
©College of Computer and Information Science, Northeastern University January 20, 2011 1

CS 5310
Graduate Computer Graphics

Prof. Harriet Fell
Spring 2011

Lecture 1 – January 19, 2011

©College of Computer and Information Science, Northeastern University January 20, 2011 2

Course Overview - Topics
•  Emphasis on rendering realistic images.
•  Fundamentals of 2- and 3- dimensional

computer graphics
–  2-dimensional algorithms for drawing lines and

curves, anti-aliasing, filling, and clipping
–  Using ray-tracing to render 3-dimensional scenes

•  composed of spheres, polygons, quadric surfaces, and bi-
cubic surfaces

–  Techniques for adding texture to surfaces using
texture and bump maps, noise, and turbulence

•  Other topics as time permits

©College of Computer and Information Science, Northeastern University January 20, 2011 3

Sample Images

©College of Computer and Information Science, Northeastern University January 20, 2011 4

Sample Images

©College of Computer and Information Science, Northeastern University January 20, 2011 5

Sample Images

©College of Computer and Information Science, Northeastern University January 20, 2011 6

Sample Images

©College of Computer and Information Science, Northeastern University January 20, 2011 7

Sample Images

©College of Computer and Information Science, Northeastern University January 20, 2011 8

Course Overview -
Organization

•  Texts:
–  Peter Shirley, et al. Fundamentals of Computer Graphics, 2nd

Edition, A K Peters, 2005
–  Alan Watt, 3D Computer Graphics, 3rd Edition , Addison Wesley,

1999.

•  Grading
–  Assignment 0: 10%
–  Assignment 1: 15%
–  Assignment 2: 15%
–  Assignment 3: 10%
–  Assignment 4: 10%
–  Exam: 25%
–  Project and Presentation: 15%

©College of Computer and Information Science, Northeastern University January 20, 2011 9

Early History
•  http://accad.osu.edu/~waynec/history/timeline.html
•  http://sophia.javeriana.edu.co/~ochavarr/computer_graphics_history/historia/

•  1801 Joseph-Marie Jacquard invented an
automatic loom using punched cards to control
patterns in the fabrics. The introduction of these
looms caused the riots against the replacement of
people by machines.

•  1941 First U.S. regular TV broadcast,
 1st TV commercial (for Bulova watches)
•  1948 Transistors
•  1949 Williams tube (CRT storage tube)

©College of Computer and Information Science, Northeastern University January 20, 2011 10

Jacquard Loom

From Wikipedia.org

©College of Computer and Information Science, Northeastern University January 20, 2011 11

Early TV

©College of Computer and Information Science, Northeastern University January 20, 2011 12

History – the 50s

•  1951 Graphics display, Whirlwind computer
•  1954 color TV
•  1955 Light Pen, SAGE- Lincoln Lab
•  1958 Graphics Console, TX-1 MIT
•  1958 John Whitney Sr. uses analog
 computer to make art

©College of Computer and Information Science, Northeastern University January 20, 2011 13

1951 Graphics display,
Whirlwind computer

©College of Computer and Information Science, Northeastern University January 20, 2011 14

SAGE

©College of Computer and Information Science, Northeastern University January 20, 2011 15

John Whitney Sr. 1958 CG

Vertigo Start Titles

©College of Computer and Information Science, Northeastern University January 20, 2011 16

History - the 60s
•  1961 Spacewars, 1st video game, Steve Russell, MIT

for PDP-1
•  1963 Sketchpad, Ivan Sutherland, MIT
•  1963 Mouse invented, Doug Englebart, SRI
•  1963 Roberts hidden line algorithm, MIT
•  1965 Bresenham Algorithm for plotting lines, IBM
•  1966 Odyssey, home video game, Ralph Baer,

–  Sanders Assoc, is 1st consumer CG product
•  1967 Full-color, real-time, interactive
 flight simulator for NASA - Rod Rougelet, GE

©College of Computer and Information Science, Northeastern University January 20, 2011 17

Spacewars

©College of Computer and Information Science, Northeastern University January 20, 2011 18

Ivan Sutherland & Sketchpad System
on TX-2 at MIT(1963)

©College of Computer and Information Science, Northeastern University January 20, 2011 19

Odyssey

http://gamesmuseum.pixesthesia.com/history/gen1/pong/

©College of Computer and Information Science, Northeastern University January 20, 2011 20

Roberts Hidden Line Algorithm
Block scene (576 blocks)

©College of Computer and Information Science, Northeastern University January 20, 2011 21

Bresenham Line Algorithm

(0, 0)

(9, 7)

©College of Computer and Information Science, Northeastern University January 20, 2011 22

History – the 70s
•  1970s Utah dominated - algorithm development
•  1970 Watkins algorithm for visible surfaces
•  1970 Bezier free-form curve representation
•  1971 Gouraud shading
•  1973 Principles of Interactive Computer Graphics (Newman and Sproull)
•  1974 Addressable cursor in a graphics display terminal - DEC VT52
•  1974 z-buffer developed by Ed Catmull (Univ of Utah)
•  1975 Phong shading
•  1975 Fractals - Benoit Mandelbrot (IBM)
•  1978 Bump mapping, Blinn
•  1979 George Lucas starts Lucasfilm

–  with Ed Catmull, Ralph Guggenheim, and Alvy Ray Smith

©College of Computer and Information Science, Northeastern University January 20, 2011 23

Watkins Scan-Line Algorithm

A

B

CD

E

F
1

2
1 2 3 4

1 2 3 4

©College of Computer and Information Science, Northeastern University January 20, 2011 24

Bezier Curves

©College of Computer and Information Science, Northeastern University January 20, 2011 25

Gouraud Shading

http://freespace.virgin.net/hugo.elias/graphics/x_polygo.htm

©College of Computer and Information Science, Northeastern University January 20, 2011 26

Phong Shading

©College of Computer and Information Science, Northeastern University January 20, 2011 27

Fractals

©College of Computer and Information Science, Northeastern University January 20, 2011 28

Bump Map

Bump Maps in PovRay

©College of Computer and Information Science, Northeastern University January 20, 2011 29

History - the 80s
•  1980s Cheaper machines, memory - quest for realsim
•  1980 Ray Tracing, Turner Whitted, Bell Labs
•  1981 IBM introduces the first IBM PC (16 bit 8088 chip)
•  1982 Data Glove, Atari
•  1984 Macintosh computer

–  introduced with Clio award winning commercial during Super Bowl
•  1985 Perlin Noise
•  1986 GIF format (CompuServe)
•  1988 Who Framed Roger Rabbit live action & animation

©College of Computer and Information Science, Northeastern University January 20, 2011 30

Whitted Ray-Tracing

http://en.wikipedia.org/wiki/Ray_tracing

©College of Computer and Information Science, Northeastern University January 20, 2011 31

Perlin Noise

©College of Computer and Information Science, Northeastern University January 20, 2011 32

Who Framed Roger Rabbit

©College of Computer and Information Science, Northeastern University January 20, 2011 33

History- the 90s
•  1990s Visualization, Multimedia, the Net
•  1991 JPEG/MPEG
•  1993 Myst, Cyan
•  1994 U.S. Patent to Pixar

–  for creating, manipulating and displaying images
•  1995 Toy Story, Pixar
•  1995 Internet 2 unveiled
•  1997 DVD technology unveiled
•  1998 XML standard
•  1999 deaths

©College of Computer and Information Science, Northeastern University January 20, 2011 34

Myst

©College of Computer and Information Science, Northeastern University January 20, 2011 35

Toy Story

©College of Computer and Information Science, Northeastern University January 20, 2011 36

Recent History
•  2000s Virtual Reality, Animation Reality
•  2001 Significant Movies

–  Final Fantasy, Square)
–  Monsters Inc, Pixar
–  Harry Potter, A.I., Lord of the Rings, Shrek, PDI
–  The Mummy, ILM
–  Tomb Raider, Cinesite
–  Jurassic Park III, Pearl Harbor,ILM
–  Planet of the Apes, Asylum

•  2001 Microsoft xBox and Nintendo Gamecube
•  2001, 2002, 2003 Lord of the Rings

–  Gollum

©College of Computer and Information Science, Northeastern University January 20, 2011 37

from Lord of the Rings
•  Motion Capture Technology

–  Andy Serkis "played" Gollum by providing his voice and movements
on set, as well as performing within a motion capture suit.

•  SKIN
–  Christoper Hery, Ken McGaugh and Joe Letteri received a 2003

Academy Award, Scientific or Technical for implementing the BSSRDF
(Bidirectional Surface Scattering Reflection Distribution Function)
technique used for Gollum's skin in a production environment. Henrik
Wann Jensen, Stephen Robert Marschner, and Pat Hanrahan, who
developed BSSRDF, won another the same year."

•  MASSIVE
–  a computer program developed by WETA to create automatic battle

sequences rather than individually animate every soldier. Stephen
Regelous developed the system in 1996, originally to create crowd
scenes in King Kong."

©College of Computer and Information Science, Northeastern University January 20, 2011 38

Time for a Break

©College of Computer and Information Science, Northeastern University January 20, 2011 39

Color

www.thestagecrew.com

©College of Computer and Information Science, Northeastern University January 20, 2011 40

Red, Green, and Blue Light

©College of Computer and Information Science, Northeastern University January 20, 2011 41

Adding R, G, and B Values

http://en.wikipedia.org/wiki/RGB

©College of Computer and Information Science, Northeastern University January 20, 2011 42

From the Hubble

Hubble Site Link

©College of Computer and Information Science, Northeastern University January 20, 2011 43

RGB Color Cube

(1, 1, 1)

(1, 1, 0)

(0, 0, 1)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(1, 0, 0)

©College of Computer and Information Science, Northeastern University January 20, 2011 44

RGB Color Cube The Dark Side

(0, 0, 0)

(1, 1, 0)

(0, 0, 1)

(0, 1, 1)

(0, 1, 0)

(1, 0, 1)

(1, 0, 0)

©College of Computer and Information Science, Northeastern University January 20, 2011 45

Doug Jacobson's RGB Hex
Triplet Color Chart

©College of Computer and Information Science, Northeastern University January 20, 2011 46

Making Colors Darker

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 1, 0)

(1, 0, 1)

(1, 1, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(.5, 0, 0)

(0, 0, .5)

(0, .5, .5)

(.5, 0, .5)

(.5, .5, 0)

(0, .5, 0)

©College of Computer and Information Science, Northeastern University January 20, 2011 47

Getting Darker, Left to Right
 for (int b = 255; b >= 0; b--){
 c = new Color(b, 0, 0); g.setPaint(c);
 g.fillRect(800+3*(255-b), 50, 3, 150);
 c = new Color(0, b, 0); g.setPaint(c);
 g.fillRect(800+3*(255-b), 200, 3, 150);
 c = new Color(0, 0, b); g.setPaint(c);
 g.fillRect(800+3*(255-b), 350, 3, 150);
 c = new Color(0, b, b); g.setPaint(c);
 g.fillRect(800+3*(255-b), 500, 3, 150);
 c = new Color(b, 0, b); g.setPaint(c);
 g.fillRect(800+3*(255-b), 650, 3, 150);
 c = new Color(b, b, 0); g.setPaint(c);
 g.fillRect(800+3*(255-b), 800, 3, 150);
 }

©College of Computer and Information Science, Northeastern University January 20, 2011 48

Gamma Correction

•  Generally, the displayed intensity is not
linear in the input (0 ≤ a ≤ 1).

•  dispIntensity = (maxIntensity)aγ

•  To find γ
– Find a that gives you .5 intensity
– Solve .5 = aγ

– Υ = ln(.5)
 ln(a)

©College of Computer and Information Science, Northeastern University January 20, 2011 49

Gamma Correction

•  Gamma
half black half red (127, 0, 0)

©College of Computer and Information Science, Northeastern University January 20, 2011 50

Making Pale Colors

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 1, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

(1, 1, 1)

(1, .5, .5)

(.5, .5, 1)

(.5, 1, 1)

(1, .5, 1)

(1, 1, .5)

(.5, 1, .5)

©College of Computer and Information Science, Northeastern University January 20, 2011 51

Getting Paler, Left to Right
for (int w = 0; w < 256; w++){

 c = new Color(255, w, w); g.setPaint(c);
 g.fillRect(3*w, 50, 3, 150);
 c = new Color(w, 255, w); g.setPaint(c);
 g.fillRect(3*w, 200, 3, 150);
 c = new Color(w, w, 255); g.setPaint(c);
 g.fillRect(3*w, 350, 3, 150);
 c = new Color(w, 255, 255); g.setPaint(c);
 g.fillRect(3*w, 500, 3, 150);
 c = new Color(255,w, 255); g.setPaint(c);
 g.fillRect(3*w, 650, 3, 150);
 c = new Color(255, 255, w); g.setPaint(c);
 g.fillRect(3*w, 800, 3, 150);

}

©College of Computer and Information Science, Northeastern University January 20, 2011 52

Portable Pixmap Format
(ppm)

A "magic number" for identifying the file type.
•  A ppm file's magic number is the two characters "P3".
•  Whitespace (blanks, TABs, CRs, LFs).
•  A width, formatted as ASCII characters in decimal.
•  Whitespace.
•  A height, again in ASCII decimal.
•  Whitespace.
•  The maximum color value again in ASCII decimal.
•  Whitespace.
•  Width * height pixels, each 3 values between 0 and maximum value.

–  start at top-left corner; proceed in normal English reading order
–  three values for each pixel for red, green, and blue, resp.
–  0 means color is off; maximum value means color is maxxed out
–  characters from "#" to end-of-line are ignored (comments)
–  no line should be longer than 70 characters

©College of Computer and Information Science, Northeastern University January 20, 2011 53

ppm Example

P3
feep.ppm
4 4
15
 0 0 0 0 0 0 0 0 0 15 0 15
 0 0 0 0 15 7 0 0 0 0 0 0
 0 0 0 0 0 0 0 15 7 0 0 0
15 0 15 0 0 0 0 0 0 0 0 0

©College of Computer and Information Science, Northeastern University January 20, 2011 54

private void saveImage() {
 String outFileName = “my.ppm";
 File outFile = new File(outFileName);
 int clrR, clrG, clrB;
 try {
 PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(outFile)));
 out.println("P3");
 out.print(Integer.toString(xmax-xmin+1)); System.out.println(xmax-xmin+1);
 out.print(" ");
 out.println(Integer.toString(ymax-ymin+1)); System.out.println(ymax-ymin+1);
 out.println("255");
 for (int y = ymin; y <= ymax; y++){
 for (int x = xmin; x <= xmax; x++) {
 // compute clrR, clrG, clrB
 out.print(" "); out.print(clrR);
 out.print(" "); out.print(clrG);
 out.print(" "); out.println(clrB);
 }
 }
 out.close();
 } catch (IOException e) {
 System.out.println(e.toString());
 }

}

©College of Computer and Information Science, Northeastern University January 20, 2011 55

Math Basics
(All Readings from Shirley)
•  Sets and Mappings – 2.1
•  Quadratic Equations – 2.2
•  Trigonometry – 2.3
•  Vectors – 2.4
•  2D Parametric Curves – 2.6
•  3D Parametric Curves – 2.8
•  Linear Interpolation – 2.10
•  Triangles – 2.11

©College of Computer and Information Science, Northeastern University January 20, 2011 56

Vectors

•  A vector describes a length and a direction.

a

b

a = b

a zero length vector

1
a unit vector

©College of Computer and Information Science, Northeastern University January 20, 2011 57

Vector Operations

a

a
b

b

-d

c-d

Vector Sum

a -a

Vector Difference

d

©College of Computer and Information Science, Northeastern University January 20, 2011 58

Cartesian Coordinates
•  Any two non-zero, non-parallel 2D vectors

form a 2D basis.
•  Any 2D vector can be written uniquely as

a linear combination of two 2D basis
vectors.

•  x and y (or i and j) denote unit vectors
parallel to the x-axis and y-axis.

•  x and y form an orthonormal 2D basis.
 a = xax + yay
 a =(xa, ya) or

•  x, y and z form an orthonormal 3D basis.

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a

a

x
a

y
or a =(ax,ay)

©College of Computer and Information Science, Northeastern University January 20, 2011 59

Vector Length

Vector a =(xa, ya)

() () 2 2Length Norm= = = +a ax ya a a

ya

xa

a

©College of Computer and Information Science, Northeastern University January 20, 2011 60

Dot Product

Dot Product
a =(xa, ya) b =(xb, yb)

 ab = xa xb + ya yb

 ab = ||a|| ||b||cos(φ)

a

b φ
θ

xa = ||a||cos(θ+φ)

xb = ||b||cos(θ)

ya = ||a||sin(θ+φ)

yb = ||b||sin(θ)

©College of Computer and Information Science, Northeastern University January 20, 2011 61

Projection

a =(xa, ya) b =(xb, yb)
ab = ||a||||b||cos(φ)

 The length of the projection
of a onto b is given by

a

b
φ

ab

a→b = a cos ϕ() = aib

b

©College of Computer and Information Science, Northeastern University January 20, 2011 62

3D Vectors

This all holds for 3D vectors too.
a =(xa, ya, za) b =(xb, yb, zb)

() () 2 2 2Length Norm= = = + +a a ax y za a a
 ab = xa xb + ya yb + za zb

 ab = ||a||||b||cos(φ)

()cos ϕ→ = = ia ba b a
b

©College of Computer and Information Science, Northeastern University January 20, 2011 63

Vector Cross Product

sinϕ× =a b a baxb

a

b
φ

axb is perpendicular to a and b.

Use the right hand rule to
determine the direction of axb.

Image from www.physics.udel.edu

©College of Computer and Information Science, Northeastern University January 20, 2011 64

Cross Product and Area

sinϕ× =a b a baxb

a

b
φ

a

b

φ

sinϕb

||a||

||a||x||b|| = area of the parallelogram.

©College of Computer and Information Science, Northeastern University January 20, 2011 65

Computing the Cross Product

() () ()

x y z

x y z

y z z y z x x z x y y x

i j k

i j k

× =

= − + − + −

a a a
b b b

a b a b a b a b a b a b

a b

©College of Computer and Information Science, Northeastern University January 20, 2011 66

Linear Interpolation

•  LERP: /lerp/, vi.,n.
– Quasi-acronym for Linear Interpolation, used

as a verb or noun for the operation.
“Bresenham's algorithm lerps incrementally
between the two endpoints of the line.”

 p = (1 – t) a + t b = a + t(b – a)

a

b

L

(1-t)L

©College of Computer and Information Science, Northeastern University January 20, 2011 67

Lerping

b

a
L

p = (1 – t) a + t b = a + t(b – a)

t = .5

t = 1

t = .25

t = .75

t = 0

©College of Computer and Information Science, Northeastern University January 20, 2011 68

If (x, y) is on the edge ab,
(x, y) = (1 – t) a + t b = a + t(b – a).

Similar formulas hold for points on
the other edges.

If (x, y) is in the triangle:

 (x, y) = α a + β b + γ c

 α + β + γ = 1

(α , β , γ) are the

Barycentric coordinates of (x, y).

Triangles
a

b

c

(x,y)

©College of Computer and Information Science, Northeastern University January 20, 2011 69

Triangles

a b

c

b-a

p = a + β(b-a) + γ(c-a)

γ = 0

γ = 1

γ = 2

γ = -1 Barycentric
coordinates

α = 1- β - γ
p = p(α, β, γ) =
 αa + βb + γc

p = (1- β - γ)a + βb + γc

©College of Computer and Information Science, Northeastern University January 20, 2011 70

 Computing
Barycentric Coordinates

()() ()() 0a b a b a ay y x x y y x x− − − − − =

a b a

a b a

y y y y
x x x x
− −=
− −

() ()() ()(),ab a b a b a af x y y y x x y y x x= − − − − −

()
()
,
,

ab

ab c c

f x y
f x y

γ =

a

b
c

(x,y)
(x,y)

©College of Computer and Information Science, Northeastern University January 20, 2011 71

Barycentric Coordinates
as Areas

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

c
Ab

Aa

a

b

c

(x,y)
Ac

where A is the area of the
triangle.
 α + β + γ = 1

©College of Computer and Information Science, Northeastern University January 20, 2011 72

3D Triangles

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

c
Ab

Aa

b

c

(x,y,z)
Ac

where A is the area of the
triangle.
 α + β + γ = 1

This all still
works in 3D.

a

©College of Computer and Information Science, Northeastern University January 20, 2011 73

Assignment 0
•  You will choose a programming platform for the

quarter and familiarize yourself with RGB color
and the ppm format. In part, this assignment is to
ensure that you have a method of submitting you
work so that I can:
–  read the code
–  compile (or interpret) the code
–  run the code to produce a file in ppm format.

•  Sample Program
•  You will write your own 3D vector tools (e.g. as a

JAVA class) that you will use for your later
programming assignments.

