CS G140
 Graduate Computer Graphics

Prof. Harriet Fell
Spring 2011
Lecture 2 - January 26, 2011

Today's Topics

- Ray Tracing
- Ray-Sphere Intersection
- Light: Diffuse Reflection
- Shadows
- Phong Shading
- More Math
- Matrices
- Transformations
- Homogeneous Coordinates

Ray Tracing a World of Spheres

What is a Sphere

Vector3D center; // 3 doubles double radius; double \quad R, G, B; // for RGB colors between 0 and 1
double kd; // diffuse coeficient
double ks; // specular coefficient
int
(double ka; // ambient light coefficient)
double kgr; // global reflection coefficient
double kt; // transmitting coefficient
int pic; $/ />0$ if picture texture is used
-. 01 . 01500800 // transform theta phi mu distance
1 // antialias
1 // numlights
$100500800 / / \mathrm{Lx}, \mathrm{Ly}, \mathrm{Lz}$
9 // numspheres

//cx	cy	cz	radius	R	G	B	ka	kd	ks	specExp	kgr	kt	pic
-100	-100	0	40	.9	0	0	.2	.9	.0	4	0	0	0
-100	0	0	40	.9	0	0	.2	.8	.1	8	.1	0	0
-100	100	0	40	.9	0	0	.2	.7	.2	12	.2	0	0
0	-100	0	40	.9	0	0	.2	.6	.3	16	.3	0	0
0	0	0	40	.9	0	0	.2	.5	.4	20	.4	0	0
0	100	0	40	.9	0	0	.2	.4	.5	24	.5	0	0
100	-100	0	40	.9	0	0	.2	.3	.6	28	.6	0	0
100	0	0	40	.9	0	0	.2	.2	.7	32	.7	0	0
100	100	0	40	.9	0	0	.2	.1	.8	36	.8	0	0

World of Spheres

```
Vector3D VP;
int numLights;
Vector3D theLights[5];
double ka;
int numSpheres;
Sphere theSpheres[20]; // 20 sphere max
int ppmT[3];
View sceneView;
double distance;
bool antialias;
```

int numLights;
Vector3D theLights[5]; double ka; int numSpheres;
Sphere theSpheres[20]; // 20 sphere max
int ppmT[3];
View sceneView; double distance; bool antialias;
// the viewpoint
// up to 5 white lights
// ambient light coefficient
// ppm texture files
// transform data
// view plane to VP
// if true antialias

Simple Ray Casting for Detecting Visible Surfaces

select window on viewplane and center of projection
for (each scanline in image) \{
for (each pixel in the scanline) \{
determine ray from center of projection
through pixel;
for (each object in scene) \{
if (object is intersected and is closest considered thus far) record intersection and object name;
\}
set pixel's color to that of closest object intersected;

Ray Trace 1 Finding Visible Surfaces

Ray-Sphere Intersection

- Given
- Sphere
- Center (c_{x}, c_{y}, c_{z})
- Radius, R
- Ray from P_{0} to P_{1}
- $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$
- View Point
- $\left(V_{x}, V_{y}, V_{z}\right)$
- Project to window from $(0,0,0)$ to $(w, h, 0)$

Sphere Equation

Ray Equation

$P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$

The ray from P_{0} to P_{1} is given by:

$$
\begin{array}{rlr}
\mathrm{P}(\mathrm{t}) & =(1-\mathrm{t}) \mathrm{P}_{0}+\mathrm{tP} \\
& =\mathrm{P}_{0}+\mathrm{t}\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right) & 0<=\mathrm{t}<=1
\end{array}
$$

Intersection Equation

$$
P(t)=P_{0}+t\left(P_{1}-P_{0}\right) \quad 0<=t<=1
$$

is really three equations

$$
\begin{aligned}
& x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y(t)=y_{0}+t\left(y_{1}-y_{0}\right) \\
& z(t)=z_{0}+t\left(z_{1}-z_{0}\right)
\end{aligned}
$$

Substitute $x(t), y(t)$, and $z(t)$ for x, y, z, respectively in

$$
\begin{gathered}
\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}=R^{2} \\
\left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)_{1}\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2}
\end{gathered}
$$

Solving the Intersection Equation

$$
\left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)_{1}\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2}
$$

is a quadratic equation in variable t.
For a fixed pixel, VP, and sphere,

$$
\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}, \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, \mathrm{c}_{\mathrm{x}}, \mathrm{c}_{\mathrm{y}}, \mathrm{c}_{\mathrm{z}} \text {, and } \mathrm{R}
$$

are all constants.
We solve for t using the quadratic formula.

The Quadratic Coefficients

$$
\left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)_{1}\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2}
$$

Set

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{x}}=\mathrm{x}_{1}-\mathrm{x}_{0} \\
& \mathrm{~d}_{\mathrm{y}}=\mathrm{y}_{1}-\mathrm{y}_{0} \\
& \mathrm{~d}_{\mathrm{z}}=\mathrm{z}_{1}-\mathrm{z}_{0}
\end{aligned}
$$

Now find the the coefficients:

$$
A t^{2}+B t+C=0
$$

Computing Coefficients

$$
\begin{aligned}
& \left(\left(x_{0}+t\left(x_{1}-x_{0}\right)\right)-c_{x}\right)^{2}+\left(\left(y_{0}+t\left(y_{1}-y_{0}\right)\right)-c_{y}\right)^{2}+\left(\left(z_{0}+t\left(z_{1}-z_{0}\right)\right)-c_{z}\right)^{2}=R^{2} \\
& \left(\left(\mathrm{x}_{0}+\mathrm{td}_{x}\right)-\mathrm{c}_{\mathrm{x}}\right)^{2}+\left(\left(\mathrm{y}_{0}+\mathrm{td}_{\mathrm{y}}\right)-\mathrm{c}_{\mathrm{y}}\right)^{2}+\left(\left(\left(\mathrm{x}_{0}+\mathrm{td}_{z}\right)-\mathrm{c}_{z}\right)^{2}=\mathrm{R}^{2}\right. \\
& \left(\mathrm{x}_{0}+\mathrm{td}_{\mathrm{x}}\right)^{2}-2 \mathrm{c}_{\mathrm{x}}\left(\mathrm{x}_{0}+\mathrm{td}_{\mathrm{x}}\right)+\mathrm{c}_{\mathrm{x}}^{2}+ \\
& \left(y_{0}+t d_{y}\right)^{2}-2 c_{y}\left(y_{0}+t_{y}\right)+c_{y}{ }^{2}+ \\
& \left(\mathrm{z}_{0}+\mathrm{td}_{\mathrm{z}}\right)^{2}-2 \mathrm{c}_{\mathrm{z}}\left(\mathrm{z}_{0}+\mathrm{td}_{\mathrm{z}}\right)+\mathrm{c}_{\mathrm{z}}{ }^{2}-\mathrm{R}^{2}=0 \\
& \mathrm{x}_{0}{ }^{2}+2 \mathrm{x}_{0} \mathrm{td}_{\mathrm{x}}+\mathrm{t}^{2} \mathrm{~d}_{\mathrm{x}}{ }^{2}-2 \mathrm{c}_{\mathrm{x}} \mathrm{x}_{0}-2 \mathrm{c}_{\mathrm{x}} \mathrm{td}_{\mathrm{x}}+\mathrm{c}_{\mathrm{x}}{ }^{2}+ \\
& y_{0}{ }^{2}+2 y_{0} \text { td }_{y}+t^{2} \mathrm{~d}_{\mathrm{y}}{ }^{2}-2 \mathrm{c}_{\mathrm{y}} \mathrm{y}_{0}-2 \mathrm{c}_{\mathrm{y}} \mathrm{td}_{\mathrm{y}}+\mathrm{c}_{\mathrm{y}}{ }^{2}+ \\
& \mathrm{z}_{0}{ }^{2}+2 \mathrm{z}_{0} \mathrm{td}_{\mathrm{z}}+\mathrm{t}^{2} \mathrm{~d}_{\mathrm{z}}{ }^{2}-2 \mathrm{C}_{\mathrm{z}} \mathrm{z}_{0}-2 \mathrm{c}_{\mathrm{z}} \mathrm{td}_{\mathrm{z}}+\mathrm{c}_{\mathrm{z}}{ }^{2}-\mathrm{R}^{2}=0
\end{aligned}
$$

The Coefficients

$$
\begin{aligned}
& x_{0}^{2}+2 x_{0} t d_{x}+t^{2} d_{x}^{2}+2 c_{x} x_{0}-2 c_{x} t d_{x}+c_{x}^{2}+ \\
& y_{0}^{2}+2 y_{0} t d_{y}+\left(t^{2} d_{y}^{2}-2 c_{y} y_{0}-2 c_{y} t_{y}+c_{y}^{2}\right) \\
& z_{0}^{2}+2 z_{0} t d_{2}+\left(t^{2} d_{2}^{2}-2 c_{z} z_{0}-2 c_{2} t_{2}-c_{2}^{2}-R^{2}=0\right. \\
& A=d_{x}{ }^{2}+d_{y}{ }^{2}+d_{z}{ }^{2} \\
& \mathrm{~B}=2 \mathrm{~d}_{\mathrm{x}}\left(\mathrm{x}_{0}-\mathrm{C}_{\mathrm{x}}\right)+2 \mathrm{~d}_{\mathrm{y}}\left(\mathrm{y}_{0}-\mathrm{C}_{\mathrm{y}}\right)+2 \mathrm{~d}_{\mathrm{z}}\left(\mathrm{z}_{0}-\mathrm{C}_{\mathrm{z}}\right) \\
& C=c_{x}{ }^{2}+\mathrm{c}_{\mathrm{y}}{ }^{2}+\mathrm{c}_{\mathrm{z}}{ }^{2}+\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}+\mathrm{z}_{0}{ }^{2}+ \\
& -2\left(c_{x} x_{0}+c_{y} y_{0}+c_{z} z_{0}\right)-R^{2}
\end{aligned}
$$

Solving the Equation

$$
\mathrm{At}^{2}+\mathrm{Bt}+\mathrm{C}=0
$$

$$
\text { discriminant }=D(A, B, C)=B^{2}-4 A C
$$

$$
D(A, B, C) \begin{cases}<0 & \text { no intersection } \\ =0 & \text { ray is tangent to the sphere } \\ >0 & \text { ray intersects sphere in two points }\end{cases}
$$

The intersection nearest P_{0} is given by:

$$
t=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}
$$

To find the coordinates of the intersection point: $\quad x=x_{0}+t d_{x}$

$$
\begin{aligned}
& y=y_{0}+t_{y} \\
& z=z_{0}+t d_{z}
\end{aligned}
$$

First Lighting Model

- Ambient light is a global constant.

Ambient Light $=k_{a}\left(A_{R}, A_{G}, A_{B}\right)$
k_{a} is in the "World of Spheres"
$0 \leq k_{a} \leq 1$
$\left(A_{R}, A_{G}, A_{B}\right)=$ average of the light sources

$$
\left(A_{R}, A_{G}, A_{B}\right)=(1,1,1) \text { for white light }
$$

- Color of object $S=\left(S_{R}, S_{G}, S_{B}\right)$
- Visible Color of an object S with only ambient light $C_{S}=k_{a}\left(A_{R} S_{R}, A_{G} S_{G}, A_{B} S_{B}\right)$
- For white light

$$
\mathrm{C}_{\mathrm{S}}=\mathrm{k}_{\mathrm{a}}\left(\mathrm{~S}_{\mathrm{R}}, \mathrm{~S}_{\mathrm{G}}, \mathrm{~S}_{\mathrm{B}}\right)
$$

Visible Surfaces Ambient Light

Second Lighting Model

- Point source light $L=\left(L_{R}, L_{G}, L_{B}\right)$ at $\left(L_{x}, L_{y}, L_{z}\right)$
- Ambient light is also present.
- Color at point pon an object S with ambient \& diffuse reflection

$$
C_{p}=k_{a}\left(A_{R} S_{R}, A_{G} S_{G}, A_{B} S_{B}\right)+k_{d} k_{p}\left(L_{R} S_{R}, L_{G} S_{G}, L_{B} S_{B}\right)
$$

- For white light, $L=(1,1,1)$

$$
\mathrm{C}_{\mathrm{p}}=\mathrm{k}_{\mathrm{a}}\left(\mathrm{~S}_{\mathrm{R}}, \mathrm{~S}_{\mathrm{G}}, \mathrm{~S}_{\mathrm{B}}\right)+\mathrm{k}_{\mathrm{d}} \mathrm{k}_{\mathrm{p}}\left(\mathrm{~S}_{\mathrm{R}}, \mathrm{~S}_{\mathrm{G}}, \mathrm{~S}_{\mathrm{B}}\right)
$$

- k_{p} depends on the point p on the object and (L_{x}, L_{y}, L_{z})
- k_{d} depends on the object (sphere)
- k_{a} is global
- $\mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{d}}<=1$

Diffuse Light

Lambertian Reflection Model Diffuse Shading

- For matte (non-shiny) objects
- Examples
- Matte paper, newsprint
- Unpolished wood
- Unpolished stones
- Color at a point on a matte object does not change with viewpoint.

Physics of Lambertian Reflection

- Incoming light is partially absorbed and partially transmitted equally in all directions

Geometry of Lambert's Law

Surface 1 Surface 2

$\operatorname{Cos}(\theta)=N \cdot L$

Surface 2

Cp= ka (SR, SG, SB) + kd N•L (SR, SG, SB)

Finding N

Diffuse Light 2

Shadows on Spheres

More Shadows

Finding Shadows

Shadow Color

- Given

Ray from P (point on sphere S) to L (light)

$$
P=P_{0}=\left(x_{0}, y_{0}, z_{0}\right) \text { and } L=P_{1}=\left(x_{1}, y_{1}, z_{1}\right)
$$

- Find out whether the ray intersects any other object (sphere).
- If it does, P is in shadow.
- Use only ambient light for pixel.

Shape of Shadows

Different Views

Planets

Starry Skies

Shadows on the Plane

Finding Shadows on the Back Plane

Close up

On the Table

Phong Highlight

Phong Lighting Model

Light
Normal
Reflected
View

Surface

The viewer only sees the light when α is 0 .

We make the highlight maximal when α is 0 , but have it fade off gradually.

Phong Lighting Model

$\operatorname{Cos}(\alpha)=\mathbf{R} \cdot \mathbf{V}$
We use $\cos ^{n}(\alpha)$.
The higher n is, the faster the drop off.

Surface

$C p=k a(S R, S G, S B)+k d N \cdot L(S R, S G, S B)+k s(R \cdot V)(1,1,1)$

Powers of $\cos (\alpha)$

Computing \mathbf{R}

$L+R=(2 L \cdot N) N$
 $\mathbf{R}=(2 \mathbf{L} \cdot \mathbf{N}) \mathbf{N}-\mathbf{L}$

The Halfway Vector

$$
H=\frac{L+V}{|L+V|}
$$

Use $\mathbf{H} \cdot \mathbf{N}$ instead of $\mathbf{R} \cdot \mathbf{V}$.

H is less
expensive to compute than R.

From the picture
$\theta+\varphi=\theta-\varphi+\alpha$
So $\varphi=\alpha / 2$.
This is not generally true. Why?

Surface

$C p=$ ka $(S R, S G, S B)+k d N \cdot L(S R, S G, S B)+k s(H \cdot N)^{n}(1,1,1)$

Varied Phong Highlights

Varying Reflectivity

Time for a Break

More Math

- Matrices
- Transformations
- Homogeneous Coordinates

Matrices

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right] \quad C=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{41} & c_{42} & c_{43} & c_{44}
\end{array}\right]
$$

- We use $2 \times 2,3 \times 3$, and 4×4 matrices in computer graphics.
- We'll start with a review of 2D matrices and transformations.

Basic 2D Linear Transforms

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \quad\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]
$$

Scale by . 5

Scaling by .5

General Scaling

General Scaling

Rotation

Rotation

$$
\operatorname{rot}(\varphi)=
$$

Reflection in y-axis

Reflection in y-axis

Reflection in x-axis

Reflection in x-axis

Shear-x

Shear x

Shear-y

shear-y $(s)=$

$$
\left[\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right]
$$

Shear y

Linear Transformations

- Scale, Reflection, Rotation, and Shear are all linear transformations
- They satisfy: $\mathrm{T}(a \mathbf{u}+b \mathbf{v})=a \mathrm{~T}(\mathbf{u})+b \mathrm{~T}(\mathbf{v})$
- \mathbf{u} and \mathbf{v} are vectors
- a and b are scalars
- If T is a linear transformation
- $T((0,0))=(0,0)$

Composing Linear Transformations

- If T_{1} and T_{2} are transformations
- $\mathrm{T}_{2} \mathrm{~T}_{1}(\mathbf{v})=_{\text {def }} \mathrm{T}_{2}\left(\mathrm{~T}_{1}(\mathbf{v})\right)$
- If T_{1} and T_{2} are linear and are represented by matrices M_{1} and M_{2}
- $T_{2} T_{1}$ is represented by $M_{2} M_{1}$
- $\mathrm{T}_{2} \mathrm{~T}_{1}(\mathbf{v})=\mathrm{T}_{2}\left(\mathrm{~T}_{1}(\mathbf{v})\right)=\left(\mathrm{M}_{2} \mathrm{M}_{1}\right)(\mathbf{v})$

Reflection About an Arbitrary Line (through the origin)

Reflection as a Composition

Decomposing Linear Transformations

- Any 2D Linear Transformation can be decomposed into the product of a rotation, a scale, and a rotation if the scale can have negative numbers.
- $M=R_{1} S R_{2}$

Rotation about an Arbitrary Point

This is not a linear transformation. The origin moves.

Translation

This is not a linear transformation. The origin moves.

Homogeneous Coordinates

2D Linear Transformations as 3D Matrices

Any 2D linear transformation can be represented by a 2×2 matrix

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y
\end{array}\right]
$$

or a 3×3 matrix

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y \\
1
\end{array}\right]
$$

2D Linear Translations as 3D Matrices

Any 2D translation can be represented by a 3×3 matrix.

$$
\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right]
$$

This is a 3D shear that acts as a translation on the plane $z=1$.

Translation as a Shear

2D Affine Transformations

- An affine transformation is any transformation that preserves co-linearity (i.e., all points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint after transformation).
- With homogeneous coordinates, we can represent all 2D affine transformations as 3D linear transformations.
- We can then use matrix multiplication to transform objects.

Rotation about an Arbitrary Point

Rotation about an Arbitrary Point

Windowing Transforms

3D Transformations

Remember:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \leftrightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

A 3D linear transformation can be represented by a 3×3 matrix.

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \leftrightarrow\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & 0 \\
a_{21} & a_{22} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Affine Transformations

$\operatorname{scale}\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\operatorname{translate}\left(t_{x}, t_{y}, t_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotations

$\operatorname{rotate}_{\mathrm{x}}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) & 0 \\ 0 & \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\operatorname{rotate}_{\mathrm{z}}(\theta)$

0 \& 1 \& 0 \& 0

-\sin (\theta) \& 0 \& \cos (\theta) \& 0

0 \& 0 \& 0 \& 1\end{array}\right]\)

