CS 5310
 Graduate Computer Graphics

Prof. Harriet Fell
Spring 2011
Lecture 1 - January 19, 2011

Course Overview - Topics

- Emphasis on rendering realistic images.
- Fundamentals of 2- and 3-dimensional computer graphics
- 2-dimensional algorithms for drawing lines and curves, anti-aliasing, filling, and clipping
- Using ray-tracing to render 3-dimensional scenes
- composed of spheres, polygons, quadric surfaces, and bicubic surfaces
- Techniques for adding texture to surfaces using texture and bump maps, noise, and turbulence
- Other topics as time permits

Sample Images

Sample Images

Sample Images

Sample Images

Sample Images

Course Overview Organization

- Texts:
- Peter Shirley, et al. Fundamentals of Computer Graphics, 2nd Edition, A K Peters, 2005
- Alan Watt, 3D Computer Graphics, 3rd Edition , Addison Wesley, 1999.
- Grading
- Assignment 0: 10\%
- Assignment 1: 15\%
- Assignment 2: 15\%
- Assignment 3: 10\%
- Assignment 4: 10\%
- Exam: 25\%
- Project and Presentation: 15\%

Early History

- http://accad.osu.edu/~waynec/history/timeline.html
- http://sophia.javeriana.edu.co/~ochavarr/computer graphics history/historia/
- 1801 Joseph-Marie Jacquard invented an automatic loom using punched cards to control patterns in the fabrics. The introduction of these looms caused the riots against the replacement of people by machines.
- 1941 First U.S. regular TV broadcast,

1st TV commercial (for Bulova watches)

- 1948 Transistors
- 1949 Williams tube (CRT storage tube)

Jacquard Loom

From Wikipedia.org
January 20, 2011
©College of Computer and Information Science, Northeastern University

Early TV

History - the 50s

- 1951 Graphics display, Whirlwind computer
- 1954 color TV
- 1955 Light Pen, SAGE- Lincoln Lab
- 1958 Graphics Console, TX-1 MIT
- 1958 John Whitney Sr. uses analog computer to make art

1951 Graphics display, Whirlwind computer

SAGE

John Whitney Sr. 1958 CG

Vertigo Start Titles

History - the 60s

- 1961 Spacewars, 1st video game, Steve Russell, MIT for PDP-1
- 1963 Sketchpad, Ivan Sutherland, MIT
- 1963 Mouse invented, Doug Englebart, SRI
- 1963 Roberts hidden line algorithm, MIT
- 1965 Bresenham Algorithm for plotting lines, IBM
- 1966 Odyssey, home video game, Ralph Baer,
- Sanders Assoc, is 1st consumer CG product
- 1967 Full-color, real-time, interactive flight simulator for NASA - Rod Rougelet, GE

Spacewars

Ivan Sutherland \& Sketchpad System on TX-2 at MIT(1963)

Odyssey

The very first home videogame, Odyssey, used Laner-created transparent overlays in lleu of computer-generated graphics.

http://gamesmuseum.pixesthesia.com/history/gen1/pong/

Roberts Hidden Line Algorithm Block scene (576 blocks)

Bresenham Line Algorithm

History - the 70s

- 1970s Utah dominated - algorithm development
- 1970 Watkins algorithm for visible surfaces
- 1970 Bezier free-form curve representation
- 1971 Gouraud shading
- 1973 Principles of Interactive Computer Graphics (Newman and Sproull)
- 1974 Addressable cursor in a graphics display terminal - DEC VT52
- 1974 z-buffer developed by Ed Catmull (Univ of Utah)
- 1975 Phong shading
- 1975 Fractals - Benoit Mandelbrot (IBM)
- 1978 Bump mapping, Blinn
- 1979 George Lucas starts Lucasfilm
- with Ed Catmull, Ralph Guggenheim, and Alvy Ray Smith

Watkins Scan-Line Algorithm

Bezier Curves

Gouraud Shading

http://freespace.virgin.net/hugo.elias/graphics/x_polygo.htm

Phong Shading

FLAT SHADING

PHONG SHADING

Fractals

Bump Map

History - the 80s

- 1980s Cheaper machines, memory - quest for realsim
- 1980 Ray Tracing, Turner Whitted, Bell Labs
- 1981 IBM introduces the first IBM PC (16 bit 8088 chip)
- 1982 Data Glove, Atari
- 1984 Macintosh computer
- introduced with Clio award winning commercial during Super Bowl
- 1985 Perlin Noise
- 1986 GIF format (CompuServe)
- 1988 Who Framed Roger Rabbit live action \& animation

Whitted Ray-Tracing

http://en.wikipedia.org/wiki/Ray tracing

Perlin Noise

Who Framed Roger Rabbit

History- the 90s

- 1990s Visualization, Multimedia, the Net
- 1991 JPEG/MPEG
- 1993 Myst, Cyan
- 1994 U.S. Patent to Pixar
- for creating, manipulating and displaying images
- 1995 Toy Story, Pixar
- 1995 Internet 2 unveiled
- 1997 DVD technology unveiled
- 1998 XML standard
- 1999 deaths

Myst

Toy Story

Recent History

- 2000s Virtual Reality, Animation Reality
- 2001 Significant Movies
- Final Fantasy, Square)
- Monsters Inc, Pixar
- Harry Potter, A.I., Lord of the Rings, Shrek, PDI
- The Mummy, ILM
- Tomb Raider, Cinesite
- Jurassic Park III, Pearl Harbor,ILM
- Planet of the Apes, Asylum
- 2001 Microsoft xBox and Nintendo Gamecube
- 2001, 2002, 2003 Lord of the Rings
- Gollum

from Lord of the Rings

- Motion Capture Technology
- Andy Serkis "played" Gollum by providing his voice and movements on set, as well as performing within a motion capture suit.
- SKIN
- Christoper Hery, Ken McGaugh and Joe Letteri received a 2003 Academy Award, Scientific or Technical for implementing the BSSRDF (Bidirectional Surface Scattering Reflection Distribution Function) technique used for Gollum's skin in a production environment. Henrik Wann Jensen, Stephen Robert Marschner, and Pat Hanrahan, who developed BSSRDF, won another the same year.
- MASSIVE
- a computer program developed by WETA to create automatic battle sequences rather than individually animate every soldier. Stephen Regelous developed the system in 1996, originally to create crowd scenes in King Kong.

Time for a Break

Color

www.thestagecrew.com

Red, Green, and Blue Light

Adding R, G, and B Values

http://en.wikipedia.org/wiki/RGB

From the Hubble

Hubble Site Link

RGB Color Cube

RGB Color Cube the Dark Side

 $(0,0,1)$

Doug Jacobson's RGB Hex Triplet Color Chart

Making Colors Darker

$(1,0,0)$	$(.5,0,0)$	$(0,0,0)$
$(0,1,0)$	$(0, .5,0)$	$(0,0,0)$
$(0,0,1)$	$(0,0, .5)$	$(0,0,0)$
$(1,1,0)$	$(0, .5, .5)$	$(0,0,0)$
$(1,0,1)$	(.5, 0, .5)	(0, 0, 0)
$(1,1,0)$	$(.5, .5,0)$	$(0,0,0)$
January	nd Information	46

Getting Darker, Left to Right

$$
\begin{aligned}
& \text { for (int b = 255; b >= 0; b--) \{ } \\
& \text { c = new Color(b, 0, 0); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 50, 3, 150); } \\
& \text { c = new Color(0, b, 0); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 200, 3, 150); } \\
& \text { c = new Color(0, 0, b); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 350, 3, 150); } \\
& \text { c = new Color(0, b, b); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 500, 3, 150); } \\
& \text { c = new Color(b, 0, b); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 650, 3, 150); } \\
& \text { c = new Color(b, b, 0); g.setPaint(c); } \\
& \text { g.fillRect(800+3*(255-b), 800, 3, 150); }
\end{aligned}
$$

Gamma Correction

- Generally, the displayed intensity is not linear in the input $(0 \leq a \leq 1)$.
- dispIntensity $=($ maxIntensity $) a^{\gamma}$
- To find Y
- Find a that gives you .5 intensity
-Solve $.5=a^{\gamma}$
$-Y=\frac{\ln (.5)}{\ln (a)}$

Gamma Correction

half black half red
 $(127,0,0)$

- Gamma

Making Pale Colors

$(1,0,0)$	$(1, .5, .5)$	$(1,1,1)$
$(0,1,0)$	$(.5,1, .5)$	$(1,1,1)$
$(0,0,1)$	$(.5, .5,1)$	$(1,1,1)$
$(1,1,0)$	$(1, .5,1)$	$(1,1)$
$(1,0,1)$	$(1,1, .5)$	$(1,1,1)$
$(1,1,0)$	©College of Computer and Information Science, Northeastern University	50

Getting Paler, Left to Right

 for (int w = 0; w < 256; w++) \{c = new Color(255, w, w); g.setPaint(c); g.fillRect(3*w, 50, 3, 150);
c = new Color(w, 255, w); g.setPaint(c); g.fillRect(3*w, 200, 3, 150);
c = new Color(w, w, 255); g.setPaint(c); g.fillRect(3*w, 350, 3, 150);
c = new Color(w, 255, 255); g.setPaint(c); g.fillRect(3^{*} w, 500, 3, 150);
c = new Color(255,w, 255); g.setPaint(c); g.fillRect(3^{*} w, 650, 3, 150);
c = new Color(255, 255, w); g.setPaint(c); g.fillRect(3^{*} w, 800, 3, 150);

Portable Pixmap Format (ppm)

A "magic number" for identifying the file type.

- A ppm file's magic number is the two characters "P3".
- Whitespace (blanks, TABs, CRs, LFs).
- A width, formatted as ASCII characters in decimal.
- Whitespace.
- A height, again in ASCII decimal.
- Whitespace.
- The maximum color value again in ASCII decimal.
- Whitespace.
- Width * height pixels, each 3 values between 0 and maximum value.
- start at top-left corner; proceed in normal English reading order
- three values for each pixel for red, green, and blue, resp.
- 0 means color is off; maximum value means color is maxxed out
- characters from "\#" to end-of-line are ignored (comments)
- no line should be longer than 70 characters

ppm Example

P3
\# feep.ppm
44
15
00000000015015 000 0000000157000
15015000000000

```
private void savelmage() {
    String outFileName = "my.ppm";
    File outFile = new File(outFileName);
    int clrR, clrG, clrB;
    try {
        PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(outFile)));
        out.println("P3");
        out.print(Integer.toString(xmax-xmin+1)); System.out.println(xmax-xmin+1);
        out.print(" ");
        out.println(Integer.toString(ymax-ymin+1)); System.out.println(ymax-ymin+1);
        out.println("255");
        for (int y = ymin; y <= ymax; y++){
                for (int x = xmin; x <= xmax; x++) {
                    // compute clrR, clrG, clrB
                out.print(" "); out.print(clrR);
                out.print(" "); out.print(clrG);
                out.print(" "); out.println(clrB);
                }
        }
        out.close();
    } catch (IOException e) {
        System.out.println(e.toString());
    }
}
```


Math Basics

(All Readings from Shirley)

- Sets and Mappings - 2.1
- Quadratic Equations - 2.2
- Trigonometry - 2.3
- Vectors - 2.4
- 2D Parametric Curves - 2.6
- 3D Parametric Curves - 2.8
- Linear Interpolation - 2.10
- Triangles - 2.11

Vectors

- A vector describes a length and a direction.

- a zero length vector

$$
\mathbf{a}=\mathbf{b}
$$

Vector Operations

Vector Sum

Cartesian Coordinates

- Any two non-zero, non-parallel 2D vectors form a 2D basis.
- Any 2D vector can be written uniquely as a linear combination of two 2D basis vectors.
- \mathbf{x} and \mathbf{y} (or \mathbf{i} and \mathbf{j}) denote unit vectors parallel to the x-axis and y-axis.
- \mathbf{x} and \mathbf{y} form an orthonormal 2D basis.

$$
\begin{gathered}
a=x_{a} x+y_{a} y \\
a=\left(x_{a}, y_{a}\right) \text { or } a=\left[\begin{array}{l}
x_{a} \\
y_{a}
\end{array}\right] \\
\text { or } a=\left(a_{x}, a_{y}\right) .
\end{gathered}
$$

- $\mathbf{x , y}$ and \mathbf{z} form an orthonormal 3D basis.

Vector Length

Vector $\mathbf{a}=\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right)$

$$
\operatorname{Length}(\mathbf{a})=\operatorname{Norm}(\mathbf{a})=\|\mathbf{a}\|=\sqrt{\mathrm{x}_{\mathrm{a}}^{2}+\mathrm{y}_{\mathrm{a}}^{2}}
$$

Dot Product

Dot Product

$$
\begin{array}{cl}
\mathbf{a}=\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right) & \mathbf{b}=\left(\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}\right) \\
\mathbf{a} \cdot \mathbf{b}=\mathrm{x}_{\mathrm{a}} \mathrm{x}_{\mathrm{b}}+\mathrm{y}_{\mathrm{a}} \mathrm{y}_{\mathrm{b}} \\
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\| \cdot\|\mathbf{b}\| \cos (\varphi) & \mathrm{x}_{\mathrm{a}}=\|\mathbf{a}\| \cos (\theta+\varphi) \\
\mathbf{x}_{\mathrm{b}}=\|\mathbf{b}\| \cos (\theta) \\
\mathrm{y}_{\mathrm{a}}=\|\mathbf{a}\| \sin (\theta+\varphi) \\
\mathrm{y}_{\mathrm{b}}=\|\mathbf{b}\| \sin (\theta)
\end{array}
$$

Projection

$$
\begin{aligned}
& \mathbf{a}=\left(x_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right) \quad \mathbf{b}=\left(\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}\right) \\
& \mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\| \cdot\|\mathbf{b}\| \cos (\varphi)
\end{aligned}
$$

The length of the projection of \mathbf{a} onto \mathbf{b} is given by

$$
a \rightarrow b=\|a\| \cos (\varphi)=\frac{a \cdot b}{\|b\|}
$$

3D Vectors

This all holds for 3D vectors too.

$$
\begin{gathered}
\mathbf{a}=\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}, \mathrm{z}_{\mathrm{a}}\right) \quad \mathbf{b}=\left(\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}, \mathrm{z}_{\mathrm{b}}\right) \\
\operatorname{Length}(\mathbf{a})=\operatorname{Norm}(\mathbf{a})=\|\mathbf{a}\|=\sqrt{\mathrm{x}_{\mathrm{a}}^{2}+\mathrm{y}_{\mathrm{a}}^{2}+\mathrm{z}_{\mathrm{a}}^{2}} \\
\mathbf{a} \cdot \mathbf{b}=\mathrm{x}_{\mathrm{a}} \mathrm{x}_{\mathrm{b}}+\mathrm{y}_{\mathrm{a}} \mathrm{y}_{\mathrm{b}}+\mathrm{z}_{\mathrm{a}} \mathrm{z}_{\mathrm{b}} \\
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\| \cdot\|\mathbf{b}\| \cos (\varphi)
\end{gathered}
$$

$$
\mathbf{a} \rightarrow \mathbf{b}=\|\mathbf{a}\| \cos (\varphi)=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}
$$

Vector Cross Product

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \varphi
$$

$\mathbf{a x b}$ is perpendicular to \mathbf{a} and \mathbf{b}.
Use the right hand rule to determine the direction of axb.

Image from www.physics.udel.edu

Cross Product and Area

$\|\mathbf{a}\| \mathbf{x}|\mid \mathbf{b} \|=$ area of the parallelogram.

Computing the Cross Product

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
i & j & k \\
\mathrm{a}_{x} & \mathrm{a}_{y} & \mathrm{a}_{z} \\
\mathrm{~b}_{x} & \mathrm{~b}_{y} & \mathrm{~b}_{z}
\end{array}\right|
$$

$$
=\left(\mathrm{a}_{y} \mathrm{~b}_{z}-\mathrm{a}_{z} \mathrm{~b}_{y}\right) i+\left(\mathrm{a}_{z} \mathrm{~b}_{x}-\mathrm{a}_{x} \mathrm{~b}_{z}\right) j+\left(\mathrm{a}_{x} \mathrm{~b}_{y}-\mathrm{a}_{y} \mathrm{~b}_{x}\right) k
$$

Linear Interpolation

- LERP: /lerp/, vi.,n.
- Quasi-acronym for Linear Interpolation, used as a verb or noun for the operation. "Bresenham's algorithm lerps incrementally between the two endpoints of the line."

$$
p=(1-t) a+t b=a+t(b-a)
$$

Lerping

Triangles

Barycentric coordinates of (x, y).

Triangles

Computing Barycentric Coordinates

$$
\begin{aligned}
& \frac{y-y_{a}}{x-x_{a}}=\frac{y_{b}-y_{a}}{x_{b}-x_{a}} \\
& \quad\left(y-y_{a}\right)\left(x_{b}-x_{a}\right)-\left(y_{b}-y_{a}\right)\left(x-x_{a}\right)=0 \\
& f_{a b}(x, y)=\left(y-y_{a}\right)\left(x_{b}-x_{a}\right)-\left(y_{b}-y_{a}\right)\left(x-x_{a}\right) \\
& \gamma=\frac{f_{a b}(x, y)}{f_{a b}\left(x_{c}, y_{c}\right)}
\end{aligned}
$$

Barycentric Coordinates as Areas

$$
\begin{aligned}
\alpha & =A_{\mathrm{a}} / A \\
\beta & =A_{\mathrm{b}} / A \\
\gamma & =A_{\mathrm{c}} / A
\end{aligned}
$$

where A is the area of the triangle.

$$
\alpha+\beta+\gamma=1
$$

3D Triangles

$$
\begin{aligned}
& \alpha=A_{\mathrm{a}} / A \\
& \beta=A_{\mathrm{b}} / A \\
& \gamma=A_{\mathrm{c}} / A
\end{aligned}
$$

where A is the area of the triangle.

$$
\alpha+\beta+\gamma=1
$$

Assignment 0

- You will choose a programming platform for the quarter and familiarize yourself with RGB color and the ppm format. In part, this assignment is to ensure that you have a method of submitting you work so that I can:
- read the code
- compile (or interpret) the code
- run the code to produce a file in ppm format.
- Sample Program
- You will write your own 3D vector tools (e.g. as a JAVA class) that you will use for your later programming assignments.

