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1 Introduction
In many areas of machine learning, computer vision, image processing, data mining, and information
retrieval one is confronted with intrinsically low-dimensional data on multiple manifolds embedded
in a very high dimensional space. In computer vision, for example, the feature point trajectories
associated with a moving object in a video sequence lie in a manifold of very low dimension.
Thus, the collection of feature trajectories associated with multiple moving objects lie in a union of
low-dimensional manifolds.

Two fundamental tasks associated with modeling high-dimensional data lying on multiple
low-dimensional manifolds are dimensionality reduction and clustering.
Dimensionality reduction. This task is concerned with finding a meaningful low-dimensional
representation of the high-dimensional observations. Examples include finding a meaningful low-
dimensional representation for images of a person performing multiple gestures such as laughing,
frowning, turning right or left, etc, or finding a meaningful representation for the words in a
document such that the words which share common features are also close in the low-dimensional
representation. Dimensionality reduction methods can be divided in two groups: linear and nonlinear
methods. Linear dimensionality reduction algorithms such as principal component analysis (PCA)
[17] and multi-dimensional scaling (MDS) [7], reduce the dimension of the data by modeling
it with a low-dimensional affine subspace. Nonlinear dimensionality reduction algorithms such
as ISOMAP [24], Locally Linear Embedding (LLE) [22], and Laplacian Eigenmaps [2], reduce
the dimensionality of the data by modeling it with a nonlinear manifold. However, there are a
number of challenges associated with the state-of-the-art dimensionality reduction techniques. (1)
Methods such as PCA and MDS only deal with data lying on flat manifolds. Thus, their performance
drastically deteriorates when the data lie in highly nonlinear manifolds. (2) ISOMAP, computes a
similarity matrix by finding the geodesic distances between pairs of points on the manifold which is
costly. In addition, it computes the low-dimensional embedding by finding the eigenvectors of a
dense similarity matrix, which is also a costly operation. (3) LLE and Laplacian Eigenmaps choose
only the K nearest neighbors of each data point on the manifold, which results in a sparse matrix
from which the low-dimensional embedding can be computed. However, choosing the right number
of neighbors is a challenging problem that affects the quality of the embedding.
Manifold clustering. In this task, we are given data lying in multiple manifolds and the goal
is to segment the data points so that points in the same manifold belong to the same group. For
instance, in the example of multiple rigid-body motions in a video, we want to cluster the feature
trajectories of points on multiple moving objects, so that the points in the same moving object belong
to the same group. Other examples include clustering face images of different people, temporal
segmentation of videos, document clustering, etc. A special but important class of manifolds are
affine subspaces, which are flat manifolds. In fact, several of the tasks mentioned above can be
cast as clustering of data on multiple affine subspaces. Most existing manifold clustering methods
such as GPCA [27], SCC [5], LSA [29], MPPCA [26], and RANSAC [14] address this special case.
LLMC [15] is one of the few existing methods that addresses the case of data lying in multiple
nonlinear manifolds. Unfortunately, there are a number of issues associated with the state-of-the-art
manifold clustering algorithms. (1) The computational complexity of methods such as GPCA,
SCC increases exponentially by increasing the number of subspaces and/or their dimensions. (2)
Methods such as LLMC and LSA have difficulties dealing with intersecting manifolds. (3) Methods
such as MPPCA and RANSAC assume the dimension of the subspaces to be known, while in many
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tasks we do not have this information beforehand. (4) The performance of most existing methods
decreases drastically when the data are contaminated with noise and outliers, which is an important
problem arising in many applications.

The goal of this thesis is to develop a mathematical framework for simultaneous dimensionality
reduction and manifold clustering that addresses these challenges. More specifically, we propose
a computationally efficient algorithm for clustering intersecting and non-intersecting manifolds
contaminated with noise and outliers. The method we propose reduces the dimensionality of the data
by choosing a few neighbors of each data point on a manifold. However, unlike the state-of-the-art
dimensionality reduction algorithms, the proposed mechanism automatically chooses the neighbors
of each data point without specifying a priori the number of neighbors. Moreover, the neighbors
are automatically chosen as points in the same manifold rather than using a distance in the ambient
space.The proposed framework relies on recent advances in sparse representation theory, which
addresses the problem of recovering a sparse representation of signals in an appropriate basis from a
limited number of measurements. This finds numerous applications in signal and image processing
and machine learning, such as signal/image/video compression, learning a dictionary for a collection
of images/textures, sparse regression, etc. The main focus of the research in this area has been
to find computationally efficient algorithms for extracting a sparse representation of signals and
vectors together with the conditions under which the methods are guaranteed to recover the sparse
representation with high probability. The state-of-the-art sparse recovery methods address the
problem of sparse representation of signals in a single basis or in multiple known subspaces. Our
goal is to extend these results in several dimensions. First, we plan to find efficient methods for
finding the sparse representation of data lying on multiple subspaces without knowing the basis of
each subspace. Second, we plan to study conditions on subspace arrangements and the distribution
of the data under which our proposed sparse recovery method is guaranteed to recover the true
sparse representation of the data points. Third, we plan to address the general case of clustering
data lying in multiple nonlinear manifolds as well as reducing the dimensionality of the data on
each manifold using the sparse recovery methods. Fourth, we plan to evaluate the efficacy of the
proposed algorithm for several applications in computer vision and image processing.

In what follows, we shall review in Section 2, the state of the art techniques for manifold
clustering as well as sparse recovery methods. In Section 3, we present our proposed method for
subspace clustering which is based on sparse representation techniques together with experimental
results on the motion segmentation problem. In Section 4, we discuss our future research plan
which covers a range of theoretical problems and applications.

2 State of the Art
Manifold clustering is an important problem with numerous applications in image processing,
e.g.image representation and compression [16, 30], and computer vision, e.g.image/motion/video
segmentation [6, 18, 31, 29, 28]. In what follows, we review the state of the art on manifold
clustering. Then, we briefly review the sparse recovery methods which also play a central role in
our research for attacking the manifold clustering problem.
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2.1 Subspace clustering
A special but important class of manifolds are flat manifolds, also called affine subspaces. Given
a set of points drawn from a union of subspaces, the goal of subspace clustering is to find the
number of subspaces, their dimensions, a basis for each subspace, and the segmentation of the data.
State-of-the-art subspace clustering methods can be divided into four main categories: algebraic,
spectral clustering, statistical, and compression-based methods.
Algebraic Methods. Generalized Principal Component Analysis (GPCA) [27] is an algebraic
method for clustering data lying in multiple subspaces. The main idea behind GPCA is that one
can fit a union of n subspaces with a set of polynomials of degree n, whose derivatives at a point
give a vector normal to the subspace containing that point. The segmentation of the data is then
obtained by grouping these normal vectors, which can be done using several techniques. In theory,
GPCA can deal with subspaces in any relative configuration and does not require the number of
subspaces or their dimensions to be known beforehand. In practice, however, GPCA is sensitive to
noise and outliers, and its complexity increases exponentially with the number of subspaces and
their dimensions.
Spectral Clustering Methods. Spectral-clustering based methods use local information around
each point to build a similarity matrix between pairs of points. The segmentation of the data is
then obtained by applying spectral clustering to this similarity matrix. In Locally Linear Manifold
Clustering (LLMC) [15], the similarity is built from the coefficients obtained after writing each
point as a linear combination of its nearest neighbors. In Local Subspace Affinity (LSA) [29] the
similarity is built by fitting an affine subspace to each point and its nearest neighbors, and then
computing the angles between these locally estimated subspaces. Both methods have difficulties
dealing with points near the intersection of two subspaces, because the neighborhood of a point
can contain points from different subspaces. Spectral Curvature Clustering (SCC) [5] resolves
this issue by looking at multi-way similarities that capture the curvature of a collection of points
within an affine subspace. However, the complexity of building a multi-way similarity grows
exponentially with the number of subspaces and their dimensions. Another disadvantage of most
spectral-clustering based methods is that they require the number of subspaces to be known and the
subspace dimensions to be known and equal.
Statistical Methods. Statistical approaches, such as Mixtures of Probabilistic PCA (MPPCA) [26]
and Multi-Stage Learning (MSL) [23], assume that the distribution of the data inside each subspace
is degenerate Gaussian and alternate between data clustering and subspace estimation by applying
Expectation Maximization (EM) to a mixture of probabilistic PCAs. The main drawbacks of both
approaches are that they generally require the number and dimensions of the subspaces to be known,
and that they are sensitive to correct initialization. Robust methods, such as RANdom SAmple
Consensus (RANSAC) [14], fit a subspace of dimension d to randomly chosen subsets of d points
until the number of inliers is large enough. The inliers are then removed and the process is repeated
to find a second subspace, and so on. RANSAC can deal with noise and outliers, and does not need
to know the number of subspaces. However, the dimensions of the subspaces must be known and
equal, and the number of trials needed to find d points in the same subspace grows exponentially
with the number and dimension of the subspaces.
Compression-Based Methods. Compression-based approaches, such as Agglomerative Lossy
Compression (ALC) [20], model each subspace with a degenerate Gaussian and look for the
segmentation of the data that minimizes the coding length needed to fit these points with a mixture
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of Gaussians. As this minimization problem is NP hard, a suboptimal solution is found by first
assuming that each point forms its own group, and then iterative merging pairs of groups to reduce
the coding length. ALC can handle noise and outliers in the data, and can estimate the number of
subspaces and their dimensions. However, there is no theoretical proof for the optimality of the
algorithm.

2.2 Sparse representation and compressed sensing
Compressed sensing (CS) is based on the idea that many signals or vectors can have a concise
representation when expressed in a proper basis. As a result, the information rate of a sparse signal
can be much smaller than the rate suggested by its maximum frequency. In this section, we review
recently developed techniques from CS for sparsely representing signals lying in one or more
subspaces.
Sparse representation in a single subspace. Consider a system of linear equations of the form
y = As where A ∈ RD×N , called the measurement matrix, has more columns than rows, i.e.,
D < N . This underdetermined system of linear equations has many solutions for a given vector
y ∈ RD. However, there are cases where we are interested in finding the sparsest solution. In
principle, such a sparse representation can be obtained by solving the optimization problem:

min ‖s‖0 subject to y = As, (1)

where ‖s‖0 is the `0 norm of s, i.e., the number of nonzero elements in s. However, such an
optimization problem is in general non-convex and NP-hard. This has motivated the development of
several methods for efficiently extracting a sparse representation of signals/vectors. One of the well-
known methods is the Basis Pursuit (BP) algorithm, which replaces the non-convex optimization in
(1) by the following convex `1 optimization problem [8]:

min ‖s‖1 subject to y = As. (2)

The works of [4, 3] show that we can recover perfectly a sparse signal/vector by using the BP
algorithm in (2) under certain conditions on the so-called isometry constant of theA matrix.
Sparse representation in a union of subspaces. Most of the work on CS deals with sparse
representation of signals/vectors lying in a single linear subspace. The more general case where the
signals/vectors lie in a union of low-dimensional linear subspaces was only recently considered.
The work of Eldar [11] shows that when the subspaces are disjoint (intersect only at the origin), a
basis for each subspace is known, and certain condition on a modified isometry constant holds, one
can recover the block-sparse vector s exactly by solving an `1/`2 optimization problem.

More precisely, let {Ai ∈ RD×di}ni=1 be a set of bases for n disjoint linear subspaces embedded
in RD with dimensions {di}ni=1. If y belongs to the i-th subspace, we can represent it as the sparse
solution of

y = As = [A1, A2, · · · , An] [s>1 , s
>
2 , · · · , s>n ]>, (3)

where si ∈ Rdi is a nonzero vector and all other vectors {sj ∈ Rdj}j 6=i are zero. Therefore, s is the
solution to the following non-convex optimization problem:

min
n∑

i=1

1(‖si‖2 > 0) subject to y = As, (4)
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where 1(‖si‖2 > 0) is an indicator function that takes the value 1 when ‖si‖2 > 0 and zero
otherwise. [11] shows that if a modified isometry constant of the matrix A satisfies a certain
condition, then the solution to the (convex) `2/`1 program

min
n∑

i=1

‖si‖2 subject to y = As (5)

coincides with that of (4).

3 Preliminary Results
Our recent work on sparse subspace clustering (SSC) [12, 13] proposes a new subspace clustering
method based on sparse representation. Unlike the conventional sparse recovery methods, the data
do not have a sparse representation in a single basis but in a union of bases. Also, in contrast to the
block-sparse recovery methods where the given points have sparse representations in a union of
known bases, we do not know the bases for subspaces nor do we know which data belongs to which
subspace.

We tackle the subspace clustering problem by introducing a method which is based on sparse
recovery. The proposed method is based on the observation that each data point on a subspace
can write itself as a linear combination of all other data points. However, generically, the sparsest
representation comes from points in the same subspace. We show that, under certain conditions on
the arrangement of subspaces and the distribution of the data within each subspace, our method is
guaranteed to recover a sparse representation of a point as a linear combination of points from the
same subspace. We use this sparse representation to build a similarity graph from which we can
infer the segmentation of the data.

3.1 Clustering linear subspaces
Let {Si}ni=1 be an arrangement of n linear subspaces of RD of dimensions {di}ni=1. Consider now
a given collection of N =

∑n
i=1Ni noise-free data points, {yi}Ni=1, drawn from the n subspaces

{Si}ni=1. We denote the matrix whose columns are the Ni points drawn from subspace Si as
Y i ∈ RD×Ni and the matrix containing all the data points as Y =

[
Y 1, . . . , Y n

]
Γ, where

Γ ∈ RN×N is an unknown permutation matrix. We assume that we do not know a priori the bases
for each one of the subspaces nor do we know which data points belong to which subspace. We are
interested in finding the number of subspaces, their dimensions, a basis for each subspace, and the
segmentation of the data from Y .

The SSC algorithm (see [12, 13]) is based on the observation that each data point yi ∈ Sj can
always be written as a linear combination of all the other data points in {Si}ni=1. However, generi-
cally, the sparsest representation is obtained when the point yi is written as a linear combination
of points in its own subspace. Finding such a sparse representation is an NP hard problem since it
requires solving the following non-convex optimization problem

min ‖ci‖0 subject to yi = Y bici, (6)

where Y bi ∈ RD×N−1 denotes the matrix obtained from Y by removing its i-th column, yi. In
[12, 13], we show that under certain conditions on the arrangement of subspaces and the distribution
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of the data within each subspace, we can find the sparse representation efficiently using the following
`1 optimization problem

min ‖ci‖1 subject to yi = Y bici. (7)

Theorem 1 Let Y ∈ RD×N be a matrix whose columns are drawn from a union of n independent 1

linear subspaces. Assume that the points within each subspace are in general position. Let yi be
a data point in subspace Sk. The solution to the `1 problem in (7), ci, is sparse and its non-zero
entries cij correspond to data points yj in subspace Sk.

Requiring the subspaces to be independent might be a strong assumption in some applications.
For instance, when segmenting multiple rigid-body motions in a video sequence, the subspaces
become partially dependent for articulated objects, or for objects moving in a common plane, as
shown in [28]. In [13] we relax the independence assumption and consider the more general class of
disjoint subspaces (each pair of subspaces only intersect at the origin). We derive a condition on the
subspace angles and the distribution of the data across subspaces under which SSC is guaranteed to
recover the sparse representation of each data point as a linear combination of other data points in
the same subspace.

The optimal solution, ci ∈ RN−1, in equation (7) is a vector whose nonzero entries correspond
to points (columns) in Y bi that lie in the same subspace as yi. Thus, by inserting a zero entry at the
i-th row of ci, we make it an N -dimensional vector, ĉi ∈ RN , whose nonzero entries correspond to
points in Y that lie in the same subspace as yi.

After solving (7) at each point i ∈ {1, . . . , N}, we obtain a matrix of coefficients C =
[ĉ1, · · · , ĉN ] ∈ RN×N . We use this matrix to define a directed graph G = (V,E). The vertices of
the graph V are the N data points and there is an edge (vi, vj) ∈ E when the data point yj is one of
the vectors in the sparse representation of yi, i.e.when Cji 6= 0. One can easily see that C is the
adjacency matrix of G.

In general, G is an unbalanced digraph. To make it balanced, we build a new graph G̃ with the
adjacency matrix C̃, where C̃ij = |Cij| + |Cji|. C̃ is still a valid representation of the similarity,
because if yi can write itself as a linear combination of some points including yj (all in the same
subspace), then yj can also write itself as a linear combination of some points in the same subspace
including yi.

Having formed the similarity graph G̃, we expect that all vertices representing the data points in
the same subspace form a connected component in the graph, while the vertices representing points
in different subspaces have no edges between them. Therefore, in the case of n subspaces, C̃ has
the following block diagonal form

C̃ =


C̃1 0 · · · 0

0 C̃2 · · · 0
...

0 0 · · · C̃n

 Γ, (8)

where Γ is a permutation matrix. The Laplacian matrix of G̃ is then formed as L = D − C̃, where
D ∈ RN×N is a diagonal matrix with Dii =

∑
j C̃ij .

1A collection of n linear subspaces {Si ⊂ RD}ni=1 are independent if dim(
⊕n

i=1 Si) =
∑n

i=1 dim(Si), where ⊕
is the direct sum.
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Using the results from spectral graph theory, if the graph has n connected components, the
components can be determined from the eigenspace of the zero eigenvalues by applying K-means
to the n eigenvectors of the Laplacian corresponding to the smallest eigenvalues.

In summary, the SSC algorithm for linear subspaces proceeds as follows.

Algorithm 1 : Sparse Subspace Clustering (SSC)
Input: A set of points {yi}Ni=1 lying in n subspaces {Si}ni=1.

1: For every data point yi, solve the following optimization problem:

min ‖ci‖1 subject to yi = Y bici

where Y bi = [y1, . . . ,yi−1,yi+1, . . . ,yN ].
2: Form a similarity graph with N nodes representing the N data points. Connect node i, repre-

senting yi, to the other N − 1 nodes by edge weights C̃ij = |Cij|+ |Cji|.
3: Form the graph Laplacian matrix L ∈ RN×N . Infer the segmentation of the data from the n

eigenvectors of L corresponding to the n smallest eigenvalues using the K-means algorithm
[10].

Output: Segmentation of the data: Y 1,Y 2, . . . ,Y n.

3.2 Clustering affine subspaces
In many cases we need to cluster data lying in multiple affine rather than linear subspaces. For
instance, the motion segmentation problem (to be discussed in the next section) involves clustering of
data lying on multiple 3-dimensional affine subspaces. However, most existing motion segmentation
algorithms deal with this problem by clustering the data as if they belonged to multiple 4-dimensional
linear subspaces.

Notice that in the case of affine subspaces, a point can no longer write itself as a linear
combination of points in the same subspace. However, we can still write a point yi as an affine
combination of other points, i.e.,

yi =
∑
j 6=i

cjyj,
∑
j 6=i

cj = 1. (9)

In [12], we show that one can recover the sparse representation of data points on affine subspaces
by using the following modified BP algorithm for each data point yi,

min ‖ci‖1 subject to yi = Y bi ci and c>i 1 = 1, (10)

and form the graph G̃ from the sparse coefficients. We then apply spectral clustering to the
corresponding Laplacian matrix in order to get the segmentation of data.

3.3 Application to motion segmentation
We apply SSC to the motion segmentation problem, i.e., the problem of separating a video sequence
into multiple spatiotemporal regions corresponding to different rigid-body motions in the scene.
This problem is often solved by extracting a set of points in an image, and tracking these points
through the video. Under the affine projection model, all the trajectories associated with a single
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Table 1: Classification errors (%) for sequences with 2 motions

GPCA LLMC LSA SCC RANSAC MSL ALC SSC-B SSC-N
Checkerboard 6.09 3.96 2.57 1.30 6.52 4.46 1.55 0.83 1.12
Traffic 1.41 3.53 5.43 1.07 2.55 2.23 1.59 0.23 0.02
Articulated 2.88 6.48 4.10 3.68 7.25 7.23 10.70 1.63 0.62
All 4.59 4.08 3.45 1.46 5.56 4.14 2.40 0.75 0.82

Table 2: Classification errors (%) for sequences with 3 motions

GPCA LLMC LSA SCC RANSAC MSL ALC SSC-B SSC-N
Checkerboard 31.95 8.48 5.80 5.68 25.78 10.38 5.20 4.49 2.97
Traffic 19.83 6.04 25.07 2.35 12.83 1.80 7.75 0.61 0.58
Articulated 16.85 9.38 7.25 10.94 21.38 2.71 21.08 1.60 1.42
All 28.66 8.04 9.73 5.31 22.94 8.23 6.69 3.55 2.45

rigid motion live in a 3-dimensional affine subspace. Therefore, the motion segmentation problem
reduces to clustering a collection of point trajectories according to multiple affine subspaces.

We evaluate SSC on the Hopkins155 motion database, which is available online at http://
www.vision.jhu.edu/data/hopkins155. The database consists of 155 sequences of two and
three motions which can be divided into three main categories: checkerboard, traffic, and articulated
sequences. A customary preprocessing step used by other motion segmentation algorithms is to
reduce the dimension of the data. As we want a projection that preserves the sparsity of the data, we
use a random projection matrix whose entries come from a Normal or a Bernoulli distribution with
certain parameters [9, 1]. Table 1 and 2 show our results for sequences having two and three motions,
respectively. SSC-B and SSC-N indicate our results for random projections corresponding to the
Bernoulli and Gaussian distributions, respectively. Clearly, our method outperforms state-of-the-art
methods such as GPCA [27], LLMC [15], LSA [29], SCC [5], RANSAC [14], MSL [23], and ALC
[21]. Overall, the SSC algorithm achieves a misclassification rate of 1.24% for the whole database,
which is a significant improvement over the state of the art. Figure 1 shows the adjacency matrix and
the similarity graph for a video sequence (cars9) in the database. notice that SSC has successfully
recovered the sparse representation of the data points, since almost all nonzero coefficients belong
to the true subspace. Also the data points in the same subspace form a connected component in the
similarity graph. A few number of edges exist between different groups, which are ignored after
applying the spectral clustering.

4 Proposed Research
In the previous section, we proposed an algorithm for clustering data lying in a union of subspaces.
We showed that for the motion segmentation problem, the algorithm significantly outperforms
state-of-the-art subspace clustering methods. Our ongoing research covers a range of theoretical
problems as well as different applications.

8



Figure 1: Sparse coefficients and similarity graph obtained by SSC for a video (cars9) in the Hopkins155 database.

4.1 Subspace clustering with noisy data
Consider the case where the data points drawn from a collection of linear or affine subspaces are
contaminated with noise. More specifically, let ȳi = yi + ζi be the i-th data point corrupted with
noise ζi bounded by ‖ζi‖2 ≤ ε. In order to recover the sparse representation of ȳi, we can look for
the sparsest solution of ȳi = Y bici with an error of at most ε, i.e.‖Y bici − ȳi‖2 ≤ ε. In fact, we are
interested to solve

min ‖ci‖0 subject to ‖Y bici − ȳi‖2 ≤ ε. (11)

In the conventional sparse representation theory [3], it has been shown that for the case of noisy
data, under certain conditions, one can recover the sparse solution of an underdetermined system of
equations by substituting the `0 with the `1 norm. For the problem of subspace clustering with noisy
data, we propose to find the sparse representation by solving the following convex optimization
program

min ‖ci‖1 subject to ‖Y bici − ȳi‖2 ≤ ε. (12)

However, in many situations we do not know the noise level ε beforehand. In such cases we can use
the Lasso optimization algorithm [25] to recover the sparse solution from

min ‖ci‖1 + γ ‖Y bici − ȳi‖2 (13)

where γ > 0 is a constant. In [13] we have shown that for a collection of noise-free data points lying
in a union of disjoint subspaces, under appropriate conditions on subspace angles and the distribution
of the data across subspaces, we can recover the sparse representation of a point as a combination
of points in the same subspace. In our future research, we shall consider the case of noisy data and
investigate conditions under which the nonzero coefficients of the sparse representation of a noisy
data point come from points in the same subspace i.e., we investigate conditions for the equivalence
of (11) and (12). Segmentation of the data into different subspaces follows by applying spectral
clustering to the similarity graph formed by the sparse coefficients.

4.2 Subspace clustering with missing data
In practice, some of the entries of the data points may be missing (incomplete data). In motion
segmentation, for example, due to occlusions or limitations of the tracker, we may loose some
feature points in some of the frames (missing entries). As suggested in [21], we can fill in missing
entries using sparse representation techniques. We suggest that one can also cluster data points with
missing entries using a sparse representation.

Let Ii ⊂ {1, . . . , D} denote the indices of missing entries in yi ∈ RD. Let Y bi ∈ RD×N−1 be
obtained by eliminating the vector yi from the i-th column of the data matrix Y . We then form
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Figure 2: Example frames from three video sequences with incomplete or corrupted trajectories.

ỹi ∈ RD−|Ii| and Ỹ bi ∈ RD−|Ii|×N−1 by eliminating rows of yi and Y bi indexed by Ii, respectively.
Assuming that Ỹ bi is complete, we can find a sparse representation, c∗i , for ỹi by solving the
following optimization program

min ‖ci‖0 subject to ỹi = Ỹ bici. (14)

Note that after eliminating the elements indexed by Ii from the data, we obtain new data points
which no longer live in the original subspaces. Part of the future research is to investigate conditions
under which we can recover the sparse solution of the non-convex optimization problem in (14)
using the following convex relaxation

min ‖ci‖1 subject to ỹi = Ỹ bici. (15)

The missing entries of yi are then given by y∗i = Y bic∗i . Notice that this method for completion of
missing data is essentially the same as our method for computing the sparse representation from
complete data in (7). Hence we can use the sparse coefficient vectors {c∗i }Ni=1 to build the similarity
graph and find the segmentation of the data.

We have examined the robustness of SSC to missing data. We use twelve sequences from [28],
with nine sequences of two motions and three sequences of three motions, as shown in Figure 2. We
use the data points in the original ambient space without projecting them into lower dimensions. For
incomplete trajectories, we apply SSC to video sequences between 4% and 35% of whose entries
are missing. We compare SSC with Power Factorization-based ALC and `1-based ALC [21] in
Table 3. Our method achieves a misclassification error of 0.13%, which is a significant improvement
to the state of the art. Part of the ongoing research is to evaluate the performance of the method for
clustering of data with missing entries on a larger database.

Table 3: Misclassifications rates comparison on 12 real motion sequences with missing data.

Method PF+ ALC5 PF+ALCsp `1+ALC5 `1+ALCsp SSC-N
Average 1.89% 10.81% 3.81% 1.28% 0.13%
Median 0.39% 7.85% 0.17% 1.07% 0.00%

4.3 Subspace clustering with corrupted data
In real applications, some of the entries of the data points may be corrupted (outliers). For example,
in motion segmentation, due to occlusions or limitations of the tracker, the tracker may loose track
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of some features, leading to gross errors. Assume that a few entries of each data point are corrupted.
We can also use the sparse representation to correct such entries. More precisely, let ỹi ∈ RD

be a corrupted vector obtained from ȳi = yi + ζi by adding a sparse error vector ei ∈ RD as
ỹi = yi + ζi + ei. We can then write

ỹi = Y bici + ei = [Y bi ID]

[
ci

ei

]
+ ζi,

where the coefficient vector [c>i , e
>
i ]> is still sparse, and hence can be recovered from

min
∥∥∥∥[ci

ei

]∥∥∥∥
0

subject to
∥∥∥∥ỹi − [Y bi ID]

[
ci

ei

]∥∥∥∥
2

< ε. (16)

We investigate conditions under which we can recover the true sparse representation from the
following convex program

min
∥∥∥∥[ci

ei

]∥∥∥∥
1

subject to
∥∥∥∥ỹi − [Y bi ID]

[
ci

ei

]∥∥∥∥
2

< ε. (17)

Also, we investigate the extent up to which we can have outlying entries in the data and still
can recover the true sparse solution. We can then recover the original vector without outliers as
y∗i = Y bic∗i . As before, the segmentation of the data would be obtained from the sparse coefficients
{c∗i }Ni=1 using spectral clustering.

For corrupted trajectories, we apply SSC to the sequences between 4% and 35% of whose
entries are corrupted. Our results in Table 4 compared with the results of `1-based ALC indicate
the robustness of SSC to outliers. In contrast to ALC, we do not need to use l1 as an initialization
step to complete the trajectories and then apply the segmentation algorithm. The resulting sparse
coefficients are used directly to build the similarity graph and do the spectral clustering. Part of the
ongoing research is to evaluate the robustness of the method to outliers on a larger database .

Table 4: Misclassifications rates comparison on 12 real motion sequences with corrupted trajectories.

Method `1 + ALC5 `1 + ALCsp SSC-N
Average 4.15% 3.02% 1.05%
Median 0.21% 0.89% 0.43%

Temporal video segmentation. Some video sequences may consist of several scenes or activities
which are with a reasonable extent disjoint from each other. A common assumption in such cases
is that if we treat each image frame as a data point (for example by vectorizing each 2D image),
the images corresponding to the same scene or activity would span an affine subspace. Thus, we
can model such videos by a collection of data points from a union of subspaces. The task would be
then to cluster the frames so that the frames in the same cluster correspond to the same scene or
activity. We propose to apply SSC for segmentation of video frames into different clusters such that
the frames in each cluster represent roughly the same scene or activity while the frames in different
clusters represent scenes or activities which are up to a reasonable level distinct from each other.
We propose to collect a database of videos for the purpose of temporal segmentation and evaluate
the performance of the SSC algorithm as well as other clustering methods.
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4.4 Dimensionality reduction and clustering of nonlinear manifolds
We consider the general case where the data are sampled from a collection of nonlinear manifolds
for which we do not know the metric. We assume that for each manifold, there is a single coordinate-
chart in a low-dimensional space and a mapping from this coordinate-chart to the manifold. Our
goal is first to cluster the data points such that the data in the same manifold belong to the same
cluster. Second, we want to recover a low-dimensional representation of the data on each manifold
as well as a mapping from the low-dimensional space to the manifold.

We propose to use the SSC algorithm with possibly some modifications for the simultaneous
clustering and dimensionality reduction of the data lying on multiple manifolds. As we showed
in the previous section, the SSC algorithm performs remarkably well for the motion segmentation
problem on a large database which consists of intersecting and non-intersecting manifolds. The
reason it works for clustering of data on intersecting flat manifolds is that it chooses from all data
only a few points which can linearly reconstruct the given data point. As a result, no matter of the
given data point being close to or far from the intersection, the sparse coefficients come from points
in the same subspace. This in fact eliminates the problems of methods such as LSA and LLMC
which build a similarity matrix based on nearest neighbors of each data point. So, for points near
the intersection of manifolds, they choose neighbors from different manifolds which reduces their
performance.

We have conjectured and experimentally observed that if we write a point as an affine combina-
tion of all other points lying on multiple nonlinear manifolds, the coefficients with the largest values
correspond to points from the same manifold and also close to the given data point. This suggests
that we can construct a similarity graph from the sparse coefficients and obtain the clusters by
applying spectral clustering. We propose to use the sparse coefficients in each connected component
to reduce the dimensionality of the data on each manifold. This way, (1) we can cluster data
lying on intersecting and non-intersecting manifolds which has not been well addressed in the
literature before. In fact, methods such as LLMC and LLE can not specifically handle the case of
intersecting manifolds. (2) We eliminate the problem of fixing the number of nearest neighbors
which is required in methods such as LLE, and Laplacian Eigenmaps since by using the sparse
representation techniques we automatically choose the neighbors. (3) The embedding of data into
a lower-dimensional space follows by solving an sparse eigenvalue problem which is less costly
than finding the embedding in methods such as ISOMAP. Our ongoing research aims at better
understanding the behavior of the method for clustering nonlinear manifolds as well as deriving
theoretical guarantees for the success of the algorithm.

We have taken three handwritten digits, {2, 4, 6}, from the MNIST database (1000 images
per digit) [19] and applied the SSC algorithm to the collection of data points. We have obtained
a misclassification rate of 0.6% for clustering of the digits. Having clustered the data on each
manifold we have used the sparse coefficients to reduce the dimensionality of the data on each
manifold. The left plot in Figure 3 shows the low-dimensional embedding for the digit 2. One can
see that the horizontal axis captures the variation of the top arch while the vertical axis captures the
variation of the bottom loop of the digits. More precisely, moving on the horizontal axis from left to
right, the top arch becomes larger and moving on the vertical axis from bottom to top, the bottom
loop becomes larger. The right hand side plot in Figure 3 shows the embedding of the three digits in
a two dimensional space. Clearly, the data from different digits are well separated from each other
which justifies the low misclassification rate we obtained. Part of our future research is to evaluate
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Figure 3: Left: Dimensionality reduction result for digit 2 in the MNIST database. Right: Clustering result for 3 digits
in the MNIST database.

the performance of the proposed algorithm on large data sets.
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