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Course Overview - Topics 
•  Emphasis on rendering realistic images.   
•  Fundamentals of 2- and 3- dimensional 

computer graphics 
–  2-dimensional algorithms for drawing lines and 

curves, anti-aliasing, filling, and clipping    
–  Using ray-tracing to render 3-dimensional scenes 

•  composed of spheres, polygons, quadric surfaces, and bi-
cubic surfaces  

–  Techniques for adding texture to surfaces using 
texture and bump maps, noise, and turbulence 

•  Other topics as time permits 
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Sample Images 
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Sample Images 
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Sample Images 
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Sample Images 
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Sample Images 
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Course Overview - 
Organization 

•  Texts:  
–  Peter Shirley, et al. Fundamentals of Computer Graphics, 2nd 

Edition, A K Peters, 2005 
–  Alan Watt, 3D Computer Graphics, 3rd Edition , Addison Wesley, 

1999. 

•  Grading 
–  Assignment 0: 10%  
–  Assignment 1: 15%  
–  Assignment 2: 15%  
–  Assignment 3: 10%  
–  Assignment 4: 10%  
–  Exam: 25%  
–  Project and Presentation: 15%  
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Early History 
•  http://accad.osu.edu/~waynec/history/timeline.html 
•  http://sophia.javeriana.edu.co/~ochavarr/computer_graphics_history/historia/ 

•  1801  Joseph-Marie Jacquard invented an 
automatic loom using punched cards to control 
patterns in the fabrics. The introduction of these 
looms caused the riots against the replacement of 
people by machines.  

•  1941  First U.S. regular TV broadcast,  
             1st TV commercial (for Bulova watches) 
•  1948  Transistors 
•  1949  Williams tube (CRT storage tube)  
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Jacquard Loom 

From Wikipedia.org 
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Early TV 
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History – the 50s 

•  1951  Graphics display, Whirlwind computer  
•  1954  color TV 
•  1955  Light Pen, SAGE- Lincoln Lab   
•  1958  Graphics Console, TX-1 MIT  
•  1958  John Whitney Sr. uses analog      
             computer to make art 
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1951  Graphics display, 
Whirlwind computer 
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SAGE 
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John Whitney Sr. 1958 CG 

Vertigo Start Titles 
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History - the 60s 
•  1961  Spacewars, 1st video game, Steve Russell, MIT 

for PDP-1 
•  1963  Sketchpad, Ivan Sutherland, MIT 
•  1963  Mouse invented, Doug Englebart, SRI  
•  1963  Roberts hidden line algorithm, MIT 
•  1965  Bresenham Algorithm for plotting lines, IBM 
•  1966  Odyssey, home video game, Ralph Baer, 

–  Sanders Assoc, is 1st consumer CG product 
•  1967  Full-color, real-time, interactive  
              flight simulator for NASA - Rod Rougelet, GE 
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Spacewars 
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Ivan Sutherland & Sketchpad System  
on TX-2 at MIT(1963) 
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Odyssey 

http://gamesmuseum.pixesthesia.com/history/gen1/pong/ 
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Roberts Hidden Line Algorithm 
Block scene (576 blocks)  
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Bresenham Line Algorithm 

(0, 0) 

(9, 7) 
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History – the 70s 
•  1970s  Utah dominated - algorithm development 
•  1970   Watkins algorithm for visible surfaces 
•  1970  Bezier free-form curve representation 
•  1971  Gouraud shading  
•  1973  Principles of Interactive Computer Graphics (Newman and Sproull) 
•  1974   Addressable cursor in a graphics display terminal - DEC VT52 
•  1974   z-buffer developed by Ed Catmull (Univ of Utah) 
•  1975  Phong shading  
•  1975  Fractals - Benoit Mandelbrot (IBM) 
•  1978   Bump mapping, Blinn  
•  1979   George Lucas starts Lucasfilm  

–  with Ed Catmull, Ralph Guggenheim, and Alvy Ray Smith 
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Watkins Scan-Line Algorithm 
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Bezier Curves 



©College of Computer and Information Science, Northeastern University January 20, 2011 25 

Gouraud Shading 

http://freespace.virgin.net/hugo.elias/graphics/x_polygo.htm 
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Phong Shading 
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Fractals 



©College of Computer and Information Science, Northeastern University January 20, 2011 28 

Bump Map 

Bump Maps in PovRay 
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History - the 80s 
•  1980s Cheaper machines, memory - quest for realsim 
•  1980  Ray Tracing, Turner Whitted, Bell Labs  
•  1981  IBM introduces the first IBM PC (16 bit 8088 chip) 
•  1982  Data Glove, Atari 
•  1984  Macintosh computer  

–   introduced with Clio award winning commercial during Super Bowl 
•  1985  Perlin Noise 
•  1986  GIF format (CompuServe) 
•  1988  Who Framed Roger Rabbit  live action & animation  
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Whitted Ray-Tracing 

http://en.wikipedia.org/wiki/Ray_tracing 
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Perlin Noise 
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Who Framed Roger Rabbit 
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History- the 90s  
•  1990s Visualization, Multimedia, the Net 
•  1991  JPEG/MPEG 
•  1993  Myst, Cyan 
•  1994  U.S. Patent to Pixar  

–  for creating, manipulating and displaying images 
•  1995  Toy Story, Pixar 
•  1995  Internet 2 unveiled 
•  1997  DVD technology unveiled 
•  1998  XML standard 
•  1999  deaths 
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Myst 
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Toy Story 
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Recent History 
•  2000s Virtual Reality, Animation Reality 
•  2001  Significant Movies 

–  Final Fantasy, Square) 
–  Monsters Inc, Pixar 
–  Harry Potter, A.I., Lord of the Rings, Shrek, PDI  
–  The Mummy, ILM 
–  Tomb Raider, Cinesite 
–  Jurassic Park III, Pearl Harbor,ILM 
–  Planet of the Apes, Asylum 

•  2001  Microsoft xBox and Nintendo Gamecube 
•  2001, 2002, 2003 Lord of the Rings 

–  Gollum 
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from Lord of the Rings 
•  Motion Capture Technology 

–  Andy Serkis "played" Gollum by providing his voice and movements 
on set, as well as performing within a motion capture suit.  

•  SKIN 
–  Christoper Hery, Ken McGaugh and Joe Letteri received a 2003 

Academy Award, Scientific or Technical for implementing the BSSRDF 
(Bidirectional Surface Scattering Reflection Distribution Function) 
technique used for Gollum's skin in a production environment. Henrik 
Wann Jensen, Stephen Robert Marschner, and Pat Hanrahan, who 
developed BSSRDF, won another the same year."

•  MASSIVE 
–  a computer program developed by WETA to create automatic battle 

sequences rather than individually animate every soldier. Stephen 
Regelous developed the system in 1996, originally to create crowd 
scenes in King Kong."
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Time for a Break 
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Color 

www.thestagecrew.com  



©College of Computer and Information Science, Northeastern University January 20, 2011 40 

Red, Green, and Blue Light 
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Adding R, G, and B Values 

http://en.wikipedia.org/wiki/RGB 
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From the Hubble 

Hubble Site Link 
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RGB Color Cube 

(1, 1, 1) 

(1, 1, 0) 

(0, 0, 1) 

(0, 1, 1) 

(0, 1, 0) 

(1, 0, 1) 

(1, 0, 0) 
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RGB Color Cube The Dark Side 

(0, 0, 0) 

(1, 1, 0) 

(0, 0, 1) 

(0, 1, 1) 

(0, 1, 0) 

(1, 0, 1) 

(1, 0, 0) 
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Doug Jacobson's RGB Hex 
Triplet Color Chart 
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Making Colors Darker 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 1, 0) 

(1, 0, 1) 

(1, 1, 0) 

(0, 0, 0) 

(0, 0, 0) 

(0, 0, 0) 

(0, 0, 0) 

(0, 0, 0) 

(0, 0, 0) 

(.5, 0, 0) 

(0, 0, .5) 

(0, .5, .5) 

(.5, 0, .5) 

(.5, .5, 0) 

(0, .5, 0) 
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Getting Darker, Left to Right 
 for (int b = 255; b >= 0; b--){ 
  c = new Color(b, 0, 0); g.setPaint(c); 
  g.fillRect(800+3*(255-b), 50, 3, 150); 
  c = new Color(0, b, 0); g.setPaint(c); 
  g.fillRect(800+3*(255-b), 200, 3, 150); 
  c = new Color(0, 0, b); g.setPaint(c); 
  g.fillRect(800+3*(255-b), 350, 3, 150); 
   c = new Color(0, b, b); g.setPaint(c); 
  g.fillRect(800+3*(255-b), 500, 3, 150); 
  c = new Color(b, 0, b); g.setPaint(c); 
  g.fillRect(800+3*(255-b), 650, 3, 150); 
  c = new Color(b, b, 0); g.setPaint(c); 
  g.fillRect(800+3*(255-b), 800, 3, 150); 
 } 
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Gamma Correction 

•  Generally, the displayed intensity is not 
linear in the input (0 ≤ a ≤ 1). 

•  dispIntensity = (maxIntensity)aγ 

•  To find γ 
– Find a that gives you .5 intensity 
– Solve .5 = aγ 

– Υ = ln(.5) 
         ln(a) 
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Gamma Correction 

•  Gamma 
half black half red (127, 0, 0) 
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Making Pale Colors 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 1, 0) 

(1, 0, 1) 

(1, 1, 0) 

(1, 1, 1) 

(1, 1, 1) 

(1, 1, 1) 

(1, 1, 1) 

(1, 1, 1) 

(1, 1, 1) 

(1, .5, .5) 

(.5, .5, 1) 

(.5, 1, 1) 

(1, .5, 1) 

(1, 1, .5) 

(.5, 1, .5) 
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Getting Paler, Left to Right 
for (int w = 0; w < 256; w++){ 

 c = new Color(255, w, w); g.setPaint(c); 
 g.fillRect(3*w, 50, 3, 150); 
 c = new Color(w, 255, w); g.setPaint(c); 
 g.fillRect(3*w, 200, 3, 150); 
 c = new Color(w, w, 255); g.setPaint(c); 
 g.fillRect(3*w, 350, 3, 150); 
 c = new Color(w, 255, 255); g.setPaint(c); 
 g.fillRect(3*w, 500, 3, 150); 
 c = new Color(255,w, 255); g.setPaint(c); 
 g.fillRect(3*w, 650, 3, 150); 
 c = new Color(255, 255, w); g.setPaint(c); 
 g.fillRect(3*w, 800, 3, 150); 

} 
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Portable Pixmap Format 
(ppm) 

A "magic number" for identifying the file type. 
•  A ppm file's magic number is the two characters "P3". 
•  Whitespace (blanks, TABs, CRs, LFs). 
•  A width, formatted as ASCII characters in decimal. 
•  Whitespace. 
•  A height, again in ASCII decimal. 
•  Whitespace. 
•  The maximum color value again in ASCII decimal. 
•  Whitespace. 
•  Width * height pixels, each 3 values between 0 and maximum value. 

–  start at top-left corner; proceed in normal English reading order  
–  three values for each pixel for red, green, and blue, resp. 
–  0 means color is off; maximum value means color is maxxed out 
–  characters from "#" to end-of-line are ignored (comments) 
–  no line should be longer than 70 characters 
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ppm Example 

P3 
# feep.ppm 
4 4 
15 
 0  0  0    0  0  0    0  0  0   15  0 15 
 0  0  0    0 15  7    0  0  0    0  0  0 
 0  0  0    0  0  0    0 15  7    0  0  0 
15  0 15    0  0  0    0  0  0    0  0  0 



©College of Computer and Information Science, Northeastern University January 20, 2011 54 

private void saveImage() { 
 String outFileName = “my.ppm"; 
 File outFile = new File(outFileName); 
 int clrR, clrG, clrB; 
 try { 
  PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(outFile))); 
  out.println("P3");    
  out.print(Integer.toString(xmax-xmin+1)); System.out.println(xmax-xmin+1); 
  out.print(" "); 
  out.println(Integer.toString(ymax-ymin+1)); System.out.println(ymax-ymin+1);   
  out.println("255"); 
  for (int y = ymin; y <= ymax; y++){ 
   for (int x = xmin; x <= xmax; x++) { 
    // compute clrR, clrG, clrB       
    out.print(" "); out.print(clrR); 
    out.print(" "); out.print(clrG);  
    out.print(" "); out.println(clrB); 
   } 
  } 
  out.close(); 
 } catch (IOException e) { 
  System.out.println(e.toString()); 
 } 

} 
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Math Basics 
(All Readings from Shirley) 
•  Sets and Mappings – 2.1 
•  Quadratic Equations – 2.2 
•  Trigonometry – 2.3 
•  Vectors – 2.4 
•  2D Parametric Curves – 2.6 
•  3D Parametric Curves – 2.8 
•  Linear Interpolation – 2.10 
•  Triangles – 2.11 
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Vectors 

•  A vector describes a length and a direction. 

a

b

a = b 

a zero length vector 

1 
a unit vector 
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Vector Operations 

a

a
b

b

-d 

c-d 

Vector Sum 

a -a 

Vector Difference 

d
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Cartesian Coordinates 
•  Any two non-zero, non-parallel 2D vectors 

form a 2D basis. 
•  Any 2D vector can be written uniquely as 

a linear combination of two 2D basis 
vectors. 

•  x and y (or i and j) denote unit vectors 
parallel to the x-axis and y-axis. 

•  x and y form an orthonormal 2D basis. 
                            a = xax + yay 
                                               a =( xa, ya)   or   

•  x, y and z form an orthonormal 3D basis. 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a

a

x
a

y
or a =(ax,ay)  
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Vector Length 

Vector a =( xa, ya )   

( ) ( ) 2 2Length Norm= = = +a ax ya a a

ya 

xa 

a 
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Dot Product 

Dot Product 
a =( xa, ya )   b =( xb, yb ) 

  ab = xa xb + ya yb  

  ab = ||a||  ||b||cos(φ) 

a 

b φ 
θ 

xa = ||a||cos(θ+φ) 

xb = ||b||cos(θ) 

ya = ||a||sin(θ+φ) 

yb = ||b||sin(θ) 
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Projection 

a =( xa, ya )   b =( xb, yb ) 
ab = ||a||||b||cos(φ) 

 The length of the projection 
of a onto b is given by 

a 

b 
φ 

ab 

   
a→b = a cos ϕ( ) = aib

b



©College of Computer and Information Science, Northeastern University January 20, 2011 62 

3D Vectors 

This all holds for 3D vectors too. 
a =( xa, ya, za )    b =( xb, yb, zb ) 

( ) ( ) 2 2 2Length Norm= = = + +a a ax y za a a
  ab = xa xb + ya yb + za zb  

  ab = ||a||||b||cos(φ) 

( )cos ϕ→ = = ia ba b a
b
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Vector Cross Product 

sinϕ× =a b a baxb 

a

b 
φ 

axb is perpendicular to a and b. 

Use the right hand rule to 
determine the direction of axb. 

Image from www.physics.udel.edu 
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Cross Product and Area 

sinϕ× =a b a baxb 

a

b 
φ 

a

b

φ 

sinϕb

||a|| 

||a||x||b|| = area of the parallelogram. 
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Computing the Cross Product 

( ) ( ) ( )

x y z

x y z

y z z y z x x z x y y x

i j k

i j k

× =

= − + − + −

a a a
b b b

a b a b a b a b a b a b

a b
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Linear Interpolation 

•  LERP: /lerp/, vi.,n. 
– Quasi-acronym for Linear Interpolation, used 

as a verb or noun for the operation. 
“Bresenham's algorithm lerps incrementally 
between the two endpoints of the line.” 

             p = (1 – t) a + t b = a + t(b – a) 

a

b

L 

(1-t)L 
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Lerping 

b 

a 
L 

p = (1 – t) a + t b = a + t(b – a) 

t = .5 

t = 1 

t = .25 

t = .75 

t = 0 
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If (x, y) is on the edge ab, 
(x, y) = (1 – t) a + t b = a + t(b – a). 

Similar formulas hold for points on 
the other edges. 

If (x, y) is in the triangle: 

  (x, y) = α a + β b + γ c 

 α  + β  + γ  = 1 

(α , β , γ ) are the  

Barycentric coordinates of (x, y). 

Triangles 
a 

b 

c 

(x,y) 
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Triangles 

a b

c

b-a 

p = a + β(b-a) + γ(c-a) 

γ = 0 

γ = 1 

γ = 2 

γ = -1 Barycentric 
coordinates 

α = 1- β - γ  
p = p(α, β, γ) =  
           αa + βb + γc 

p = (1- β - γ)a + βb + γc 
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 Computing 
Barycentric Coordinates 

( )( ) ( )( ) 0a b a b a ay y x x y y x x− − − − − =

a b a

a b a

y y y y
x x x x
− −=
− −

( ) ( )( ) ( )( ),ab a b a b a af x y y y x x y y x x= − − − − −

( )
( )
,
,

ab

ab c c

f x y
f x y

γ =

a 

b 
c 

(x,y) 
(x,y) 
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Barycentric Coordinates  
as Areas 

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

c
Ab

Aa

a 

b 

c 

(x,y) 
Ac

where A is the area of the  
triangle. 
           α + β + γ = 1 
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3D Triangles 

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

c
Ab

Aa

b 

c 

(x,y,z) 
Ac

where A is the area of the  
triangle. 
           α + β + γ = 1 

This all still 
works in 3D. 

a 
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Assignment 0 
•  You will choose a programming platform for the 

quarter and familiarize yourself with RGB color 
and the ppm format. In part, this assignment is to 
ensure that you have a method of submitting you 
work so that I can:  
–  read the code  
–  compile (or interpret) the code  
–  run the code to produce a file in ppm format. 

•  Sample Program 
•  You will write your own 3D vector tools (e.g. as a 

JAVA class) that you will use for your later 
programming assignments.  


