y1, z1) 

Ray Equation 

x = x0 + t(x1 - x0) 

y = y0 + t(y1 - y0) 

z = z0 + t(z1 - z0) 

A(x0 + t(x1 - x0)) + B(y0 + t(y1 - y0)) + C(z0 + t(z1 - z0)) = D 

Solve for t.  Find x, y, z. 



College of Computer and Information Science, Northeastern University February 11, 2011 32 

Planes in Your Scenes 

•  Planes are specified by 
  A, B, C, D or by N and P 
 Color and other coefficients are as for spheres 

•  To search for the nearest object, go 
through all the spheres and planes and 
find the smallest t. 

•  A plane will not be visible if the normal 
vector (A, B, C) points away from the light. 
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Ray/Triangle Intersection 

Using the Ray/Plane intersection: 
 Given the three vertices of the triangle, 

•  Find N, the normal to the plane containing the 
triangle. 

•  Use N and one of the triangle vertices to describe 
the plane, i.e. Find A, B, C, and D. 

•  If the Ray intersects the Plane, find the intersection 
point and its β and γ. 

•  If 0 ≤  β and 0 ≤ γ and β + Υ ≤ 1, the Ray hits the 
Triangle. 
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Ray/Triangle Intersection 
Using barycentric coordinates 

directly:  (Shirley pp. 206-208) 
Solve 

e + td = a + β(b-a) + γ (c-a)  
for t, β, and γ. 

The x, y, and z components 
give you 3 linear equations 
in 3 unknowns. 
If 0 ≤ t ≤ 1, the Ray hits the Plane. 
If 0 ≤  β and 0 ≤ γ and β + γ ≤ 1,  
the Ray hits the Triangle. (xe, ye, ze) 

(xd, yd, zd) 
(xd, yd, zd) 

a 
b 

c 
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Ray/Polygon Intersection 

A polygon is given by  
 n co-planar points. 

Choose 3 points that are 
not co-linear to find N. 

Apply Ray/Plane 
intersection procedure 
to find P. 

Determine whether P lies 
inside the polygon. 

P 
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Parity Check 
Draw a horizontal half-line from P to the right. 
Count the number of times the half-line crosses an edge. 

1  in 

4  out 
7  in 

7  in 
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Images with  
Planes and Polygons 
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Images with  
Planes and Polygons 
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Scan Line Polygon Fill 
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Polygon Data Structure 

edges 
xmin ymax 1/m  

1 6 8/4  

(1, 2) 

(9, 6) 

xmin = x value at lowest y 

ymax = highest y 



Polygon  
Data Structure 

Edge Table (ET) has a list of 
edges for each scan line. 

e1 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

13 

12 

11 

10   e6 

9 

8 

7   e4   e5 

6   e3   e7   e8 

5 

4 

3 

2 

1    e2   e1   e11 

0   e10    e9 
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Preprocessing the edges 

count twice, 
once for each 
edge 

chop lowest pixel 
to only count 
once delete 

horizontal 
edges 

For a closed polygon, there should be an even number 
of crossings at each scan line.   

We fill between each successive pair. 



13 

12 

11 

10   e6 

9 

8 

7   e4   e5 

6   e3   e7   e8 

5 

4 

3 

2 

1   e2   e1   e11 

0   e10    e9 
e11 

7    e3    e4   e5 

6    e7    e8 

11     e6 

10   

Polygon  
Data Structure 
after preprocessing 

Edge Table (ET) has a list of 
edges for each scan line. 

e1 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 
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The Algorithm 

1.  Start with smallest nonempty y value in ET. 
2.  Initialize SLB (Scan Line Bucket) to nil. 
3.  While current y ≤ top y value: 

a.  Merge y bucket from ET into SLB; sort on xmin. 
b.  Fill pixels between rounded pairs of x values in SLB. 
c.  Remove edges from SLB whose ytop = current y. 
d.  Increment xmin by 1/m for edges in SLB. 
e.  Increment y by 1. 



Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

ET 
13 
12 

11    e6 
10   
9 
8 

7   e3   e4    e5 
6   e7  ve8 
5 
4 
3 
2 

1   e2   e11 
0   e10  e9 

 xmin  ymax  1/m 
e2  2  6  -2/5 
e3  1/3  12  1/3 
e4  4  12  -2/5 
e5  4  13  0 
e6  6 2/3  13  -4/3   
e7  10  10  -1/2 
e8  10  8  2 
e9  11  8  3/8 
e10  11  4  -3/4 
e11  6  4  2/3 

5 0 10 15 



College of Computer and Information Science, Northeastern University February 11, 2011 46 

Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

5 0 10 15 

y=0  

SCB   11 4 -3/4  

11 8 3/8  
e9 

e10 
10 1/4 

11 3/8 
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Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

5 0 10 15 

y=1  

SLB   2 6 -2/5  

6 4 2/3  
e11 

e2 
1 3/5 

10 1/4 4 -3/4  

11 3/8 8 3/8  
e9 

e10 

6 2/3 

9 1/2 

11 6/8 
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Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

5 0 10 15 

y=2  

SLB   1 3/5 6 -2/5  

6 2/3 4 2/3  
e11 

e2 

9 1/2 4 -3/4  

11 6/8 8 3/8  
e9 

e10 

12 1/8 

8 3/4 

7 1/3 

1 1/5 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
0 

5 

10 

13 

5 0 10 15 

y=3  

SLB   1 1/5 6 -2/5  

7 1/3 4 2/3  
e11 

e2 

8 3/4 4 -3/4  

12 1/8 8 3/8  
e9 

e10 

12 4/8 

8 

8 

4/5 

e11 e2 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

e10 
0 

5 

10 

13 

5 0 10 15 

y=4  

SLB   4/5 6 -2/5  

8 4 2/3  
e11 

e2 

8 4 -3/4  

12 4/8 8 3/8  
e9 

e10 e11 e2 
e9 

Remove these edges. 



College of Computer and Information Science, Northeastern University February 11, 2011 51 

Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=4  

SLB   4/5 6 -2/5  
e2 

12 4/8 8 3/8  
e9 

12 7/8 

2/5 

e2 e11 
e10 

e9 
e11 and e10 are removed. 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=5  

SLB   2/5 6 -2/5  
e2 

12 7/8 8 3/8  
e9 

13 2/8 

0 

e2 e11 
e10 

e9 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=6  

SLB   0 6 -2/5  
e2 

10 10 -1/2  
e7 

e2 e11 
e10 

e9 

Remove this edge. 

10 8 2  
e8 

13 2/8 8 3/8  
e9 

9 1/2 

12 

13 5/8 



Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=7  

SLB   

4 13 0  
e5 

9 1/2 10 -1/2  
e7 

e2 e11 
e10 

e9 

12 8 2  
e8 

13 5/8 8 3/8  
e9 

Add these edges. 

4 12 -2/5  
e4 

1/3 12 1/3  
e3 
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Ray Box Intersection 

(xl, yl, zl)	


(x0, y0, z0) + t (xd, yd, zd)	


(xd, yd, zd) a unit vector	


(xh, yh, zh)	


(x0, y0, z0)	


t1 = (xl - x0) / xd	
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Ray Box Intersection 
http://courses.csusm.edu/cs697exz/ray_box.htm 

or see Watt pages 21-22 
Box: minimum extent Bl = (xl, yl, zl) maximum extent Bh = (xh, yh, zh)	

Ray: R0 = (x0, y0, z0) , Rd= (xd, yd, zd) ray is R0 + tRd	


Algorithm:	

1.  Set tnear = -INFINITY , tfar = +INFINITY	

2.  For the pair of X planes	


1.  if zd = 0, the ray is parallel to the planes so:	

  if x0 < x1 or x0 > xh return FALSE (origin not between planes)	


2.  else the ray is not parallel to the planes, so calculate intersection distances of planes	

  t1 = (xl - x0) / xd   (time at which ray intersects minimum X plane)	

  t2 = (xh - x0) / xd   (time at which ray intersects maximum X plane)	

  if t1 > t2 , swap t1 and t2	

  if t1 > tnear , set tnear = t1	

  if t2 <  tfar, set  tfar= t2	

  if tnear > tfar, box is missed so return FALSE 	

  if tfar < 0 , box is behind ray so return FALSE	


3.  Repeat step 2 for Y, then Z	

4.  All tests were survived, so return TRUE	



