

CS 5310 Graduate Computer Graphics Prof. Harriet Fell Spring 2011 Lecture 1 – January 19, 2011

Course Overview - Topics

- Emphasis on rendering realistic images.
- Fundamentals of 2- and 3- dimensional computer graphics
 - 2-dimensional algorithms for drawing lines and curves, anti-aliasing, filling, and clipping
 - Using ray-tracing to render 3-dimensional scenes
 - composed of spheres, polygons, quadric surfaces, and bicubic surfaces
 - Techniques for adding texture to surfaces using texture and bump maps, noise, and turbulence
- Other topics as time permits

Course Overview -Organization

- Texts:
 - Peter Shirley, et al. Fundamentals of Computer Graphics, 2nd Edition, A K Peters, 2005
 - Alan Watt, 3D Computer Graphics, 3rd Edition, Addison Wesley, 1999.

Grading

- Assignment 0: 10%
- Assignment 1: 15%
- Assignment 2: 15%
- Assignment 3: 10%
- Assignment 4: 10%
- Exam: 25%
- Project and Presentation: 15%

Early <u>History</u>

- <u>http://accad.osu.edu/~waynec/history/timeline.html</u>
- <u>http://sophia.javeriana.edu.co/~ochavarr/computer_graphics_history/historia/</u>
- 1801 Joseph-Marie Jacquard invented an automatic <u>loom</u> using punched cards to control patterns in the fabrics. The introduction of these looms caused the riots against the replacement of people by machines.
- 1941 First U.S. regular <u>TV broadcast</u>, 1st TV commercial (for Bulova watches)
- 1948 Transistors
- 1949 Williams tube (CRT storage tube)

Jacquard Loom

From Wikipedia.org

January 20, 2011

©College of Computer and Information Science, Northeastern University

Early TV

History – the 50s

- 1951 Graphics display, Whirlwind computer
- 1954 color TV
- 1955 Light Pen, SAGE- Lincoln Lab
- 1958 Graphics Console, TX-1 MIT
- 1958 <u>John Whitney Sr.</u> uses analog computer to make art

1951 Graphics display, Whirlwind computer

John Whitney Sr. 1958 CG

Vertigo Start Titles

January 20, 2011

©College of Computer and Information Science, Northeastern University

History - the 60s

- 1961 <u>Spacewars</u>, 1st video game, Steve Russell, MIT for PDP-1
- 1963 Sketchpad, Ivan Sutherland, MIT
- 1963 Mouse invented, Doug Englebart, SRI
- 1963 Roberts hidden line algorithm, MIT
- 1965 <u>Bresenham Algorithm for plotting lines</u>, IBM
- 1966 Odyssey, home video game, Ralph Baer,
 - Sanders Assoc, is 1st consumer CG product
- 1967 Full-color, real-time, interactive flight simulator for NASA - Rod Rougelet, GE

Spacewars

Ivan Sutherland & Sketchpad System on TX-2 at MIT(1963)

Odyssey

The very first home videogame, Odyssey, used Laner-created transparent overlays in lieu of computer-generated graphics.

http://gamesmuseum.pixesthesia.com/history/gen1/pong/

January 20, 2011

©College of Computer and Information Science, Northeastern University

Roberts Hidden Line Algorithm Block scene (576 blocks)

January 20, 2011

Bresenham Line Algorithm

History – the 70s

- 1970s Utah dominated algorithm development
- 1970 Watkins algorithm for visible surfaces
- 1970 Bezier free-form curve representation
- 1971 Gouraud shading
- 1973 Principles of Interactive Computer Graphics (Newman and Sproull)
- 1974 Addressable cursor in a graphics display terminal DEC VT52
- 1974 z-buffer developed by Ed Catmull (Univ of Utah)
- 1975 Phong shading
- 1975 Fractals Benoit Mandelbrot (IBM)
- 1978 <u>Bump mapping</u>, Blinn
- 1979 George Lucas starts Lucasfilm
 - with Ed Catmull, Ralph Guggenheim, and Alvy Ray Smith

Watkins Scan-Line Algorithm

Bezier Curves

Gouraud Shading

http://freespace.virgin.net/hugo.elias/graphics/x_polygo.htm

January 20, 2011

Phong Shading

PHONG SHADING

FLAT SHADING

January 20, 2011

©College of Computer and Information Science, Northeastern University

Fractals

Bump Map

Bump Maps in PovRay

January 20, 2011

©College of Computer and Information Science, Northeastern University

History - the 80s

- 1980s Cheaper machines, memory quest for realsim
- 1980 Ray Tracing, Turner Whitted, Bell Labs
- 1981 IBM introduces the first IBM PC (16 bit 8088 chip)
- 1982 Data Glove, Atari
- 1984 Macintosh computer
 - introduced with Clio award winning commercial during Super Bowl
- 1985 <u>Perlin Noise</u>
- 1986 GIF format (CompuServe)
- 1988 *Who Framed Roger Rabbit* live action & animation

Whitted Ray-Tracing

http://en.wikipedia.org/wiki/Ray_tracing ©College of Computer and Information Science, Northeastern University

January 20, 2011

Perlin Noise

Who Framed Roger Rabbit

History- the 90s

- 1990s Visualization, Multimedia, the Net
- 1991 JPEG/MPEG
- 1993 <u>Myst</u>, Cyan
- 1994 U.S. Patent to Pixar
 - for creating, manipulating and displaying images
- 1995 Toy Story, Pixar
- 1995 Internet 2 unveiled
- 1997 DVD technology unveiled
- 1998 XML standard
- 1999 deaths

Myst

Toy Story

Recent History

- 2000s Virtual Reality, Animation Reality
- 2001 Significant Movies
 - Final Fantasy, Square)
 - Monsters Inc, Pixar
 - Harry Potter, A.I., Lord of the Rings, Shrek, PDI
 - The Mummy, ILM
 - Tomb Raider, Cinesite
 - Jurassic Park III, Pearl Harbor, ILM
 - Planet of the Apes, Asylum
- 2001 Microsoft xBox and Nintendo Gamecube
- 2001, 2002, 2003 Lord of the Rings

 <u>Gollum</u>

from Lord of the Rings

- Motion Capture Technology
 - Andy Serkis "played" Gollum by providing his voice and movements on set, as well as performing within a motion capture suit.

SKIN

 Christoper Hery, Ken McGaugh and Joe Letteri received a 2003 Academy Award, Scientific or Technical for implementing the BSSRDF (Bidirectional Surface Scattering Reflection Distribution Function) technique used for Gollum's skin in a production environment. Henrik Wann Jensen, Stephen Robert Marschner, and Pat Hanrahan, who developed BSSRDF, won another the same year.

MASSIVE

 a computer program developed by WETA to create automatic battle sequences rather than individually animate every soldier. Stephen Regelous developed the system in 1996, originally to create crowd scenes in *King Kong*.

January 20, 2011

©College of Computer and Information Science, Northeastern University

Time for a Break

www.thestagecrew.com

©College of Computer and Information Science, Northeastern University

January 20, 2011

Adding R, G, and B Values

http://en.wikipedia.org/wiki/RGB

January 20, 2011

©College of Computer and Information Science, Northeastern University

From the Hubble

Hubble Site Link

January 20, 2011

RGB Color Cube The Dark Side

Doug Jacobson's RGB Hex Triplet Color Chart

RGB Hex Triplet Color Chart If you find this chart helpful, send E-mail-wareWhat a concept! If you find this chart helpful, send mail bio Doug and say "Thanks!". If you find this chart helpful, send												
		FFFFFF		FFCCFF		FF99FF		FF66FF		FF33FF	FFØØFF	
100 A		FFFFCC		FFCCCC		FF99CC		FF66CC		FF33CC	FFØØCC	<i>2</i>
		FFFF99		FFCC99		FF9999		FF6699		FF3399	FF0099	
EEEEEE		FFFF66		FFCC66		FF9966		FF6666		FF3366	FF0066	00FF00
DODDOD		FFFF33		FFCC33		FF9933		FF6633		FF3333	FFØØ33	ØØEEØØ
		FFFFØØ		FFCCØØ		FF9900		FF6600		FF3300	FF0000	00DD00
ввевев		CCEEEE		CCCCFF		CC99FF		CC66FF		CC33FF	CCØØFF	00CC00
		CCFFCC		CCCCCC		CC99CC		CC66CC		CC33CC	CCØØCC	ØØBBØØ
999999		CCFF99		cccc99		CC99999		CC6699		CC3399	CC0099	00AA00
888888		CCFF66		CCCC66		CC9966		CC6666		CC3366	CC0066	009900
777777		CCFF33		CCCC33		CC9933		CC6633		CC33333	CCØØ33	008800
666666		CCFFØØ		CCCC00		CC9900		CC6600		CC3300	CC0808	007700
555555		99FFFF		99CCFF		9999FF		9966FF		9933FF	9900FF	006680
444444		99FFCC		990000		9999CC		9966CC		9933CC	9900CC	005500
333333		99FF99		990099		9999999		996699		993399	990099	004400
222222		99FF66		990066		999966		996666		993366	990066	003300
111111		99FF33		99CC33		999933		996633		993333	990033	002200
000000		99FFØØ		990000		999900		996600		993300	990000	001100
FF0000		66FFFF		66CCFF		6699FF		6666FF		6633FF	6600FF	0000FF
EE0800		66FFCC		66CCCC		6699CC		6666CC		6633CC	6600CC	0000EE
DD0000		66FF99		66CC99		669999		666699		663399	660099	0000DD
CC0808		66FF66		66CC66		669966		666666		663366	660266	0000CC
BB0000		66FF33		66CC33		669933		666633		663333	660033	0000BB
00004A		66FFØØ		66CC00		669900		666600		663300	660808	0000AA
990808		33FFFF		33CCFF		3399FF		3366FF		3333FF	3300FF	0000999
880000		33FFCC		33CCCC		3399CC		3366CC		3333CC	3300CC	000088
770000		33FF99		330099		339999		336699		333399	330099	000077
660808		33FF66		33CC66		339966		336666		333366	330066	000066
550000		33FF33		33CC33		339933		336633		333333	330033	000055
440200		33FFØØ		330000		339900		336600		333300	330000	000044
330000		ØØFFFF		ØØCCFF		0099FF		0066FF		0033FF	0000FF	000033
220808		ØØFFCC		ØØCCCC		0099CC		0066CC		0033CC	0000CC	000022
110000		00FF99		ØØCC99		0099999		006699		003399	0000999	000011
		00FF66		00CC66		009966		006666		003366	0000666	
		00FF33		ØØCC33		009933		006633		003333	000033	
		00FF00		000000		009900		006600		003300	000000	
				Cop	yright	All Rights R	ougla: tesen	s R. Jacobso /ed	8173			

©College of Computer and Information Science, Northeastern University

Making Colors Darker

(1, 0, 0)	(.5, 0, 0)	(0, 0, 0)
(0, 1, 0)	(0, .5, 0)	(0, 0, 0)
(0, 0, 1)	(0, 0, .5)	(0, 0, 0)
(1, 1, 0)	(0, .5, .5)	(0, 0, 0)
(1, 0, 1)	(.5, 0, .5)	(0, 0, 0)
(1, 1, 0)	(.5, .5, 0)	(0, 0, 0)

Getting Darker, Left to Right

for (int b = 255; b >= 0; b--){ **c = new Color(b, 0, 0);** g.setPaint(c); g.fillRect(800+3*(255-b), 50, 3, 150); c = new Color(0, b, 0); g.setPaint(c);g.fillRect(800+3*(255-b), 200, 3, 150); c = new Color(0, 0, b); g.setPaint(c); g.fillRect(800+3*(255-b), 350, 3, 150); c = new Color(0, b, b); g.setPaint(c); g.fillRect(800+3*(255-b), 500, 3, 150); c = new Color(b, 0, b); g.setPaint(c); g.fillRect(800+3*(255-b), 650, 3, 150); c = new Color(b, b, 0); g.setPaint(c);g.fillRect(800+3*(255-b), 800, 3, 150);

Gamma Correction

- Generally, the displayed intensity is not linear in the input $(0 \le a \le 1)$.
- dispIntensity = $(maxIntensity)a^{\gamma}$
- To find $\boldsymbol{\gamma}$
 - Find a that gives you .5 intensity

$$-$$
 Solve $.5 = a^{\gamma}$

$$-Y = ln(.5)$$

ln(a)

Gamma Correction

<u>Gamma</u>

Making Pale Colors

(1, 0, 0)	(1, .5, .5)	(1, 1, 1)
(0, 1, 0)	(.5, 1, .5)	(1, 1, 1)
(0, 0, 1)	(.5, .5, 1)	(1, 1, 1)
(1, 1, 0)	(.5, 1, 1)	(1, 1, 1)
(1, 0, 1)	(1, .5, 1)	(1, 1, 1)
(1, 1, 0)	(1, 1, .5)	(1, 1, 1)

Getting Paler, Left to Right

for (int w = 0; w < 256; w++){

- **c = new Color(255, w, w);** g.setPaint(c); g.fillRect(3*w, 50, 3, 150);
- **c = new Color(w, 255, w);** g.setPaint(c); g.fillRect(3*w, 200, 3, 150);
- **c = new Color(w, w, 255);** g.setPaint(c); g.fillRect(3*w, 350, 3, 150);
- **c = new Color(w, 255, 255);** g.setPaint(c); g.fillRect(3*w, 500, 3, 150);
- c = new Color(255,w, 255); g.setPaint(c);
- g.fillRect(3*w, 650, 3, 150);
- **c = new Color(255, 255, w);** g.setPaint(c); g.fillRect(3*w, 800, 3, 150);

}

Portable Pixmap Format (ppm)

A "magic number" for identifying the file type.

- A ppm file's magic number is the two characters "P3".
- Whitespace (blanks, TABs, CRs, LFs).
- A width, formatted as ASCII characters in decimal.
- Whitespace.
- A height, again in ASCII decimal.
- Whitespace.
- The maximum color value again in ASCII decimal.
- Whitespace.
- Width * height pixels, each 3 values between 0 and maximum value.
 - start at top-left corner; proceed in normal English reading order
 - three values for each pixel for red, green, and blue, resp.
 - 0 means color is off; maximum value means color is maxxed out
 - characters from "#" to end-of-line are ignored (comments)
 - no line should be longer than 70 characters

ppm Example

P3 # feep.ppm 44 15 000 000 15015 0 0 ()015700 ()0 0 \mathbf{O} ()()0 0 0 0 15 7 0 0 \mathbf{O} ()()() 0 15 0 15 0 0 ()0 () \mathbf{O} ()()

```
private void saveImage() {
   String outFileName = "my.ppm";
   File outFile = new File(outFileName);
   int clrR, clrG, clrB;
   try {
       PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(outFile)));
       out.println("P3");
       out.print(Integer.toString(xmax-xmin+1)); System.out.println(xmax-xmin+1);
       out.print("");
       out.println(Integer.toString(ymax-ymin+1)); System.out.println(ymax-ymin+1);
       out.println("255");
       for (int y = ymin; y \le ymax; y++)
           for (int x = xmin; x \le xmax; x++) {
             // compute clrR, clrG, clrB
             out.print(""); out.print(clrR);
             out.print(" "); out.print(clrG);
             out.print(" "); out.println(clrB);
           }
       out.close();
   } catch (IOException e) {
       System.out.println(e.toString());
 January 20, 2011
```


Math Basics

(All Readings from Shirley)

- Sets and Mappings 2.1
- Quadratic Equations 2.2
- Trigonometry 2.3
- Vectors 2.4
- 2D Parametric Curves 2.6
- 3D Parametric Curves 2.8
- Linear Interpolation 2.10
- Triangles 2.11

Vectors

• A vector describes a length and a direction.

a = b

Vector Operations

Cartesian Coordinates

- Any two non-zero, non-parallel 2D vectors form a <u>2D basis</u>.
- Any 2D vector can be written uniquely as a linear combination of two 2D basis vectors.
- **x** and **y** (or **i** and **j**) denote unit vectors parallel to the *x*-axis and *y*-axis.
- **x** and **y** form an *orthonormal* 2D basis.

$$a = x_a \mathbf{x} + y_a \mathbf{y}$$

$$a = (x_a, y_a) \text{ or } a = \begin{bmatrix} x_a \\ y_a \end{bmatrix}$$

or $a = (a_x, a_y)$
x form an orthonormal 3D basis

• **x**, **y** and **z** form an *orthonormal* 3D basis.

Vector Length

Vector $\mathbf{a} = (x_a, y_a)$

Dot Product

Dot Product

$$\mathbf{a} = (\mathbf{x}_{a}, \mathbf{y}_{a}) \qquad \mathbf{b} = (\mathbf{x}_{b}, \mathbf{y}_{b}) \mathbf{a} \cdot \mathbf{b} = \mathbf{x}_{a} \mathbf{x}_{b} + \mathbf{y}_{a} \mathbf{y}_{b} \qquad \mathbf{x}_{a} = ||\mathbf{a}||\cos(\theta + \varphi) \mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}||\cos(\varphi) \qquad \mathbf{x}_{b} = ||\mathbf{b}||\cos(\theta) \mathbf{y}_{a} = ||\mathbf{a}||\sin(\theta + \varphi) \mathbf{y}_{b} = ||\mathbf{b}||\sin(\theta) \mathbf{y}_{b} = ||\mathbf{b}||\sin(\theta)$$

$$a = (x_{a}, y_{a}) \qquad b = (x_{b}, y_{b})$$

$$a \cdot b = ||a|| \cdot ||b|| \cos(\varphi) \qquad a \rightarrow b$$
The length of the projection of a onto b is given by
$$a \rightarrow b = ||a|| \cos(\varphi) = \frac{a \cdot b}{||b||}$$

3D Vectors

This all holds for 3D vectors too. $\mathbf{b} = (x_{h}, y_{h}, z_{h})$ $a = (x_a, y_a, z_a)$ Length (**a**) = Norm (**a**) = $||\mathbf{a}|| = \sqrt{x_a^2 + y_a^2 + z_a^2}$ $a \cdot b = x_a x_b + y_a y_b + z_a z_b$ $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos(\varphi)$ $\mathbf{a} \rightarrow \mathbf{b} = \|\mathbf{a}\| \cos(\varphi) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$

Vector Cross Product

axb

Ø

a

axb is perpendicular to a and b.

Use the right hand rule to determine the direction of **axb**.

Image from www.physics.udel.edu

Cross Product and Area

 $||\mathbf{a}||\mathbf{x}||\mathbf{b}|| = \text{area of the parallelogram.}$

Computing the Cross Product

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ \mathbf{b}_x & \mathbf{b}_y & \mathbf{b}_z \end{vmatrix}$$

$$= \left(\mathbf{a}_{y}\mathbf{b}_{z} - \mathbf{a}_{z}\mathbf{b}_{y}\right)i + \left(\mathbf{a}_{z}\mathbf{b}_{x} - \mathbf{a}_{x}\mathbf{b}_{z}\right)j + \left(\mathbf{a}_{x}\mathbf{b}_{y} - \mathbf{a}_{y}\mathbf{b}_{x}\right)k$$

Linear Interpolation

- LERP: /lerp/, vi.,n.
 - Quasi-acronym for Linear Interpolation, used as a verb or noun for the operation.
 "Bresenham's algorithm lerps incrementally between the two endpoints of the line."

$$p = (1 - t) a + t b = a + t(b - a)$$

Lerping

Triangles

Barycentric coordinates of (x, y).

©College of Computer and Information Science, Northeastern University

Triangles

Computing Barycentric Coordinates

$$\frac{y - y_a}{x - x_a} = \frac{y_b - y_a}{x_b - x_a}$$
$$(y - y_a)(x_b - x_a) - (y_b - y_a)(x - x_a) = 0$$
$$x_{ab}(x, y) = (y - y_a)(x_b - x_a) - (y_b - y_a)(x - x_a)$$

$$\gamma = \frac{f_{ab}(x, y)}{f_{ab}(x_c, y_c)}$$

January 20, 2011

©College of Computer and Information Science, Northeastern University

70

Barycentric Coordinates as Areas

where *A* is the area of the triangle.

$$\alpha + \beta + \gamma = 1$$

3D Triangles

Assignment 0

- You will choose a programming platform for the quarter and familiarize yourself with RGB color and the ppm format. In part, this assignment is to ensure that you have a method of submitting you work so that I can:
 - read the code
 - compile (or interpret) the code
 - run the code to produce a file in ppm format.
- Sample Program
- You will write your own 3D vector tools (e.g. as a JAVA class) that you will use for your later programming assignments.