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Expr ::= Expr "+" Expr

| Expr "+" | ...

A + A + A
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Matrix ::= Matrix "+" Matrix

Regexp ::= Regexp "+"

Set ::= Set "+" Set

Type-Oriented Grammar

A + A + A
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Matrix ::= Matrix "+" Matrix

Regexp ::= Regexp "+"

Set ::= Set "+" Set

Type-Oriented Grammar

declare A : Matrix;
A + A + A

Type-based Disambiguation
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Chart Parsing

O(|G|n3)

[Kay 1986]

• CYK [1965, 1967, 1970]

• Earley [1968, 1970]

• Island [Stock et al. 1988]

[Matrix ! A, 0,1] [Matrix ! A, 2,3]

• A • + • A • + • A •

[Matrix ! [Matrix ! A] + [Matrix ! A], 0,3]
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Chart Parsing

(BU)

(BU)
` [A, 0, 1] Matrix ! A 2 P

` [Matrix ! .A., 0, 1]
Matrix ! Matrix + Matrix 2 P

` [Matrix ! .Matrix . + Matrix , 0, 1]

(Compl)
` [Matrix ! .Matrix . + Matrix , 0, 1] ` [+, 1, 2]

` [Matrix ! .Matrix +. Matrix , 0, 2]
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‘Type-Oriented’ Island Parsing

declare A : Matrix;
A + A + A

A – ‘well-typed island’

Don’t apply BU rule to ‘untyped islands’.
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‘Type-Oriented’ Island Parsing

--A

module Typed0 {
E ::= V;
V ::= "-" V;

}
module Typedi {

E ::= Mi;
Mi ::= "-" Mi;

}

import G0,G1, . . . ,Gk;
declare A:V;
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A System for Extensible Syntax

• Variable Binders and Scope

• Rule-Action Pairs

• Structural Nonterminals
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A System for Extensible Syntax

Variable Binders and Scope    [Jim et al. 2010, Cardelli et al. 1994]

forall T1 T2.

T2 ::= "let" x:Id "=" T1 { x:T1; T2 }

G [ (T1! x)

let n = 7 { n * n }

Int ::= "n"
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A System for Extensible Syntax

Rule-Action Pairs    [Sandberg 1982]

Integer ::= "|" x:Integer "|" = (abs x);

(: f (Integer ! Integer))
(define (f x) (abs x))
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A System for Extensible Syntax

Rule-Action Pairs    [Sandberg 1982]

Integer ::= "|" x:Integer "|" = (abs x);

forall T1 T2.

T2 ::= "let" x:Id "=" e1:T1 { x:T1; e2:T2 } )
(let: ([x : T1 e1]) e2);

(: f (Integer ! Integer))
(define (f x) (abs x))

(define-syntax-rule (m x e1 e2 T1 T2)
(let: ([x : T1 e1]) e2))
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A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);
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A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

Type ::= Id | "(" Type ")"

Let Type give the syntax of types (i.e., nonterminals) in a grammar,
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A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

Type ::= Id | "(" Type ")"

Let Type give the syntax of types (i.e., nonterminals) in a grammar,

Type ::= T:Id ⌘ T | "(" T:Type ")" ⌘ T

and map them to Typed Racket types with a third rule-action pair:
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A System for Extensible Syntax

Structural Nonterminals

forall T1 T2.
T1 ::= p:(T1 ⇥ T2) "." "fst" = (car p);

Type ::= Id | "(" Type ")"

Let Type give the syntax of types (i.e., nonterminals) in a grammar,

Type ::= T:Id ⌘ T | "(" T:Type ")" ⌘ T

and map them to Typed Racket types with a third rule-action pair:

types {
Type ::= T1:Type "⇥" T2:Type ⌘

(Pairof T1 T2);

}
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An Example

types {
Type ::= T1:Type "->" T2:Type [right] ⌘ (T1 -> T2);

}

forall T2.

T1 -> T2 ::= "fun" x:Id ":" T1:Type { x:T1; e1:T2 } )
(�: ([x : T1]) e1);

forall T1 T2.

T2 ::= f:(T1 -> T2) x:T1 [left] ) (f x);

forall T1 T2.

T1 -> T2 ::= "fix" f:(T1 -> T2) -> (T1 -> T2) =
((�: ([x : (Rec A (A -> (T1 -> T2)))])

(f (� (y) ((x x) y))))

((�: ([x : (Rec A (A -> (T1 -> T2)))])

(f (� (y) ((x x) y)))));
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An Example

let fact =

fix fun f : Int -> Int {

fun n : Int {

if n < 2 then 1

else n * f (n - 1)

}

}

{

print fact 5

}
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Related Work

• Earley and type inference:

• Aasa et al. [1988], Missura [1997], Wieland [2009]

• Parsing Expression Grammars (PEGs) [Ford 2004]:

• Fortress [Allen et al. 2009], Katahdin [Seaton 2007], Rats! [Grimm 2006]

• Scannerless GLR [Tomita 1985]:

• MetaBorg [Bravenboer et al. 2005], SugarJ [Erdweg et al. 2011]
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Implementation

http://extensible-syntax.googlecode.com
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