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Today’s Topics 

•  Ray Tracing 
 Ray-Sphere Intersection 
  Light: Diffuse Reflection 
  Shadows 
  Phong Shading 

•  More Math 
 Matrices 
  Transformations 
 Homogeneous Coordinates 
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Ray Tracing 
a World of Spheres 
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What is a Sphere 
Vector3D  center;  // 3 doubles 
double  radius; 
double  R, G, B;  // for RGB colors between 0 and 1 
double  kd;  // diffuse coeficient 
double  ks;  // specular coefficient 
int  specExp; // specular exponent 0 if ks = 0 
(double  ka;  // ambient light coefficient) 
double  kgr;  // global reflection coefficient  
double  kt;   // transmitting coefficient 
int  pic;  // > 0 if picture texture is used 
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-.01  .01  500 800 // transform theta phi mu distance 
1 // antialias 
1 // numlights 
100 500 800 // Lx, Ly, Lz 
9 // numspheres 
//cx   cy cz radius R  G  B ka kd ks specExp kgr kt pic 
-100 -100  0 40    .9  0  0 .2 .9 .0    4     0   0  0 
-100    0  0 40    .9  0  0 .2 .8 .1    8    .1   0  0 
-100  100  0 40    .9  0  0 .2 .7 .2   12    .2   0  0 
   0 -100  0 40    .9  0  0 .2 .6 .3   16    .3   0  0 
   0    0  0 40    .9  0  0 .2 .5 .4   20    .4   0  0 
   0  100  0 40    .9  0  0 .2 .4 .5   24    .5   0  0 
 100 -100  0 40    .9  0  0 .2 .3 .6   28    .6   0  0 
 100    0  0 40    .9  0  0 .2 .2 .7   32    .7   0  0 
 100  100  0 40    .9  0  0 .2 .1 .8   36    .8   0  0  
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World of Spheres 
Vector3D VP;  // the viewpoint 
int numLights; 
Vector3D theLights[5];  // up to 5 white lights 
double ka;  // ambient light coefficient 
int numSpheres; 
Sphere theSpheres[20];  // 20 sphere max  

int ppmT[3];  // ppm texture files 
View sceneView;  // transform data 
double distance;  // view plane to VP 
bool antialias;  // if true antialias 
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Simple Ray Casting for 
Detecting Visible Surfaces 

select window on viewplane and center of projection 
for (each scanline in image) { 

 for (each pixel in the scanline) { 
  determine ray from center of projection  
   through pixel; 
  for (each object in scene) { 
   if (object is intersected and  
        is closest considered thus far) 
    record intersection and object name; 
  } 
  set pixel’s color to that of closest object intersected; 
 } 

} 
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Ray Trace 1 
Finding Visible Surfaces 
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Ray-Sphere Intersection 

•  Given 
  Sphere 

•  Center (cx, cy, cz)  
•  Radius, R 

 Ray from P0 to P1 
•  P0 = (x0, y0, z0) and P1 = (x1, y1, z1)  

  View Point 
•  (Vx, Vy, Vz)  

•  Project to window from (0,0,0) to (w,h,0) 
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Sphere Equation 

( ) ( ) ( )22 2 2- - -+ + =x y zx c y c z c R

(x, y, z) 
R 

(cx, cy, cz) 

Center C = (cx, cy, cz) 

Radius R 

x 

y 

z 

( ) ( )2 2- -+x zx c z c



©College of Computer and Information Science, Northeastern University January 27, 2011 11 

Ray Equation 

P0 = (x0, y0, z0) and P1 = (x1, y1, z1)  

The ray from P0 to P1 is given by: 
P(t) = (1 - t)P0 + tP1   0 <= t <= 1 
       = P0 + t(P1 - P0) 

P0 

P1 



©College of Computer and Information Science, Northeastern University January 27, 2011 12 

Intersection Equation 
P(t) = P0 + t(P1 - P0)   0 <= t <= 1 

 is really three equations 
 x(t) = x0 + t(x1 - x0)    
 y(t) = y0 + t(y1 - y0)    
 z(t) = z0 + t(z1 - z0)   0 <= t <= 1 

Substitute x(t), y(t), and z(t) for x, y, z, respectively in 

( ) ( ) ( )

( )( )( ) ( )( )( ) ( )( )( )

22 2 2

22 2 2
0 1 0 0 1 0 0 1 01

- - -

  -   -   -

z+ + =

+ − + + − + + − =

x y

x y z

x c y c z c R

x t x x c y t y y c z t z z c R
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Solving the Intersection 
Equation 

( )( )( ) ( )( )( ) ( )( )( )22 2 2
0 1 0 0 1 0 0 1 01
  -   -   -+ − + + − + + − =x y zx t x x c y t y y c z t z z c R

is a quadratic equation in variable t.   

For a fixed pixel, VP, and sphere,  

 x0, y0, z0, x1, y1, z1, cx, cy, cz, and R  

    eye         pixel      sphere 

are all constants. 

We solve for t using the quadratic formula. 
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The Quadratic Coefficients 

( )( )( ) ( )( )( ) ( )( )( )22 2 2
0 1 0 0 1 0 0 1 01
  -   -   -+ − + + − + + − =x y zx t x x c y t y y c z t z z c R

Set  dx = x1 - x0 

 dy = y1 - y0 

 dz = z1 -  z0  
Now find the  the coefficients: 

2 0+ + =At Bt C
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Computing Coefficients 

( )( )( ) ( )( )( ) ( )( )( )
( )( ) ( )( ) ( )( )

2 2 2 2
0 1 0 0 1 0 0 1 0

22 2 2
0 0 0

  -   -   -

  -   - (   -

+ − + + − + + − =

+ + + + + =

x y z

x x y y z z

x t x x c y t y y c z t z z c R

x td c y td c z td c R

( ) ( )
( ) ( )
( ) ( )

2 2
0 0

2 2
0 0

2 2 2
0 0

  2   

  2   

  2   0

+ − + + +

+ − + + +

+ − + + − =

x x x x

y y y y

z z z z

x td c x td c

y td c y td c

z td c z td c R

2 2 2 2
0 0 0
2 2 2 2
0 0 0

2 2 2 2 2
0 0 0

2 2 2

2 2 2

2 2 2 0

+ + − − + +

+ + − − + +

+ + − − + − =

x x x x x x

y y y y y y

z z z z z z

x x td t d c x c td c
y y td t d c y c td c

z z td t d c z c td c R
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The Coefficients 
2 2 2 2
0 0 0
2 2 2 2
0 0 0

2 2 2 2 2
0 0 0

2 2 2

2 2 2

2 2 2 0

+ + − − + +

+ + − − + +

+ + − − + − =

x x x x x x

y y y y y y

z z z z z z

x x td t d c x c td c
y y td t d c y c td c

z z td t d c z c td c R

2 2 2

0 0 0

2 2 2 2 2 2
0 0 0

2
0 0 0

      

  2 ( - )   2 ( - )   2 ( - )

             

-2(     ) -  

y z

y

R

= + +

= + +

= + + + + + +

+ +

x

x x y z z

x y z

x y z

A d d d
B d x c d y c d z c

C c c c x y z

c x c y c z
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Solving the Equation 

( )

( )
⎧
⎪
⎨
⎪⎩

2

2

At +Bt +C = 0

discriminant = D A,B,C = B - 4AC

< 0 no intersection
D A,B,C = 0 ray is tangent to the sphere

> 0 ray intersects sphere in two points
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The intersection nearest P0 is given by:   

To find the coordinates of the intersection 
point: 

2 - 4ACB-B -t =
2A

0 x

0 y

0 z

x = x  + td
y = y  + td
z = z  + td
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First Lighting Model 
•  Ambient light is a global constant. 

Ambient Light = ka (AR, AG, AB) 

ka is in the “World of Spheres” 
0 ≤ ka ≤ 1 
(AR, AG, AB) = average of the light sources 

(AR, AG, AB) = (1, 1, 1) for white light 
•  Color of object S = (SR, SG, SB) 
•  Visible Color of an object S with only ambient light 

CS= ka (AR SR, AG SG, AB SB) 
•  For white light 

CS= ka (SR, SG, SB) 
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Visible Surfaces 
Ambient Light 
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Second Lighting Model 
•  Point source light L = (LR, LG, LB) at (Lx, Ly, Lz)  
•  Ambient light is also present. 
•  Color at point p on an object S with ambient & diffuse 

reflection  
Cp= ka (AR SR, AG SG, AB SB)+ kd kp(LR SR, LG SG, LB SB) 

•  For white light, L = (1, 1, 1) 
Cp= ka (SR, SG, SB) + kd kp(SR, SG, SB) 

•  kp depends on the point p on the object and (Lx, Ly, Lz)  
•  kd depends on the object (sphere) 
•  ka is global  
•  ka + kd <= 1 
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Diffuse Light 



©College of Computer and Information Science, Northeastern University January 27, 2011 23 

Lambertian Reflection Model 
Diffuse Shading 

•  For matte (non-shiny) objects  
•  Examples 

 Matte paper, newsprint 
 Unpolished wood 
 Unpolished stones 

•  Color at a point on a matte object does not 
change with viewpoint. 
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Physics of  
Lambertian Reflection 

•  Incoming light is partially absorbed and partially 
transmitted equally in all directions 
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Geometry of Lambert’s Law 

N 

L dA 

90 - θ  

θ 

90 - θ 

dAcos(θ) 

θ L 

Surface 1 Surface 2 



©College of Computer and Information Science, Northeastern University January 27, 2011 26 

Cos(θ)=NL 

Surface 2 

90 - θ 

θ 

90 - θ 

dAcos(θ) 

θ L 

Cp= ka (SR, SG, SB) + kd NL (SR, SG, SB) 
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Finding N 

radius 
(cx, cy, cz) 

(x, y, z) 

normal 

N = (x-cx, y-cy, z-cz) 
      |(x-cx, y-cy, z-cz)| 
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Diffuse Light 2 
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Shadows on Spheres 
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More Shadows 
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Finding Shadows 

P 

Pixel gets 
shadow color 
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Shadow Color 

•  Given 
Ray from P (point on sphere S) to L (light)  

P= P0 = (x0, y0, z0) and L = P1 = (x1, y1, z1) 

•  Find out whether the ray intersects 
any other object (sphere). 
  If it does, P is in shadow. 
 Use only ambient light for pixel. 
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Shape of Shadows 
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Different Views 
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Planets 
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Starry Skies 
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Shadows on the Plane 



©College of Computer and Information Science, Northeastern University January 27, 2011 38 

Finding Shadows 
on the Back Plane 

P Pixel in Shadow 
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Close up 
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On the Table 
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Phong Highlight 
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Phong Lighting Model 

L 
N 

R 

V 

Light 

Normal 

Reflected 

View 

θ θ α 

Surface 

The viewer only sees 
the light when α is 0. 

We make the highlight 
maximal when α is 0, 
but have it fade off 
gradually. 
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Phong Lighting Model 

Cp= ka (SR, SG, SB) + kd NL (SR, SG, SB) + ks (RV)n(1, 1, 1)      

L 
N 

R 

V 

Cos(α) = RV 

We use cosn(α).  

The higher n is, the 
faster the drop off. 

θ θ 

Surface 

For white light 
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Powers of cos(α) 

Cos10(α) 

Cos20(α) 

Cos40(α) 

Cos80(α) 
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Computing R 

L 

N 

R 

θ θ 

L R 

L+R 

L + R = (2 LN) N 

R = (2 LN) N - L 

LN 

LN 
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The Halfway Vector 

Cp= ka (SR, SG, SB) + kd NL (SR, SG, SB) + ks (HN)n (1, 1, 1)       

L 
N H 

V 

H = L+ V   
      |L+ V|  
Use HN 
instead of RV. 

H is less 
expensive to 
compute than 
R. 

θ α 

Surface 

R 
φ 

θ

From the picture 

θ + φ = θ - φ + α 

So φ = α/2. 

This is not 
generally true.  
Why? 
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Varied Phong Highlights 
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Varying Reflectivity 
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Time for a Break 
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More Math 

•  Matrices 
•  Transformations 
•  Homogeneous Coordinates 
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Matrices 

11 12 13 14
11 12 13

21 22 23 2411 12
21 22 23

31 32 33 3421 22
31 32 33

41 42 43 44

c c c c
b b b

c c c ca a
A B b b b C

c c c ca a
b b b

c c c c

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

•  We use 2x2, 3x3, and 4x4 matrices in computer 
graphics. 

•  We’ll start with a review of 2D matrices and 
transformations. 
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Basic 2D Linear Transforms 

11 12 11 12

21 22 21 22

a a a x a yx
a a a x a yy

+⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦⎣ ⎦ ⎣ ⎦

11 12 11 11 12 12

21 22 21 21 22 22

1 0
0 1

a a a a a a
a a a a a a
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Scale by .5 

( )scale .5,.5

.5 0
0 .5

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

(1, 0) (0.5, 0) 

(0, 1) 
(0, 0.5) 
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Scaling by .5 

y 

x 

y 

x 

0.5 0
0 0.5

⎡ ⎤
⎢ ⎥
⎣ ⎦
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General Scaling 

y 

x 

y 

x 

0 1
0 0 0
x x

y

s s
s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦
0 00

0 1
x

y y

s
s s

⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦
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General Scaling 

sx 1 

1 

sy 

y 

x 

y 

x 

( ),

0
0

x y

x

y

scale s s

s
s

=

⎡ ⎤
⎢ ⎥
⎣ ⎦
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Rotation 

φ

φ

sin(φ) 
cos(φ) 

( )
( ) ( )
( ) ( )

rot

cos sin
sin cos

φ

φ φ
φ φ

=

−⎡ ⎤
⎢ ⎥
⎣ ⎦

-sin(φ) 

cos(φ) 
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Rotation 

y 

x 

y 

x 

 

rot ϕ( ) =
cos ϕ( ) − sin ϕ( )
sin ϕ( ) cos ϕ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

φ 
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Reflection in y-axis 

reflect-y
1 0
0 1

=
−⎡ ⎤
⎢ ⎥
⎣ ⎦
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Reflection in y-axis 

y 

x 

y 

x 

reflect-y
1 0
0 1

=
−⎡ ⎤
⎢ ⎥
⎣ ⎦
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Reflection in x-axis 

reflect-x
1 0
0 1

=

⎡ ⎤
⎢ ⎥−⎣ ⎦
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Reflection in x-axis 
y 

x 

reflect-x
1 0
0 1

=

⎡ ⎤
⎢ ⎥−⎣ ⎦

y 

x 
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Shear-x 

( )shear-x

1
0 1

s

s

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

s 
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Shear x 

y 

x 

y 

x 

1
0 1
s⎡ ⎤

⎢ ⎥
⎣ ⎦
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Shear-y 

( )shear-y

1 0
1

s

s

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

s 
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Shear y 

y 

x 

y 

x 

1 0
1s

⎡ ⎤
⎢ ⎥
⎣ ⎦
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Linear Transformations 

•  Scale, Reflection, Rotation, and Shear are 
all linear transformations 

•  They satisfy: T(au + bv) = aT(u) + bT(v)  
  u and  v are vectors 
  a and b are scalars 

•  If T is a linear transformation 
  T((0, 0)) = (0, 0) 
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Composing Linear 
Transformations 

•  If T1 and T2 are transformations 
  T2 T1(v) =def T2( T1(v))  

•  If T1 and T2 are linear and are represented 
by matrices M1 and M2 
  T2 T1 is represented by M2 M1  
  T2 T1(v) = T2( T1(v)) = (M2 M1)(v)  
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Reflection About an  
Arbitrary Line (through the origin) 

y 

x 

y 

x 
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Reflection as a Composition 
y 

x 
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Decomposing  
Linear Transformations 

•  Any 2D Linear Transformation can be 
decomposed into the product of a rotation, 
a scale, and a rotation if the scale can 
have negative numbers. 

•  M = R1SR2 
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Rotation about  
an Arbitrary Point 

y 

x 
φ 

y 

x 
φ 

This is not a linear transformation.  The origin moves. 
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Translation 

y 

x 

y 

x 

(a, b) 

This is not a linear transformation.  The origin moves. 

(x, y)(x+a,y+b) 
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Homogeneous Coordinates 

x 

x 

y 

z 

y Embed the xy-plane in R3 at z = 1. 

(x, y)  (x, y, 1) 
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2D Linear Transformations  
as 3D Matrices 

11 12 11 12

21 22 21 22

a a a x a yx
a a a x a yy

+⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦⎣ ⎦ ⎣ ⎦

 Any 2D linear transformation can be 
represented by a 2x2 matrix 

11 12 11 12

21 22 21 22

0
0

0 0 1 1 1

a a x a x a y
a a y a x a y

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 or a 3x3 matrix 
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2D Linear Translations  
as 3D Matrices 

 Any 2D translation can be represented by 
a 3x3 matrix. 

1 0
0 1
0 0 1 1 1

a x x a
b y y b

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

This is a 3D shear that acts as a 
translation on the plane z = 1. 
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Translation as a Shear 

x 

x 

y 

z 

y 
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2D Affine Transformations 
•  An affine transformation is any transformation 

that preserves co-linearity (i.e., all points lying on 
a line initially still lie on a line after 
transformation) and ratios of distances (e.g., the 
midpoint of a line segment remains the midpoint 
after transformation).  

•  With homogeneous coordinates, we can 
represent all 2D affine transformations as 3D 
linear transformations. 

•  We can then use matrix multiplication to 
transform objects. 
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y 

x 

Rotation about  
an Arbitrary Point 

y 

x 

φ φ 
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y 

x 

Rotation about  
an Arbitrary Point 

φ 

T(-cx, -cy) R(φ) T(cx, cy) 

φ φ 

φ 
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Windowing Transforms 

(a,b) 

(A,B) 

(c,d) 

(C,D) 
(C-c,D-d) 

(A-a,B-b) translate 

scale 

translate 
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3D Transformations 

1

x
x

y
y

z
z

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥↔⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

11 12 13
11 12 13

21 22 22
21 22 23

31 32 33
31 32 33

0
0
0

0 0 0 1

a a a
a a a

a a a
a a a

a a a
a a a

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥↔⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

Remember: 

A 3D linear transformation can be represented by a 
3x3 matrix. 
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3D Affine Transformations 

( )
0 0 0

0 0 0
scale , ,

0 0 0
0 0 0 1

x

y
x y z

z

s
s

s s s
s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
1 0 0
0 1 0

translate , ,
0 0 1
0 0 0 1

x

y
x y z

z

t
t

t t t
t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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3D Rotations 

( ) ( ) ( )
( ) ( )x

1 0 0 0
0 cos sin 0

rotate
0 sin cos 0
0 0 0 1

θ θ
θ

θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )

( ) ( )
( ) ( )

z

cos sin 0 0
sin cos 0 0

rotate
0 0 1 0
0 0 0 1

θ θ
θ θ

θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )

( ) ( )

( ) ( )y

cos 0 sin 0
0 1 0 0

rotate
sin 0 cos 0
0 0 0 1

θ θ

θ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦


