
Well-typed Islands Parse Faster

Erik Silkensen and Jeremy Siek
University of Colorado

1Tuesday, June 12, 12

Composing DSLs

Application

SQL

Regular
Expressions

Matrix
Algebra

Sets

Yacc

HTML

2Tuesday, June 12, 12

Composing DSLs

Application

SQL

Regular
Expressions

Matrix
Algebra

Sets

Yacc

HTML

Expr ::= Expr "+" Expr

| Expr "+" | ...

A + A + A

3Tuesday, June 12, 12

Composing DSLs

Application

SQL

Regular
Expressions

Matrix
Algebra

Sets

Yacc

HTML

Matrix ::= Matrix "+" Matrix

Regexp ::= Regexp "+"

Set ::= Set "+" Set

Type-Oriented Grammar

A + A + A

4Tuesday, June 12, 12

Composing DSLs

Application

SQL

Regular
Expressions

Matrix
Algebra

Sets

Yacc

HTML

Matrix ::= Matrix "+" Matrix

Regexp ::= Regexp "+"

Set ::= Set "+" Set

Type-Oriented Grammar

declare A : Matrix;
A + A + A

Type-based Disambiguation

5Tuesday, June 12, 12

Chart Parsing

O(|G|n3)

[Kay 1986]

• CYK [1965, 1967, 1970]

• Earley [1968, 1970]

• Island [Stock et al. 1988]

[Matrix ! A, 0,1] [Matrix ! A, 2,3]

• A • + • A • + • A •

[Matrix ! [Matrix ! A] + [Matrix ! A], 0,3]

6Tuesday, June 12, 12

Chart Parsing

(BU)

(BU)
` [A, 0, 1] Matrix ! A 2 P

` [Matrix ! .A., 0, 1]
Matrix ! Matrix + Matrix 2 P

` [Matrix ! .Matrix . + Matrix , 0, 1]

(Compl)
` [Matrix ! .Matrix . + Matrix , 0, 1] ` [+, 1, 2]

` [Matrix ! .Matrix +. Matrix , 0, 2]

7Tuesday, June 12, 12

‘Type-Oriented’ Island Parsing

declare A : Matrix;
A + A + A

A – ‘well-typed island’

Don’t apply BU rule to ‘untyped islands’.

8Tuesday, June 12, 12

3 7 11 15 19 23 27 31 35 39 43 47
|G| = number of grammar rules

0

20

40

60

80

100

120

140

160

nu
m

be
r

of
it

em
s

island
bottom-up Earley
top-down Earley

‘Type-Oriented’ Island Parsing

--A

module Typed0 {
E ::= V;
V ::= "-" V;

}
module Typedi {

E ::= Mi;
Mi ::= "-" Mi;

}

import G0,G1, . . . ,Gk;
declare A:V;

9Tuesday, June 12, 12

A System for Extensible Syntax

• Variable Binders and Scope

• Rule-Action Pairs

• Structural Nonterminals

10Tuesday, June 12, 12

A System for Extensible Syntax

Variable Binders and Scope [Jim et al. 2010, Cardelli et al. 1994]

forall T1 T2.

T2 ::= "let" x:Id "=" T1 { x:T1; T2 }

G [(T1! x)

let n = 7 { n * n }

Int ::= "n"

11Tuesday, June 12, 12

A System for Extensible Syntax

Rule-Action Pairs [Sandberg 1982]

Integer ::= "|" x:Integer "|" = (abs x);

(: f (Integer ! Integer))
(define (f x) (abs x))

12Tuesday, June 12, 12

A System for Extensible Syntax

Rule-Action Pairs [Sandberg 1982]

Integer ::= "|" x:Integer "|" = (abs x);

forall T1 T2.

T2 ::= "let" x:Id "=" e1:T1 { x:T1; e2:T2 })
(let: ([x : T1 e1]) e2);

(: f (Integer ! Integer))
(define (f x) (abs x))

(define-syntax-rule (m x e1 e2 T1 T2)
(let: ([x : T1 e1]) e2))

13Tuesday, June 12, 12

A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

14Tuesday, June 12, 12

A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

Type ::= Id | "(" Type ")"

Let Type give the syntax of types (i.e., nonterminals) in a grammar,

15Tuesday, June 12, 12

A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

Type ::= Id | "(" Type ")"

Let Type give the syntax of types (i.e., nonterminals) in a grammar,

Type ::= T:Id ⌘ T | "(" T:Type ")" ⌘ T

and map them to Typed Racket types with a third rule-action pair:

16Tuesday, June 12, 12

A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

Type ::= Id | "(" Type ")"

Let Type give the syntax of types (i.e., nonterminals) in a grammar,

Type ::= T:Id ⌘ T | "(" T:Type ")" ⌘ T

and map them to Typed Racket types with a third rule-action pair:

types {
Type ::= T1:Type "⇥" T2:Type ⌘

(Pairof T1 T2);

}

17Tuesday, June 12, 12

An Example

types {
Type ::= T1:Type "->" T2:Type [right] ⌘ (T1 -> T2);

}

forall T2.

T1 -> T2 ::= "fun" x:Id ":" T1:Type { x:T1; e1:T2 })
(�: ([x : T1]) e1);

forall T1 T2.

T2 ::= f:(T1 -> T2) x:T1 [left]) (f x);

forall T1 T2.

T1 -> T2 ::= "fix" f:(T1 -> T2) -> (T1 -> T2) =
((�: ([x : (Rec A (A -> (T1 -> T2)))])

(f (� (y) ((x x) y))))

((�: ([x : (Rec A (A -> (T1 -> T2)))])

(f (� (y) ((x x) y)))));

18Tuesday, June 12, 12

An Example

let fact =

fix fun f : Int -> Int {

fun n : Int {

if n < 2 then 1

else n * f (n - 1)

}

}

{

print fact 5

}

19Tuesday, June 12, 12

Related Work

• Earley and type inference:

• Aasa et al. [1988], Missura [1997], Wieland [2009]

• Parsing Expression Grammars (PEGs) [Ford 2004]:

• Fortress [Allen et al. 2009], Katahdin [Seaton 2007], Rats! [Grimm 2006]

• Scannerless GLR [Tomita 1985]:

• MetaBorg [Bravenboer et al. 2005], SugarJ [Erdweg et al. 2011]

20Tuesday, June 12, 12

Implementation

http://extensible-syntax.googlecode.com

21Tuesday, June 12, 12

http://extensible-syntax.googlecode.com
http://extensible-syntax.googlecode.com

