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Abstract—High-dimensional data often lie in low-dimensional
subspaces corresponding to different classes they belong to.
Finding sparse representations of data points in a dictionary built
from the collection of data helps to uncover the low-dimensional
subspaces and, as a result, address important problems such as
compression, clustering, classification, subset selection and more.
However, an important challenge related to real-world datasets is
that the collection of data is often corrupted by measurement or
process noise. In this paper, we address the problem of recovering
sparse representations for noisy data points in a dictionary whose
columns correspond to noisy data points lying close to a union of
subspaces. We consider a constrained `1-minimization program
and study conditions under which the solution of the optimization
recovers a representation of a noisy point as a linear combination
of a few noisy points from the same subspace. Our framework is
based on a novel generalization of the null-space property to the
setting where data lie in multiple subspaces, the number of data
points in each subspace exceeds the dimension of the subspace,
and all data points are corrupted by noise. We do not impose
any randomness assumption on the arrangement of subspaces
or distribution of data points in each subspace. We show that,
under appropriate conditions that depend on relationships among
data points within and between subspaces, the solution of our
proposed optimization satisfies a desired approximate subspace-
sparse recovery. More specifically, we show that a noisy data
point, close to one of the subspaces, will be reconstructed using
data points from the same subspace with a small error and that
the coefficients corresponding to data points in other subspaces
will be sufficiently small.

Index Terms—Low-dimensional subspaces, sparse representa-
tion, noisy data points, `1-minimization, subspace incoherence,
subspace inradius, approximate recovery.

I. INTRODUCTION

H IGH-DIMENSIONAL datasets are ubiquitous in many
areas of science and engineering, such as signal and

image processing, computer vision, information retrieval, bio
and health informatics, energy systems, robotics and more.
Real-world data, however, often lie close to low-dimensional
subspaces instead of being uniformly distributed in the high-
dimensional ambient space [1], [2], [3], [4], [5], [6]. Exploiting
and recovering the low-dimensional structures in data, in fact,
is the key to efficiently address a variety of important problems
such as clustering [6], [7], [8], [9], [10], [11], classification
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[12], [13], compression [4], [14], [15], [16], subset selection
[17], [18], [19], visualization as well as other applications [20],
[21], [22], [23].

Sparse representation techniques provide effective tools to
exploit and uncover the low-dimensional structures in datasets
[24], [25], [26]. More specifically, given a measurement y ∈
Rn and a dictionary or a sensing matrix A ∈ Rn×N , which has
a nontrivial null-space, the goal of sparse recovery is to find
a representation c ∈ RN of y as a linear combination of the
columns of A, such that c has only a few nonzero coefficients.
A computationally efficient method to achieve this goal is to
solve the `1-minimization program

min ‖c‖1 s. t. y = Ac. (I.1)

In fact, ‖c‖1, which is the sum of the absolute values of
elements of c, is the convex envelope of the cardinality of
c and is known to recover sparse solutions, under appropriate
conditions on the dictionary and the sparsity level [24], [25],
[26], [27], [28].

Sparse representation-based methods can be divided into
two categories, depending on the type of dictionaries be-
ing used. The first group of methods use fixed pre-defined
dictionaries, such as the ones built from Wavelets, Fourier
basis, Random Projections and so on [27], [29], [30]. The
second group of methods, which form an important class of
data analysis algorithms, use adaptive dictionaries built from
the collection of data, where the columns of the dictionary
A correspond to data points [6], [12], [31]. Under the as-
sumption that the data points lie in a union of subspaces,
with the number of data in each subspace being larger than
the dimension of the subspace, a sparse representation of y,
ideally, corresponds to a subspace-sparse representation. In
other words, y can be written as a linear combination of a
few data points that lie in the same low-dimensional subspace.
In fact, subspace-sparse recovery is the key requirement for
the success of sparse representation-based clustering, classi-
fication, compression and subset selection algorithms, which
has been the subject of recent studies in the literature [6],
[11], [13], [17], [32], [33], [34]. One can show that when data
points perfectly lie in subspaces, under appropriate conditions
on the principal angles between subspaces and the distribution
of data, the solution of `1-minimization perfectly recovers a
subspace-sparse representation [6], [32], [33].

An important challenge related to real-world datasets is that
data points are often corrupted by measurement or process
noise. In other words, not only y, but also all columns of the
dictionary A are corrupted by noise. As a result, standard anal-
ysis tools related to the first group of sparse recovery methods,
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in which the predefined dictionary A is uncorrupted while the
measurement y is noisy, are not applicable [20], [35], [36],
[37]. Therefore, there is a need to develop subspace-sparse
recovery algorithms and study their theoretical guarantees in
the setting where data lie in a union of subspaces and are
corrupted by noise.

Recently, [38], [39] studied the problem of subspace-sparse
recovery in the presence of noise using the unconstrained
optimization program

minλ‖c‖1 +
1

2
‖y −Ac‖2`2 , (I.2)

where the regularization parameter λ > 0 sets a trade-off
between sparsity and reconstruction error objectives. It is
proved that, when subspaces and/or data points are drawn
randomly from appropriate distributions, under appropriate
conditions on subspaces and data points and for certain values
of λ, the solution of the above optimization recovers subspace-
sparse representations for all data points.

Paper Contributions. In this paper, we study the problem
of approximate subspace-sparse recovery in the presence of
noise, where we do not impose any randomness assumption
on the arrangement of subspaces or distribution of data points
in each subspace. We assume that all data points are corrupted
by Gaussian noise whose Euclidean norm is smaller than or
equal to ε. Instead of the unconstrained minimization (I.2), we
consider the constrained `1-minimization program

min ‖c‖1 s. t. ‖y −Ac‖`2 ≤ γε, (I.3)

where γ > 0 is a regularization parameter, which we determine
in the paper.

We show that, under appropriate conditions on the data
and subspaces, the solution of (I.3) satisfies the approximate
subspace-sparse recovery property, i.e., 1) y will be recon-
structed using data point from its underlying subspace with an
error that is of the order of O(ε); 2) coefficients corresponding
to data points in other subspaces are sufficiently small, of
the order of O(ε). Our theoretical results relies on a novel
generalization of the well-known null-space property, studied
in conventional sparse recovery [40], [41], [42], [43], to the
setting where 1) data lie in a union of subspaces, with the
number of data points in each subspace typically being larger
than the subspace dimension; 2) all data points are corrupted
by noise.

Unlike conventional results on sparse recovery that assume
only the measurement vector y is noise [44], [45], our work
addresses the general framework where both the measurement
and the dictionary columns are corrupted by noise, and data
lie in a union of subspaces. In addition, our result contains,
as a special case, existing result on sparse recovery in union
of subspaces for the noise-free setting [6], [32], [33]. To the
best of our knowledge, this is the first work analyzing the
constrained `1-minimization program (I.3) for subspace-sparse
recovery with noisy data. Finally, unlike state of the art, we
impose no randomness randomness on data or subspaces. We
allow for arbitrary arrangement of subspaces and arbitrary data
points in each subspace. The only randomness assumption

comes from the noise in the data, which we assume to be
Gaussian.

Paper Organization. The organization of this paper is as
follows. In Section II, we present the settings of our problem.
We state the approximate subspace-sparse recovery problem
and introduce appropriate definitions and notations. In Section
III, we present our theoretical guarantees for our proposed
constrained `1-minimization program. Finally, in Section IV,
we conclude the paper and discuss open problems.

II. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we consider the problem of finding sparse
representations for corrupted data points that lie close to a
union of subspaces. Assume that we have L linear subspaces
{Si}Li=1 in Rn of dimensions {di}Li=1. Let X ∈ Rn×N
denote a matrix whose columns correspond to noise-free data
points that lie in the union of the L subspaces. Without loss
of generality, we assume that the columns of X have unit
Euclidean norms. We denote by Xi ∈ Rn×Ni the Ni data
points that lie in Si, hence

∑L
i=1Ni = N . We can write

X ,
[
X1 X2 · · · XL

]
Γ ∈ Rn×N , (II.1)

where Γ ∈ RN×N is a permutation matrix, which is not
necessarily known a priori. Given x that lies in one of the
subspaces, the subspace-sparse recovery problem refers to the
problem of finding a representation of x in the dictionary X ,
as x = Xc, such that the nonzero coefficients of c correspond
to a few data points that lie in the same subspace as that of x.
More specifically, considering the sparse optimization program

c∗ = argmin ‖c‖`1 s. t. x = Xc, (II.2)

one would like to have a few nonzero elements in c∗ that
correspond to data points lying in the same subspace of x.

In real-world problems, however, data points often do not
lie perfectly in subspaces, due to corruption by noise. Instead,
they lie approximately close to a union of subspaces. In this
paper, we address the problem of approximate subspace-sparse
recovery in the presence of noise. More precisely, we assume
that we have a collection of noisy data points Y i ∈ Rn×Ni
from each subspace Si, i.e.,

Y i = Xi +Zi, (II.3)

where Xi denotes the collection of noise-free data points,
which lie at the intersection of Si with the unit hypersphere,
and Zi denotes the random noise matrix, which has i.i.d
elements drawn from the Gaussian distribution N (0, ε

2

n ). As
a result, each noise-free data point of unit Euclidean norm on
each subspace is corrupted by a noise whose Euclidean norm
is roughly less than or equal to ε, where

ε , ε(1 + ρ), (II.4)

for a sufficiently small ρ > 0. We also assume that x ∈ Si,
which has unit Euclidean norm, is corrupted by a noise z,
which has i.i.d elements drawn from N (0, ε

2

n ), giving rise to
the noisy data point y = x+ z.
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Fig. 1. Left: The subspace inradius associated with Si is the radius of
the largest Euclidean ball whose intersection with Si is inscribed in the
symmetrized convex hull of data points in Si. Right: When data are not
well distributed in a subspace, i.e., they are close to a degenerate subspace,
e.g., a line inside a plane, the subspace inradius decreases.
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Fig. 2. The subspace incoherence associated with Si is defined as the
maximum inner product between an arbitrary vector of unit Euclidean norm
in Si and data points in other subspaces.

Remark II-A: Notice that for a Gaussian random vector
z ∈ Rn with i.i.d entries drawn from N (0, ε

2

n ), with high
probability, we have ‖z‖`2 ≤ ε. For the sake of brevity,
throughout the paper, we do not include explicitly the failure
probability of ‖z‖`2 ≤ ε in the probabilistic statements of
our results.
For simplicity of notation, we denote X =

[
Xi X−i

]
,

where X−i represents the collection of data points from all
subspaces except Si. Similarly, we write Y =

[
Y i Y −i

]
,

where Y −i denotes the collection of noisy data points from
all subspaces except Si. We also use the convention y ∈ Sεi
to refer to a noisy data point that is the sum of a noise-free
data point x in Si with unit Euclidean norm and a noise z
whose Euclidean norm is smaller than or equal to ε, i.e.,

Sεi , {y ∈ Rn : y = x+ z, x ∈ Si, ‖z‖`2 ≤ ε}. (II.5)

Our goal is to find an approximate subspace-sparse repre-
sentation, c> =

[
c>i c>−i

]
, of a noisy data point y in the

dictionary of corrupted data, Y , as we define next.
Definition 2.1 (approximate subspace-sparse recovery):

Consider a noisy data point y lying in Sεi and a noisy
dictionary Y , where the Euclidean norm of the noise on
the its columns is less than or equal to ε. An approximate
subspace-sparse recovery of y in Y corresponds to a
representation y = Y c, such that
1) y can be reconstructed, with high accuracy, using noisy
data points from its own subspace, i.e.,

‖y − Y ici‖`2 ≤ O(ε); (II.6)

2) the nonzero coefficients corresponding to noisy data points
in other subspaces are sufficiently small, i.e.,

‖c−i‖`1 ≤ O(ε). (II.7)

In order to achieve an approximate subspace-sparse represen-
tation for y in the dictionary Y , in this paper, we consider the
the constrained `1-minimization program

min ‖c‖`1 s. t. ‖y − Y c‖`2 ≤ γε, (II.8)

where γ > 0 is a parameter that we determine in the paper. We
investigate conditions on the data and subspaces under which
the optimal solution of (II.8) achieves approximate subspace-
sparse recovery.

The conditions that we derive depend on the inradius of
convex bodies of the data in each subspace and the incoherence
between subspaces, as we define next.

Definition 2.2 (subspace inradius): Let Xi ,[
xi1 xi2 · · · xiNi

]
be a matrix whose columns lie

in Si. Denote by P (Xi) the symmetrized convex hull of Xi.
More precisely,

P (Xi) , conv(±xi1,±xi2, . . . ,±xiNi). (II.9)

The subspace inradius associated with Si, which we denote by
ri, is defined as the radius of the largest Euclidean ball whose
intersection with Si is inscribed in P (Xi), see Figure 1.

Definition 2.3 (subspace incoherence): The subspace inco-
herence associated with Si is defined as

µi , max
x∈Si,‖x‖`2=1

∥∥x>X−i∥∥`∞ . (II.10)

In other words, µi is the maximum inner product between an
arbitrary vector of unit Euclidean norm in Si and the columns
of X−i, which correspond to data points in other subspaces,
see Figure 2.

Notice that from the definition of the principal angles between
subspaces, we always have µi ≤ maxj 6=i cos θij , where θij
denotes the smallest principal angle between Si and Sj .

In this paper, we show that, as long as the subspace
incoherences between Si and other subspaces are sufficiently
small compared to the subspace inradius of Si, the opti-
mization algorithm in (II.8), for an appropriate γ, finds an
approximate subspace-sparse representation for any y ∈ Sεi .
More specifically, we prove the following result.

Theorem 2.1: Let γ , maxi 2(1 +
2
√

2(logNi+logn)

ri
). De-

fine β as

β , (1 + max
i

3ri
ri − (µi + ε)

)
γ

2
+ δ, (II.11)

where δ > 0 is arbitrarily small. Then, for every i and every
y ∈ Sεi , the solution of the optimization problem in (II.8),
denoted by c∗> =

[
c∗>i c∗>−i

]
, with high probability, satisfies

‖y − Y ic
∗
i ‖`2 ≤ βε. (II.12)

In addition, assuming ε ≤ γ
2β+γ ri, with high probability,

we have ∥∥c∗−i∥∥`1 ≤ 2β + γ

2ri
ε. (II.13)

Notice that, from (II.11), a necessary condition for the approx-
imate subspace-sparse recovery is to have µi+ε < ri for all i.
This in fact makes sense since from earlier results [6], [33], in
the noise-free setting, perfect subspace-sparse recovery holds
as long as µi < ri holds for all i. Thus, given the fact that
data points are corrupted by noise whose Euclidean norm is
about ε, there is a need for adjustment of the condition by
incorporating the noise level.
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Remark II-B: Our results in Theorem 2.1 suggest that the
smaller the ratio (µi + ε)/ri is and the larger ri is, the
better recovery we obtain using the `1-minimization in (II.8).
This is expected, since a larger ri corresponds to a more
even distribution of points in subspace i, i.e., farther from
a degenerate subspace. On the other hand, a smaller µi corre-
sponds to points in different subspaces being more dissimilar
to each other.

Example II-C: Let 1/κ , maxi(µi + ε)/ri, where κ >
1, from the necessary condition that ri must be greater than
µi + ε, as stated earlier. Also, let c , 2

√
2(logNi∗ + log n)

and r , ri∗ , where i∗ is the index for which we obtain the
maximum value in the definition of γ in Theorem 2.1. Hence,
we have

γ = 2 (1 +
c

r
). (II.14)

In addition, using the definition of β in (II.11), we can write

β = (4 +
3

κ− 1
)(1 +

c

r
) + δ. (II.15)

Clearly, the larger the value of subspace inradius r is, the less
error tolerance γ we can allow for the reconstruction of a given
y and, at the same time, the reconstruction of y using noisy
points in its own subspace has a smaller error. In addition, as
κ increases, the error on the reconstruction of y using noisy
points in its own subspace decreases. In the limiting case of
κ being large enough, we obtain

‖y − Y ic
∗
i ‖`2 ≤ 4 (1 +

c

r
) ε. (II.16)

In the next section, we provide the required theoretical
analysis tools to prove the above result. In fact, our theory
relies on a novel generalization of the null-space property [40],
[41], [42], [43] to the setting where 1) data lie in a union of
subspaces, with the number of data points in each subspace
typically larger than the subspace dimension; 2) all data points
are corrupted by noise.

III. APPROXIMATE SUBSPACE-SPARSE RECOVERY
THEORY

In this section, we consider the `1-minimization program[
c∗i
c∗−i

]
= argmin

∥∥∥∥[ ci
c−i

]∥∥∥∥
`1

s. t.

∥∥∥∥y − [Y i Y −i
] [ ci

c−i

]∥∥∥∥
`2

≤ γε,
(III.1)

and investigate conditions under which we achieve approxi-
mate subspace-sparse recovery for an arbitrary noisy data point
y ∈ Sεi . More precisely, we investigate conditions under which
the optimal solution of (III.1) approximately reconstructs y
from noisy data points in its own subspace, i.e., ‖y − Y ic

∗
i ‖`2

is bounded by O(ε), and the coefficients corresponding to
noisy data points in other subspaces are sufficiently small,
i.e.,

∥∥c∗−i∥∥`1 is of the order of O(ε).

A. Preliminary Lemmas

To prove the main results of the paper, we make use of the
following Lemmas. The proof of the first Lemma can be found
in [33] and we provide the proofs of the other two Lemmas
in the Appendix.

Lemma 3.1: Given a noise-free data point x ∈ Si, the
`1-norm of the optimal solution of the minimization program

c∗i = argmin ‖c‖`1 s. t. x = Xic, (III.2)

satisfies the following inequality

‖c∗i ‖`1 ≤
‖x‖`2
ri

. (III.3)

In other words, the upper bound on the minimum `1-norm
representation of a noise-free data point x in Si in terms of
noise-free data points in Si is proportional to the Euclidean
norm of x and is inversely proportional to the subspace
inradius ri.

Lemma 3.2: For Zi ∈ Rn×Ni with i.i.d entries drawn from
N (0, ε

2

n ) and a given ci ∈ RNi , with probability at least
1− 1

(nNi)2
, we have

‖Zici‖`2 ≤ 2ε
√

2(logNi + log n) ‖ci‖`1 . (III.4)

The result of the above Lemma implies that given Y i =
Xi + Zi whose columns are noisy data points in Sεi , the
linear combination Y ici corresponds to perturbing the noise-
free vector Xici lying in Si with a noise whose Euclidean
norm is bounded above by (III.4).

Lemma 3.3: Given a noisy data point in the i-th subspace,
y ∈ Sεi , consider the `1-minimization program

c∗ = argmin ‖c‖`1 s. t. ‖y − Y c‖`2 ≤ γε, (III.5)

with γ , maxi 2(1 +
2
√

2(logNi+logn)

ri
). With probability at

least 1− 1
(nNi)2

, we have

‖c∗‖`1 ≤
1

ri
. (III.6)

Thus, for an appropriately chosen error tolerance, the upper
bound on the `1-norm of the optimal representation of a
noisy data point in Sεi , as a linear combination of all noisy
data points in Y , is inversely proportional to the subspace
inradius ri.

As a consequence of Lemmas 3.2 and 3.3, for the optimal
solution of (III.1), we have

‖Zic
∗
i ‖`2 ≤ 2ε

√
2(logNi + log n) ‖c∗i ‖`1

≤ 2ε

√
2(logNi + log n)

ri
,

(III.7)

where we used the fact that ‖c∗i ‖`1 ≤ ‖c∗‖`1 ≤
1
ri

.
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B. Main Results

In this section, we prove our main result in Theorem 2.1.
To do so, we consider an arbitrary vector ỹ that lies close to
Si and whose Euclidean norm is larger than the approximate
recovery noise level, i.e., ‖ỹ‖`2 > βε, where β > 0.5γ. We
consider the following `1-minimization programs,

ai(ỹ) = argmin ‖a‖`1 s. t. ‖ỹ −Xia‖`2 ≤
γ

2
ε, (III.8)

a−i(ỹ) = argmin ‖a‖`1 s. t. ‖ỹ − Y −ia‖`2 ≤ γε. (III.9)

In other words, in (III.8), we consider approximate reconstruc-
tion of ỹ using noise-free data points in Si, and in (III.9),
we consider approximate reconstruction of ỹ using noisy data
points in subspaces other than Sεi .

The structure of our theoretical analysis in the paper is as
follows. First, in Theorem 3.1, we find conditions based on the
inradius and incoherence of subspaces under which we have
‖ai(ỹ)‖`1 < ‖a−i(ỹ)‖`1 , for every ỹ. Our result corresponds
to a novel generalization of the null-space property [40],
[41], [42], [43] to the case where 1) data lie in a union of
subspaces, with the number of data points in each subspace
typically larger than the subspace dimension; 2) all data points
are corrupted by noise. Then, in Theorems 3.2 and 3.3, we
show that if the noisy multi-subspace null-space property
holds, i.e., ‖ai(ỹ)‖`1 < ‖a−i(ỹ)‖`1 , for every ỹ, then the
optimization problem (III.1) achieves approximate subspace-
sparse recovery according to Definition 2.1.

For brevity of the notation, we denote ai(ỹ) and a−i(ỹ)
by ai and a−i, respectively, whenever the argument ỹ is clear
from the context. To characterize the set of admissible ỹ in our
theoretical analysis, we make use of the following definition.

Definition 3.1: We denote by Wi(β, γ, ε) the set of all ỹ
with ‖ỹ‖`2 > βε, which can be written as the sum of a noise-
free vector in Si and a noise whose Euclidean norm is smaller
than or equal to 0.5γε, i.e.,

Wi(β, γ, ε) , {ỹ ∈ Rn : ‖ỹ‖`2 ≥ βε, ỹ = y + z,

y ∈ Si, ‖z‖`2 ≤ 0.5γε}.
(III.10)

Next, we show that for a suitable value of γ, which depends on
the subspace inradius, and for suitable values of β, the noisy
multi-subspace null-space property holds.

Theorem 3.1 (Noisy Multi-Subspace Null-Space Property):

Let γ , maxi 2 (1 +
2
√

2(logNi+logn)

ri
). Define β as

β , (1 + max
i

3ri
ri − (µi + ε)

)
γ

2
+ δ, (III.11)

where δ > 0 is an arbitrarily small nonnegative number. Then,
for every ỹ which belongs to Wi(β, γ, ε), the solutions of the
optimization programs (III.8) and (III.9) satisfy

‖ai(ỹ)‖`1 < ‖a−i(ỹ)‖`1 . (III.12)

Proof: Consider ỹ in Wi(β, γ, ε). We can write

ỹ = x̃+ z̃, (III.13)

where from (III.10), we have x̃ ∈ Si and ‖z̃‖`2 ≤ 0.5γε.
Since ‖ỹ‖`2 > βε, we have that ‖x̃‖`2 > (β − 0.5γ)ε. We

prove the result of the theorem in the following steps.
Step 1: We find an upper bound on the `1-norm of the solution
of (III.8) for ỹ, i.e., we show that

‖ai‖`1 ≤
‖x̃‖`2
ri

. (III.14)

Step 2: We find a lower bound on the `1-norm of the solution
of (III.9) for ỹ, i.e., we show that, with high probability,

‖x̃‖`2 − 3γε/2

µi + ε
≤ ‖a−i‖`1 . (III.15)

Step 3: Combining the results of steps 1 and 2 and using the
definition of β in (III.11), we show that

‖ai‖`1 ≤
‖x̃‖`2
ri

<
‖x̃‖`2 − 3γε/2

µi + ε
≤ ‖a−i‖`1 , (III.16)

obtaining the desired result.

Proof of step 1: Our goal is to find an upper bound on the
`1-norm of the solution of (III.8) for ỹ, defined in (III.13).
Since x̃ lies in Si, it can be written as a linear combination
of noise-free data points in Xi. Let

bi = argmin ‖b‖`1 s. t. x̃ = Xib. (III.17)

From Lemma 3.1 we have ‖bi‖`1 ≤
‖x̃‖`2
ri

. In addition, using
(III.13), we can write ỹ as

ỹ = x̃+ z̃ = Xibi + z̃, (III.18)

where ‖z̃‖`2 ≤ γε/2. As a result, bi is a feasible solution for
the `1-minimization program in (III.8). Hence, using the fact
that ai is the optimal solution of (III.8), we obtain

‖ai‖`1 ≤ ‖bi‖`1 ≤
‖x̃‖`2
ri

. (III.19)

Proof of step 2: Our goal is to find a lower bound on the `1-
norm of the solution of (III.9) for ỹ, defined in (III.13). By
the feasibility of a−i for the optimization program (III.9), we
can write

ỹ = Y −ia−i + v, (III.20)

where ‖v‖`2 ≤ γε. Substituting the above equation into
(III.13), we can write

x̃ = Y −ia−i + (z̃ − v), (III.21)

where, ‖z̃ − v‖`2 ≤ 3γε/2. Multiplying both sides of the
above equation on the left by x̃>/ ‖x̃‖`2 and using the
Hölder’s inequality, we obtain

‖x̃‖`2 ≤
∥∥∥∥∥ x̃>

‖x̃‖`2
Y −i

∥∥∥∥∥
`∞

‖a−i‖`1 +
3

2
γε

≤
(∥∥∥∥∥ x̃>

‖x̃‖`2
X−i

∥∥∥∥∥
`∞

+

∥∥∥∥∥ x̃>

‖x̃‖`2
Z−i

∥∥∥∥∥
`∞

)
‖a−i‖`1

+
3

2
γε ≤ (µi + ε) ‖a−i‖`1 +

3

2
γε,

(III.22)
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where we used the fact that the Euclidean norm of each column
of Z−i ∈ Rn×(N−Ni) is at most ε, with high probability.
Hence, we obtain the following lower bound on the optimal
solution of (III.9),

‖x̃‖`2 − 3γε/2

µi + ε
≤ ‖a−i‖`1 . (III.23)

Proof of step 3: Using the definition of β in (III.11), it is easy
to verify that, we have

µi + ε

ri
< 1− 3γ

2β − γ . (III.24)

In addition, using the fact that ‖x̃‖`2 ≥ (β− 0.5γ)ε, we have

µi + ε

ri
< 1− 3ηε

(β − η)ε ≤
‖x̃‖`2 − 3γε/2

‖x̃‖`2
, (III.25)

from which we obtain

‖x̃‖`2
ri

<
‖x̃‖`2 − 3ηε

µi + ε
. (III.26)

Finally, combining (III.26) with the results of steps 1 and 2,
we obtain the desired result of the theorem, i.e.,

‖ai‖`1 ≤
‖x̃‖`2
ri

<
‖x̃‖`2 − 3γε/2

µi + ε
≤ ‖a−i‖`1 . (III.27)

The result of Theorem 3.1 shows that for a suitable value of
the regularization parameter γ and for a suitable β, the noisy
multi-subspace null-space property ‖ai(ỹ)‖`1 < ‖a−i(ỹ)‖`1
holds, for every ỹ ∈ Wi(β, γ, ε). In the next two theorems,
we show that if the noisy multi-subspace null-space property
holds, then the `1-minimization program in (III.1), with high
probability, achieves approximate subspace-sparse recovery.

Theorem 3.2 (Approximate Reconstruction): Let γ ,

maxi 2(1 +
2
√

2(logNi+logn)

ri
). Assume that there exists β >

0.5γ such that for every ỹ ∈Wi(β, γ, ε), the solutions of the
optimization programs (III.8) and (III.9) satisfy ‖ai(ỹ)‖`1 <
‖a−i(ỹ)‖`1 . Then the solution of our proposed optimization
program in (III.1), with probability at least 1− 1

(nNi)2
, satisfies

‖y − Y ic
∗
i ‖`2 ≤ βε. (III.28)

Proof: Let c∗ =

[
c∗i
c∗−i

]
be the solution of the `1-

minimization program (III.1). For the sake of contradiction,
assume that the condition in (III.28) does not hold, i.e.,
‖y − Y ic

∗
i ‖`2 > βε. Since c∗ is a feasible solution of the

optimization program (III.1), we can write

y = Y ic
∗
i + Y −ic

∗
−i + e, (III.29)

where ‖e‖`2 ≤ γε. Define

ỹ , y − Y ic
∗
i . (III.30)

Note that by our assumption, we have ‖ỹ‖`2 > βε. We arrive
at contradiction by taking the following three steps.

Step 1: Let a−i be the solution of the optimization program

(III.9) for ỹ defined in (III.30). We show that
[
c∗>i a>−i

]>
is a feasible solution of (III.1), and satisfies∥∥∥∥[ c∗i

a−i

]∥∥∥∥
`1

≤
∥∥∥∥[ c∗ic∗−i

]∥∥∥∥
`1

. (III.31)

Step 2: Let ai be the solution of the optimization pro-
gram (III.8) for ỹ defined in (III.30). We show that[
c∗>i + a>i 0

]>
is a feasible solution of (III.1).

Step 3: Combining the results of the first two steps with the
main assumption of the theorem, i.e., ‖ai‖`1 < ‖a−i‖`1 , we
obtain∥∥∥∥[c∗i + ai

0

]∥∥∥∥
`1

<

∥∥∥∥[ c∗i
a−i

]∥∥∥∥
`1

≤
∥∥∥∥[ c∗ic∗−i

]∥∥∥∥
`1

. (III.32)

contradicting the optimality of
[
c∗>i c∗>−i

]>
for the optimiza-

tion program (III.1).

Proof of step 1: From (III.29), we have ỹ = Y −ic
∗
−i + e.

In other words, ỹ can be approximately written as a linear
combination of noisy data points in Y −i. Since ‖e‖`2 ≤ γε,
we have that c∗−i is a feasible solution of the optimization
program (III.9). Let a−i be the optimal solution of (III.9) for
ỹ, hence

‖a−i‖`1 ≤
∥∥c∗−i∥∥`1 . (III.33)

We can write ỹ as

ỹ = Y −ia−i + v, (III.34)

where ‖v‖`2 ≤ γε. Using (III.34) and the definition of ỹ in
(III.30), i.e., ỹ = y − Y ic

∗
i , we can write y as

y = Y ic
∗
i + Y −ia−i + v. (III.35)

Since ‖v‖`2 ≤ γε, we have that
[
c∗i
a−i

]
is a feasible solution

of the `1-minimization program (III.1). Thus, using (III.33),
we obtain the desired result of step 1, i.e.,∥∥∥∥[ c∗i

a−i

]∥∥∥∥
`1

≤
∥∥∥∥[ c∗ic∗−i

]∥∥∥∥
`1

. (III.36)

Another result that we use in the proof of step 2 is the fact
that, with probability at least 1− 1

(nNi)2
, we have

‖a−i‖`1 ≤
∥∥∥∥[ c∗i

a−i

]∥∥∥∥
`1

≤
∥∥∥∥[ c∗ic∗−i

]∥∥∥∥
`1

≤ 1

ri
. (III.37)

which follows from Lemma 3.3.

Proof of step 2: Since y ∈ Sεi , we can write y = x+z, where
x is a noise-free data point of unit Euclidean norm in Si and z
corresponds to noise whose Euclidean norm is bounded above
by ε. Therefore, we can rewrite ỹ as

ỹ = y − Y ic
∗
i = (x−Xic

∗
i ) + (z −Zic

∗
i ). (III.38)

Note that x − Xic
∗
i is a vector in Si, since it is a linear

combination of noise-free data points in Si. Also, from Lem-
mas 3.2 and 3.3, we have that ‖z −Zic

∗
i ‖`2 ≤ 0.5γε holds

with probability at least 1− 1
(nNi)2

. Thus, ỹ can be written as
the sum of a vector in Si plus a noise term whose Euclidean
norm, with high probability, is bounded above by 0.5γε, hence,
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ỹ ∈Wi(β, γ, ε). Thus, for ỹ, the optimization program (III.8)
has a feasible solution, which we denote by ai. Note that
using the fact that ỹ ∈Wi(β, γ, ε) and the assumption of the
theorem, we have

‖ai‖`1 < ‖a−i‖`1 . (III.39)

By the optimality of ỹ for the `1-minimization program (III.8),
we can write

ỹ = Xiai + v, (III.40)

where ‖v‖`2 ≤ 0.5γε. Using (III.40) and the definition of ỹ
in (III.30), i.e., ỹ = y − Y ic

∗
i , we can write y as

y = Y ic
∗
i +Xiai + v

= Y i(c
∗
i + ai) + (v −Ziai),

(III.41)

where the second equality follows from the definition of Xi =

Y i−Zi. Thus, if ‖v −Ziai‖`2 < γε, we have that
[
c∗i + ai

0

]
is a feasible solution of the optimization program (III.1), hence
obtaining the desired result of step 2. Notice that combining
(III.39) and (III.37), with probability at least 1 − 1

(nNi)2
, we

have ‖ai‖`1 <
1
ri

. Hence, using Lemma 3.2, the inequality
‖v −Ziai‖`2 < γε holds with high probability.

Proof of step 3: Based on the assumption of the theorem, since
ỹ ∈ Wi(β, γ, ε), we have that ‖ai‖`1 < ‖a−i‖`1 . Hence,
using the results of steps 1 and 2, we obtain∥∥∥∥[c∗i + ai

0

]∥∥∥∥
`1

≤ ‖c∗i ‖`1 + ‖ai‖`1

<

∥∥∥∥[ c∗i
a−i

]∥∥∥∥
`1

≤
∥∥∥∥[ c∗ic∗−i

]∥∥∥∥
`1

.

(III.42)

This contradicts the optimality of
[
c∗i
c∗−i

]
for the optimization

program (III.1). Hence, we must have

‖y − Y ic
∗
i ‖`2 ≤ βε. (III.43)

Up to this point, we have shown that, under appropriate
conditions, for any noisy data point y ∈ Sεi , the solution
of the `1-minimization program (III.1) is such that y will be
reconstructed with high accuracy using noisy data points from
its own subspace. Next, we show that, in the optimal solution,
the coefficients corresponding to data points in other subspaces
will be sufficiently small, provided that the noise level ε is not
very large. More specifically, we prove the following result.

Theorem 3.3 (Approximate Support Recovery): Let c∗> =[
c∗>i c∗>−i

]
be the solution of the optimization program in

(III.1) for a noisy data point y in Sεi . Assume that ε ≤
γ

2β+γ ri and that the approximate reconstruction condition
‖y − Y ic

∗
i ‖`2 ≤ βε holds. Then, we have∥∥c∗−i∥∥`1 ≤ β + γ/2

ri
ε. (III.44)

Proof: Since y is a noisy data point in Sεi , we can write
y = x + z, where x is a noise-free data point in Si and z
corresponds to noise whose Euclidean norm is smaller than or

equal to ε. Define ỹ , y−Y ic
∗
i , hence, from the assumption

of the theorem, we have ‖ỹ‖`2 ≤ βε. We can write ỹ as

ỹ = y − Y ic
∗
i = (x−Xic

∗
i )︸ ︷︷ ︸

, x̃

+(z −Zic
∗
i )︸ ︷︷ ︸

, z̃

. (III.45)

Notice that x̃ is a vector in Si, since it is a linear combination
of noise-free data points in Si, and z̃ corresponds to noise
whose Euclidean norm is bounded as ‖z̃‖`2 ≤ 0.5γε, using
Lemmas 3.2 and 3.3. We prove the result in (III.44) by taking
the following three steps.

Step 1: First, we show that the minimum `1-norm of repre-
senting x̃, the noise-free part of ỹ, using Xi, the noise-free
data points in Si, is bounded by

min ‖b‖`1 ≤ 2β+γ
2ri

ε

s. t. x̃ = Xib. (III.46)

Step 2: Next, we show that the minimum `1-norm of the
approximate representation of ỹ in terms of noisy data points
in Sεi , i.e., Y i, is bounded by

min ‖b‖`1 ≤ min ‖b‖`1
s. t. ‖ỹ − Y ib‖`2 ≤ γε s. t. x̃ = Xib. (III.47)

Step 3: Finally, we prove that, for the solution of the op-
timization program (III.1), the `1-norm of the coefficients
corresponding to noisy data points in subspaces other than
Sεi , i.e.,

∥∥c∗−i∥∥`1 , is bounded by∥∥c∗−i∥∥`1 ≤ min ‖b‖`1
s. t. ‖ỹ − Y ib‖`2 ≤ γε. (III.48)

Combining the results of steps 1 to 3, we obtain (III.44).

Proof of step 1: Let bi be the solution of the `1-minimization
program

bi = argmin ‖b‖`1 s. t. x̃ = Xib. (III.49)

Using (III.45), we can write x̃ = ỹ − z̃, where ‖ỹ‖`2 ≤ βε
and ‖z̃‖`2 ≤ 0.5γε. As a result, the Euclidean norm of x̃ is
bounded by ‖x̃‖`2 ≤ (β+γ/2)ε. Thus, using Lemma 3.1, we
obtain

‖bi‖`1 ≤
‖x̃‖`2
ri

≤ β + η

ri
ε. (III.50)

Proof of step 2: Let bi be the solution of the optimization
program (III.49), hence,

x̃ = Xibi. (III.51)

Since, using (III.45), we have x̃ = ỹ − z̃, and also Xi =
Y i −Zi, we can rewrite (III.51) as

ỹ = Y ibi + (z̃ −Zibi). (III.52)

Thus, if we show that ‖z̃ −Zibi‖`2 ≤ γε, then we obtain
(III.47), since bi is the optimal solution of the right hand-side
of (III.47), while it is also a feasible solution of the left hand-
side of (III.47). Notice that the columns of Xi are data points



8

in a di-dimensional subspace of Rn. As a result, from the
linear programming theory, the optimal solution of the right
hand-side of (III.47), bi, has a support whose size is at most
di. Thus, using the fact that the Euclidean norm of the columns
of Zi is at most ε, we have ‖Zibi‖`2 ≤ ε ‖bi‖`1 . Now, using
the result of step 1 in (III.50), i.e., ‖bi‖`1 ≤

β+η
ri

ε, and the
assumption of the theorem on the noise level, i.e., ε ≤ γ

2β+γ ri,
we obtain

‖z̃ −Zibi‖`2 ≤ ‖z̃‖`2 + ‖Zibi‖`2 ≤ ηε+ ε ‖bi‖`1
≤ ηε+ β + η

ri
ε2 ≤ 2ηε.

(III.53)

Proof of step 3: Let b′i be the optimal solution of the right
hand-side of (III.48), i.e.,

b′i = argmin ‖b‖`1 s. t. ‖ỹ − Y ib‖`2 ≤ γε. (III.54)

For the sake of contradiction, assume that the inequality in
(III.48) does not hold, so we have

∥∥b′i∥∥`1 < ∥∥c∗−i∥∥`1 . Using
the definition of ỹ in (III.45), i.e., ỹ = y − Y ic

∗
i , we have∥∥ỹ − Y ib

′
i

∥∥
`2

=
∥∥y − Y i(c

∗
i + b′i)

∥∥
`2
≤ γε. (III.55)

As a result,
[
c∗i + b′i

0

]
is a feasible solution of the optimization

problem (III.1). Moreover, we have∥∥∥∥[c∗i + b′i
0

]∥∥∥∥
`1

≤ ‖c∗i ‖`1 +
∥∥b′i∥∥`1 <

∥∥∥∥[ c∗ic∗−i

]∥∥∥∥
`1

, (III.56)

which contradicts the optimality of
[
c∗i
c∗−i

]
for (III.1). Thus,

we must have
∥∥c∗−i∥∥`1 ≤ ∥∥b′i∥∥`1 .

Putting the results of Theorems 3.1, 3.2 and 3.3 together, we
arrive at our main theoretical results, guaranteeing approxi-
mate subspace-sparse recovery in the presenese of noise using
the `1-minimization program in (III.1).

Theorem 3.4: Assume that the columns of Y ∈ Rn×N
correspond to noisy data points lying in {Sεi }Li=1, with Ni
data points in each Sεi . Consider the `1-minimization program
in (III.1) with the γ defined as

γ , max
i

2(1 +
2
√
2(logNi + log n)

ri
). (III.57)

Define β as

β , (1 + max
i

3ri
ri − (µi + ε)

)
γ

2
+ δ, (III.58)

where δ > 0 is arbitrarily small. Then, for every i ∈
{1, . . . , L} and every y ∈ Sεi , the solution of the optimization
problem in (III.1), with probability at least 1− 1

(nNi)2
, satisfies

‖y − Y ic
∗
i ‖`2 ≤ βε. (III.59)

In addition, assume that ε ≤ γ
2β+γ ri. Then, we have that∥∥c∗−i∥∥`1 ≤ 2β + γ

2ri
ε (III.60)

holds with probability at least 1− 1
(nNi)2

.

Proof: Given the choice of γ in (III.57) and β in (III.58),
from Theorem 3.1,we have that the multi-subspace noisy null-
space property holds, i.e., for every ỹ in Wi(β, γ, ε), we have
‖ai(ỹ)‖`1 < ‖a−i(ỹ)‖`1 , where ai(ỹ) and a−i(ỹ) denote
the solutions of (III.8) and (III.9), respectively. As a result,
the condition of the Theorem 3.2 is satisfied and we have
that (III.59) holds, with high probability. Finally, given the
approximate reconstruction condition and the assumption of
the theorem on the maximum value of ε, from Theorem 3.3,
we have that (III.60) holds, with high probability.

Notice that in all of our theoretical results so far we allow
for arbitrary subspace arrangements and data distributions in
subspaces, without any randomness assumption. This is in
fact an advantage of our theoretical analysis with respect to
[38], which assumes the more restricted setting where data in
each subspace are distributed at random. In fact, assuming
random distribution for data points, we can further show
that in the solution of the `1-minimization program (III.1),
the coefficients from the correct support, i.e., c∗i , not only
reconstruct y with a high accuracy, but also have sufficiently
large values. More specifically, we prove the following result.

Theorem 3.5 (Correct Support Detection): Assume that the
noise-free data in each subspace Si, i.e., the columns of Xi,
are drawn uniformly at random from the intersection of the
unit hypersphere with Si. Let c∗> =

[
c∗>i c∗>−i

]
be the

solution of the optimization program in (III.1) for a noisy data
point y in Sεi . Assume that the approximate reconstruction
condition ‖y − Y ic

∗
i ‖`2 ≤ βε holds. Then, with probability

at least 1− 2
N2
i

, we have

‖c∗i ‖`1 ≥
1− (β + 1) ε

2
√

2 logNi
di

+ 2
√

2 logNi
n ε

. (III.61)

Proof: Our goal is to find a lower bound on the `1-norm
of c∗i . Since y belongs to Sεi , it can be written as y = x +
z, where x is a vector of unit Euclidean norm in Si and z
corresponds to noise, where ‖z‖`2 ≤ ε. Using the assumption
of the theorem, i.e., ‖y − Y ic

∗
i ‖`2 ≤ βε, we can write

y = Y ic
∗
i + e, (III.62)

where ‖e‖`2 ≤ βε. Since Y i = Xi +Zi, we can rewrite the
above equation as

x+ z − e = (Xi +Zi)c
∗
i . (III.63)

Multiplying both sides of (III.63) from left by x>, and taking
the absolute values, we have∣∣x>(x+ z − e)

∣∣ = ∣∣x>(Xi +Zi)c
∗
i

∣∣ . (III.64)

Note that the left hand-side of (III.64) is bounded by

1− (β + 1) ε ≤
∣∣x>(x+ z − e)

∣∣ . (III.65)

On the other hand, using the Hölder’s inequality, the right
hand-side of (III.64), with probability at least 1 − 2

N2
i

, is
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bounded by∣∣x>(Xi +Zi)c
∗
i

∣∣ ≤ ∥∥x>(Xi +Zi)
∥∥
`∞
‖c∗i ‖`1

≤ (
∥∥x>Xi

∥∥
`∞

+
∥∥x>Zi

∥∥
`∞

) ‖c∗i ‖`1

≤ 2(

√
2 logNi
di

+

√
2 logNi

n
ε) ‖c∗i ‖`1 .

(III.66)

The last inequality in the above follows from Lemma A.2 in
the Appendix. Finally, using the lower-bound in (III.64) and
the upper-bound in (III.65), for (III.66), we obtain

1−(β+1) ε ≤ 2(

√
2 logNi
di

+

√
2 logNi

n
ε) ‖c∗i ‖`1 , (III.67)

hence, we arrive at our desired result in (III.61).

IV. CONCLUSIONS

In this paper, we considered the problem of finding sparse
representations for noisy data points in a dictionary that
consists of noisy data lying close to a union of subspaces.
More specifically, we assumed that the columns of the dic-
tionary correspond to data points drawn from a union of
subspaces and corrupted by Gaussian noise whose Euclidean
norm is about ε. We studied a constrained `1-minimization
program and showed that under appropriate conditions on
the subspace-inradius and subspace-coherence parameters, the
solution of the proposed optimization recovers a solution sat-
isfying approximate subspace-sparse recovery. In other words,
we showed that the a noisy data point will be reconstructed
using data point from its underlying subspace with an error
that is of the order of ε, while coefficients corresponding to
data points in other subspaces are sufficiently small, of the
order of ε. To achieve this result, we developed an analysis
framework based on a novel generalization of the null-space
property to the setting where data lie in multiple subspaces, the
number of data points in each subspace exceeds the dimension
of the subspace, and all data points are corrupted by noise. An
important future avenue of research is investigating efficient
optimizations and theoretical analysis for other types of data
corruptions such as large sparse errors.

APPENDIX A

In the paper, we used the fact that for a Gaussian random
vector z ∈ Rn with i.i.d entries drawn from N (0, ε

2

n ), with
high probability, we have ‖z‖`2 ≤ ε. To see this, notice that
if zi ∼ N (0, ε

2

n ), then qi , n
ε2 z

2
i follows a χ2 distribution

with one degree of freedom. We use the following Lemma
from [46], which provides a bound on linear combination of
χ2 random variables.

Lemma A.1: Let q1, . . . , qn be independent χ2 random
variables, each with one degree of freedom. For any vector
a =

[
a1 · · · an

]> ∈ Rn+ with nonnegative entries, and for
any t > 0, we have

Pr

[
n∑
i=1

aiqi > ‖a‖`1 + 2
√
t ‖a‖`2 + 2t ‖a‖`∞

]
≤ e−t.

(A.1)

If we set ai = ε2/n for all i = 1, . . . , n, then using the above
lemma, we obtain that

Pr
[
‖z‖2`2 > ε2(1 + ρ)2

]
≤ e−

(1+ρ)2−
√

2(1+ρ)2−1
2 n (A.2)

holds for any ρ > 0.
We also have the following Lemma, which provides a bound

on the inner product between a fixed vector and a matrix of
Gaussian random variables.

Lemma A.2: Assume A ∈ Rm×N has i.i.d entries drawn
from N (0, σ2). Let x ∈ Rm be a vector of unit Euclidean
norm. We have

Pr
[∥∥∥A>z∥∥∥

`∞
≤ 2
√
2 logN σ

]
≥ 1− 1

N2
. (A.3)

APPENDIX B
PROOF OF LEMMA 3.2

Denote the j-th row of the noise matrix Zi by Z
(j)
i ∈ RNi .

We can write

‖Zici‖2`2 ≤
n∑
j=1

〈Z(j)
i , ci〉2 ≤

n∑
j=1

∥∥∥Z(j)
i

∥∥∥2
`∞
‖ci‖2`1 (B.1)

Since each entry of Zi has a standard deviation of ε√
n

, with
probability at least 1− 1

(nNi)2
, we have∥∥∥Z(j)

i

∥∥∥
`∞
≤ 2ε

√
2(logNi + log n)

n
, ∀j ∈ {1, . . . , n}.

(B.2)
Substituting (B.2) into (B.1), we have that, with probability at
least 1− 1

(nNi)2
, the following inequality holds,

‖Zici‖`2 ≤ 2ε
√

2(logNi + log n) ‖ci‖`1 . (B.3)

APPENDIX C
PROOF OF LEMMA 3.3

Note that y can be written as y = x + z, where x ∈ Si
has unit Euclidean norm and ‖z‖`2 ≤ ε. Notice that x can be
written as a linear combination of noise-free data points in Si.
Let

c∗i = argmin ‖c‖`1 s. t. x = Xic. (C.1)

Then from Lemma 3.1, we have ‖c∗i ‖`1 ≤
1
ri

. On the other
hand, we can rewrite x = Xic

∗
i as

y − z = (Y i −Zi)c
∗
i , (C.2)

from which we obtain,

y = Y ic
∗
i + (z −Zic

∗
i ). (C.3)

From Lemma 3.2, with probability at least 1− 1
(nNi)2

, we have

‖z −Zic
∗
i ‖`2 ≤ ε (1 +

2
√

2(logNi + log n)

ri
). (C.4)

As a result, with high probability,
[
c∗i
0

]
is a feasible solution

of the optimization program (III.5). Thus, we must have

‖c∗‖`1 ≤ ‖c
∗
i ‖`1 ≤

1

ri
. (C.5)
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