
Information Retrieval Models

Two phases:
• Indexing: happens offline while the system is setup
• Scoring documents for a particular query: online, depends on the query

Phases of indexing:
• Tokenization
• Stemming/Stop wording
• Storing the information on file with special structure for fast access during query time

Document scoring phase. We have a function or model which computes a score between a
query and each document. The score is the “system’s opinion” if a particular document is
relevant. In order to create meaningful functions we need to make models of what a document
is, how people write documents, how to decide whether a document comes from the correct
distribution of relevant documents, etc.

So, in query time the following steps take place:
• Phase 1. Process query in the same way documents were processed during indexing.

For example: if stemming was applied during indexing, the query should be stemmed
• Phase 2. Retrieve all the documents which contain at least one of the query terms.

(Also possible: retrieve the documents which contain all of the query terms, we
recommend the first one for the project). All other documents will have a score of 0
and will not be shown in the retrieved list.

• Phase 3. For each of the collected documents in Phase 2 compute the function
Score(doc, query). This function will be different for different retrieval models.

• Rank the documents according to their scores in descending order. The document with
highest score is the best match to the query.

The scoring function for all the models we consider will look like this:

Function Score(document, query)
Accumulator = 0.0;
For each word in query do

qtf = number of times word appears in the query; qtf stands for query term
 frequency

tf = number of times word appears in document; tf stands for term frequency

word_weight = weight(tf, qtf, and other stuff)
accumulator = accumulator + word_weight

EndFor

Return accumulator
EndFunction

The Okapi Model (Okapi is the name of an animal related to zebra, the system where this
model was first implemented was called Okapi)

Here is the formula that Okapi uses.

(Source: Modern Information Retrieval: a brief overview by Amit Singhal)

This formula has three components:
• IDF component. This is

ln [(N – df + 0.5) / (df + 0.5)]

 This component reflects the discriminative power of each word. Examine for cases df = 0
and df = N.

• TF component. This is
(k1 + 1) tf / [k1 (1 – b) + b dl/avgdl) + tf]

Two things should be stressed here:
o This function is increasing in tf, but reaches an asymptotic limit from below.

This means whether a term appears a 100 times or a 1000 times the function
will weight it almost the same.

o There is a correction for document weight. If a document is short, the tf for all
its words is increased; if a document is long the tf for all its words is
decreased. The count of each word is measured w.r.t. the document of average
length in the collection.

• QTF component. If a word in the query appears more times than another it should be
weighted higher. This component is

[(k3 + 1) qtf] / [k3 + qtf]

Function OkapiScore(document, query)
accumulator = 0.0;
For each word in query do

qtf = number of times word appears in the query; qtf stands for query term
 frequency

tf = number of times word appears in document; tf stands for term frequency

df = number of documents in which word occurs

N = total number of documents in the collection

dl = document length, total number of words in document (not number of
 unique words)

avgdl = the average of all document lengths

Const k1 = 1
Const b = 0.75
Const k3 = 1
(You may need to experiment a bit with the above values)

accumulator = accumulator + word_weight
EndFor

Return accumulator
EndFunction

The Language Model with Laplace Smoothing
Smoothing means: change the zero probabilities to non-zero.

Function LM-Laplace-Score(document, query)

Accumulator = 0.0;
For each word in query do

qtf = number of times word appears in the query; qtf stands for query term
 frequency

tf = number of times word appears in document; tf stands for term frequency

doc_len = document length, number of words in the document

V = vocabulary size, number of unque words in the collection
word_weight = qtf * Log ((tf + 1) / (doc_len + V))

accumulator = accumulator + word_weight
EndFor

Return accumulator
EndFunction

Language Model with Jelinek-Mercer Smoothing

Function LM-Jelinek-Mercer-Score(document, query)

Accumulator = 0.0;
For each word in query do

qtf = number of times word appears in the query; qtf stands for query term
 frequency

tf = number of times word appears in document; tf stands for term frequency

doc_len = document length, number of words in the document

V = vocabulary size, number of unque words in the collection

p_doc = tf / doc_length

ctf = collection term frequency, number of times term occurs in the collection
M = number of total words (not number of unique words) in the collection

p_collection = ctf / M

//note: you may need to experiment with lambda
Const lambda = 0.2

p_interpolated = lambda * p_doc + (1 – lambda) * p_collection

word_weight = qtf * Log (p_ interpolated)

accumulator = accumulator + word_weight
EndFor

Return accumulator
EndFunction

More information:
Chapters 11 and 12 from the book:
http://www-csli.stanford.edu/~schuetze/information-retrieval-book.html

http://www-csli.stanford.edu/~schuetze/information-retrieval-book.html

