

CS G140 Graduate Computer Graphics Prof. Harriet Fell Spring 2011 Lecture 2 – January 26, 2011

Today's Topics

- Ray Tracing
 - Ray-Sphere Intersection
 - Light: Diffuse Reflection
 - Shadows
 - Phong Shading
- More Math
 - Matrices
 - Transformations
 - Homogeneous Coordinates

Ray Tracing a World of Spheres

What is a Sphere

Vector3D	center;	// 3 doubles
double	radius;	
double	R, G, B;	// for RGB colors between 0 and 1
double	kd;	// diffuse coeficient
double	ks;	// specular coefficient
int	specExp;	// specular exponent 0 if ks = 0
(double	ka;	// ambient light coefficient)
double	kgr;	// global reflection coefficient
double	kt;	// transmitting coefficient
int	pic;	// > 0 if picture texture is used

.01 500 800 // transform theta phi mu distance -.01 1 // antialias 1 // numlights 100 500 800 // Lx, Ly, Lz 9 // numspheres //cxcy cz radius R G B ka kd ks specExp kgr kt pic . 9 -100 - 100 0 400 0.2.9.0 0 0 4 0 -100 0 0 40 . 9 0 0.2.8.1 8 .1 0 0 . 9 100 0 40 .2 -1000 0 .2 .7 .2 12 0 0 0 -100 0 40 . 9 .3 0 0 0.2.6.3 16 0 . 9 0 40 0 0.2.5.4 20 .4 0 0 0 0 100 0 40 . 9 0.2.4.5 24 0 0 .5 0 0 . 9 0 0 .2 .3 .6 28 100 - 1000 40 .6 0 0 . 9 32 100 0 40 0.2.2.7 0 0 .7 0 0 .2 .1 .8 0 100 100 0 40 .9 0 36 . 8 0 0

World of Spheres

Vector3D VP; int numLights; Vector3D theLights[5]; double ka; int numSpheres; Sphere theSpheres[20];

int ppmT[3]; View sceneView; double distance; bool antialias; // the viewpoint

// up to 5 white lights
// ambient light coefficient

// 20 sphere max

// ppm texture files// transform data// view plane to VP// if true antialias

Simple Ray Casting for Detecting Visible Surfaces

select window on viewplane and center of projection for (each scanline in image) { for (each pixel in the scanline) { determine ray from center of projection through pixel; for (each object in scene) { if (object is intersected and is closest considered thus far) record intersection and object name; set pixel's color to that of closest object intersected;

Ray-Sphere Intersection

- Given
 - Sphere
 - Center (c_x, c_y, c_z)
 - Radius, *R*
 - Ray from P_0 to P_1
 - $P_0 = (x_0, y_0, z_0)$ and $P_1 = (x_1, y_1, z_1)$
 - View Point
 - (V_{x}, V_{y}, V_{z})
- Project to window from (0,0,0) to (w,h,0)

Sphere Equation

10

Ray Equation

 $P_0 = (x_0, y_0, z_0) \text{ and } P_1 = (x_1, y_1, z_1)$

The ray from P₀ to P₁ is given by: P(t) = $(1 - t)P_0 + tP_1$ 0 <= t <= 1 = P₀ + t(P₁ - P₀)

Intersection Equation

 $P(t) = P_0 + t(P_1 - P_0) \qquad 0 \le t \le 1$ is really three equations $x(t) = x_0 + t(x_1 - x_0)$ $y(t) = y_0 + t(y_1 - y_0)$ $z(t) = z_0 + t(z_1 - z_0) \qquad 0 \le t \le 1$

Substitute x(t), y(t), and z(t) for x, y, z, respectively in

$$(\mathbf{x} - \mathbf{c}_{x})^{2} + (\mathbf{y} - \mathbf{c}_{y})^{2} + (\mathbf{z} - \mathbf{c}_{z})^{2} = \mathbf{R}^{2}$$

$$((\mathbf{x}_{0} + \mathbf{t}(\mathbf{x}_{1} - \mathbf{x}_{0})) - \mathbf{c}_{x})^{2} + ((\mathbf{y}_{0} + \mathbf{t}(\mathbf{y}_{1} - \mathbf{y}_{0})_{1}) - \mathbf{c}_{y})^{2} + ((\mathbf{z}_{0} + \mathbf{t}(\mathbf{z}_{1} - \mathbf{z}_{0})) - \mathbf{c}_{z})^{2} = \mathbf{R}^{2}$$

Solving the Intersection Equation

$$\left(\left(x_{0} + t(x_{1} - x_{0})\right) - c_{x}\right)^{2} + \left(\left(y_{0} + t(y_{1} - y_{0})_{1}\right) - c_{y}\right)^{2} + \left(\left(z_{0} + t(z_{1} - z_{0})\right) - c_{z}\right)^{2} = R^{2}$$

is a quadratic equation in variable t.

For a fixed pixel, VP, and sphere,

$$x_0, y_0, z_0, x_1, y_1, z_1, c_x, c_y, c_z, and R$$

are all constants.

We solve for t using the quadratic formula.

The Quadratic Coefficients

$$((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)_1) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2$$

Set $d_x = x_1 - x_0$ $d_y = y_1 - y_0$ $d_z = z_1 - z_0$

Now find the the coefficients:

$At^2 + Bt + C = 0$

Computing Coefficients

$$\begin{aligned} \left((x_{0} + t(x_{1} - x_{0})) - c_{x} \right)^{2} + \left((y_{0} + t(y_{1} - y_{0})) - c_{y} \right)^{2} + \left((z_{0} + t(z_{1} - z_{0})) - c_{z} \right)^{2} = R^{2} \\ \left((x_{0} + td_{x}) - c_{x} \right)^{2} + \left((y_{0} + td_{y}) - c_{y} \right)^{2} + \left(((z_{0} + td_{z}) - c_{z} \right)^{2} = R^{2} \\ \left(x_{0} + td_{x} \right)^{2} - 2c_{x} (x_{0} + td_{x}) + c_{x}^{2} + \\ \left(y_{0} + td_{y} \right)^{2} - 2c_{z} (z_{0} + td_{y}) + c_{y}^{2} + \\ \left(z_{0} + td_{z} \right)^{2} - 2c_{z} (z_{0} + td_{z}) + c_{z}^{2} - R^{2} = 0 \\ \hline x_{0}^{2} + 2x_{0}td_{x} + t^{2}d_{x}^{2} - 2c_{x}x_{0} - 2c_{x}td_{x} + c_{x}^{2} + \\ y_{0}^{2} + 2y_{0}td_{y} + t^{2}d_{y}^{2} - 2c_{y}y_{0} - 2c_{y}td_{y} + c_{y}^{2} + \\ z_{0}^{2} + 2z_{0}td_{z} + t^{2}d_{z}^{2} - 2c_{z}z_{0} - 2c_{z}td_{z} + c_{z}^{2} - R^{2} = 0 \end{aligned}$$

The Coefficients

Solving the Equation

 $At^2 + Bt + C = 0$

discriminant =
$$D(A,B,C) = B^2 - 4AC$$

 $D(A,B,C) \begin{cases} < 0 & \text{no intersection} \\ = 0 & \text{ray is tangent to the sphere} \\ > 0 & \text{ray intersects sphere in two points} \end{cases}$

The intersection nearest P_0 is given by:

$$t = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

To find the coordinates of the intersection point: $x = x_0 + td_x$ $y = y_0 + td_y$ $z = z_0 + td_z$

First Lighting Model

 Ambient light is a global constant. Ambient Light = k_a (A_R, A_G, A_B) k_a is in the "World of Spheres" 0 ≤ k_a ≤ 1 (A_R, A_G, A_B) = average of the light sources

 $(A_R, A_G, A_B) = (1, 1, 1)$ for white light

- Color of object S = (S_R, S_G, S_B)
- Visible Color of an object S with only ambient light C_S= k_a (A_R S_R, A_G S_G, A_B S_B)
- For white light

 $C_{S} = k_{a} (S_{R}, S_{G}, S_{B})$

Visible Surfaces Ambient Light

Text 📃	J
View Point: (200, 200,1000) Light : (750, 0,2000)	Û
SPHERES	
Center: (100, 100,100) Radius: 50 RED: 0.50 GREEN: 0.00 BLUE: 0.50	
Center : (150, 200,300) Radius : 50 RED: 0.50 GREEN: 0.50 BLUE: 0.00	
Center : (350, 220,150) Radius : 50 RED: 0.00 GREEN: 0.50 BLUE: 0.50	
Center : (250, 300,400) Radius : 50 RED: 0.25 GREEN: 0.25 BLUE: 0.50	
Only ambient light ,	
	0

Second Lighting Model

- Point source light L = (L_R , L_G , L_B) at (L_x , L_y , L_z)
- Ambient light is also present.
- Color at point p on an object S with ambient & diffuse reflection

 $C_{p} = k_{a} (A_{R} S_{R}, A_{G} S_{G}, A_{B} S_{B}) + k_{d} k_{p} (L_{R} S_{R}, L_{G} S_{G}, L_{B} S_{B})$

• For white light, L = (1, 1, 1)

 $C_p = k_a (S_R, S_G, S_B) + k_d k_p (S_R, S_G, S_B)$

- k_p depends on the **point p** on the object and (L_x, L_y, L_z)
- k_d depends on the object (sphere)
- k_a is global
- k_a + k_d <= 1

Diffuse Light

Lambertian Reflection Model Diffuse Shading

- For matte (non-shiny) objects
- Examples
 - Matte paper, newsprint
 - Unpolished wood
 - Unpolished stones
- Color at a point on a matte object does not change with viewpoint.

Physics of Lambertian Reflection

Incoming light is partially absorbed and partially transmitted equally in all directions

Geometry of Lambert's Law

Cp= ka (SR, SG, SB) + kd **N**•L (SR, SG, SB)

Diffuse Light 2

Shadows on Spheres

	Text	
View Point Light	: (240, 248,5000) : (700, 400,2000)	Û
SPHERES Center : Radius : RED: GREEN: BLUE: Center : Radius : RED: GREEN: BLUE:	<pre>(100, 100, 50) 50 0.50 0.00 0.50 (150, 200,250) 50 0.50 0.50 0.50 0.50 0.00</pre>	
Center : Radius : RED: GREEN: BLUE:	(350, 220,500) 50 0.00 0.50 0.50	
Center : Radius : RED: GREEN: BLUE:	(250, 300,750) 50 0.25 0.25 0.50	
Diffuse Li one point shadows on and s	ghting source ∨iew plane pheres	
		5 6

More Shadows

	Text	
View Point Light	t: (240, 248,5000) : (240, 600,2000)	Û
SPHERES		
Center : Radius : RED: GREEN: BLUE:	<100, 100, 50> 50 0.50 0.00 0.50	
Center : Radius : RED: GREEN: BLUE:	(150, 200,250) 50 0.50 0.50 0.00	
Center : Radius : RED: GREEN: BLUE:	(350, 220,500) 50 0.00 0.50 0.50	
Center : Radius : RED: GREEN: BLUE:	(250, 300,750) 50 0.25 0.25 0.50	
Diffuse Li one point shadows or and s	ighting source view plane spheres	
		-7- P

Finding Shadows

Shadow Color

Given

Ray from P (point on sphere S) to L (light)

 $P = P_0 = (x_0, y_0, z_0) \text{ and } L = P_1 = (x_1, y_1, z_1)$

- Find out whether the ray intersects any other object (sphere).
 - If it does, P is in shadow.
 - Use only ambient light for pixel.

Shape of Shadows

Different Views

©College of Computer and Information Science, Northeastern University

Planets

r	Έ	ĩ
	Text	
	View Point: (250, 252,2000) Light : (700, 700,2000)	Û
	SPHERES Center : (100, 100, 50) Radius : 50 RED: 0.50 GREEN: 0.00 BLUE: 0.50 Center : (150, 200, 250) Radius : 50 RED: 0.50 GREEN: 0.50 GREEN: 0.50 BLUE: 0.00 Center : (350, 220, 500) Radius : 50 RED: 0.00 GREEN: 0.50 BLUE: 0.50 RED: 0.50 RED: 0.50 RED: 0.50 RED: 0.25 BLUE: 0.50 Center : (310, 80, -20) Radius : 50 RED: 0.50 Center : 0.50 RED: 0.50 RED: 0.50 GREEN: 0.50 BLUE: 0.50 BLUE: 0.50	
	Diffuse Lighting one point source shadows on spheres	
		- ₽ •

Starry Skies

r	
	Text 💷
•	View Point: (225, 225,4000) Light : (2500, 2500,8000)
	SPHERES
	Center : (100, 100, 50) Radius : 50 RED: 0.50
	GREEN: 0.00 BLUE: 0.50 Center: (150, 200,250) Redius: 50
	RED: 0.50 GREEN: 0.50 BLUE: 0.00
	Center : (350, 220,500) Radius : 50 RED: 0.00 GREEN: 0.50
	BLUE: 0.50 Center : (250, 300,750) Radius : 50
	RED: 0.25 GREEN: 0.25 BLUE: 0.50 Center : (310 80 -20)
	Radius : 50 RED: 0.50 GREEN: 0.50
	BLUE: 0.50
	Diffuse Lighting
	shadows on spheres
	0

Shadows on the Plane

	Text	IJ
View Point Light	: (200, 200,1000) : (750, 0,2000)	Û
SPHERES		
Center : Radius : RED: GREEN: BLUE:	<pre><100, 100, 100> 50 0.50 0.00 0.50</pre>	
Center : Radius : RED: GREEN: BLUE:	<pre>(150, 200,300) 50 0.50 0.50 0.50 0.00</pre>	
Center : Radius : RED: GREEN: BLUE:	(350, 220,150) 50 0.00 0.50 0.50	
Center : Radius : RED: GREEN: BLUE:	(250, 300,400) 50 0.25 0.25 0.50	
Diffuse Li one point shadows on 	ghting source view plane	
		- ₽

Close up

Text	J
View Point: (200, 200,500) Light : (500, 250,1000)	Û
SPHERES	
Center: (100, 100,100) Radius: 50 RED: 0.50 GREEN: 0.00 BLUE: 0.50	
Center: (150, 200,300) Radius: 50 RED: 0.50 GREEN: 0.50 BLUE: 0.00	
Center : (350, 220,150) Radius : 50 RED: 0.00 GREEN: 0.50 BLUE: 0.50	
Center : (250, 300,400) Radius : 50 RED: 0.25 GREEN: 0.25 BLUE: 0.50	
Diffuse Lighting one point source shadows on view plane 	
	<u>₹</u>

On the Table

	Text 📃	
View Point Light	: (200, 200 : (500, 250	,2000) ,1000)
SPHERES		
Center : Radius : RED: GREEN: BLUE:	<100, 100, 50 0.50 0.00 0.50	50>
Center : Radius : RED: GREEN: BLUE:	<pre>(150, 200, 50 0.50 0.50 0.50 0.00</pre>	50>
Center : Radius : RED: GREEN: BLUE:	<pre>(350, 220, 50 0.00 0.50 0.50 0.50</pre>	50>
Center : Radius : RED: GREEN: BLUE:	(250, 300, 50 0.25 0.25 0.50	50>
Diffuse Li one point shadows on 	ghting source view plane	
		۲ ۲

Phong Highlight

Phong Lighting Model

January 27, 2011

Phong Lighting Model

 $Cos(\alpha) = \mathbf{R} \cdot \mathbf{V}$

We use $\cos^n(\alpha)$.

Powers of $cos(\alpha)$

Computing **R**

 $L + R = (2 L \cdot N) N$ R = (2 L \cdot N) N - L

January 27, 2011

The Halfway Vector

Varied Phong Highlights

Varying Reflectivity

Time for a Break

More Math

- Matrices
- Transformations
- Homogeneous Coordinates

Matrices

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \qquad C = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix}$$

- We use 2x2, 3x3, and 4x4 matrices in computer graphics.
- We'll start with a review of 2D matrices and transformations.

Basic 2D Linear Transforms

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

Scaling by .5

General Scaling

General Scaling

Reflection in y-axis

Reflection in y-axis

Reflection in x-axis

Shear-x

©College of Computer and Information Science, Northeastern University

©College of Computer and Information Science, Northeastern University

Linear Transformations

- Scale, Reflection, Rotation, and Shear are all linear transformations
- They satisfy: $T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$
 - u and v are vectors
 - a and b are scalars
- If T is a linear transformation
 - T((0, 0)) = (0, 0)

Composing Linear Transformations

- If T₁ and T₂ are transformations
 T₂ T₁(v) =_{def} T₂(T₁(v))
- If T_1 and T_2 are linear and are represented by matrices M_1 and M_2
 - T₂ T₁ is represented by M₂ M₁
 - $T_2 T_1(\mathbf{v}) = T_2(T_1(\mathbf{v})) = (M_2 M_1)(\mathbf{v})$

Reflection as a Composition

70

Decomposing Linear Transformations

- Any 2D Linear Transformation can be decomposed into the product of a rotation, a scale, and a rotation if the scale can have negative numbers.
- $M = R_1 S R_2$

This is not a linear transformation. The origin moves.

Translation

This is not a linear transformation. The origin moves.

2D Linear Transformations as 3D Matrices

Any 2D linear transformation can be represented by a 2x2 matrix

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{bmatrix}$$

or a 3x3 matrix

$$\begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \\ 1 \end{bmatrix}$$

2D Linear Translations as 3D Matrices

Any 2D translation can be represented by a 3x3 matrix.

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$$

This is a 3D shear that acts as a translation on the plane z = 1.

2D Affine Transformations

- An affine transformation is any transformation that preserves co-linearity (i.e., all points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint after transformation).
- With homogeneous coordinates, we can represent all 2D affine transformations as 3D linear transformations.
- We can then use matrix multiplication to transform objects.

Rotation about an Arbitrary Point

Rotation about an Arbitrary Point

Windowing Transforms

3D Transformations

Remember:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \leftrightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

A 3D linear transformation can be represented by a 3x3 matrix.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \leftrightarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \leftrightarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Affine Transformations

$$\operatorname{scale}\left(s_{x}, s_{y}, s_{z}\right) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\operatorname{translate}\left(t_{x}, t_{y}, t_{z}\right) = \begin{bmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Rotations

$$\operatorname{rotate}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\operatorname{rotate}_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 1 \end{bmatrix}$$

January 27, 2011

©College of Computer and Information Science, Northeastern University