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Reinforcement Learning:
Q-Learning

Some slide material taken from CS7180 F18
For more details see: Sutton & Barto 2018

https://www.ccs.neu.edu/home/rplatt/cs7180_fall2018/slides/intro_rl.pdf
http://incompleteideas.net/book/the-book-2nd.html


Today’s Agenda

1. HW2 Questions
2. MDPs and Environment
3. TD-Learning
4. Q-Learning



Reinforcement Learning (RL) is learning through 
trial-and-error without a model of the world
Instead, we learn value functions…
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To extend to temporal sequences, we place value on the return (i.e. future 
rewards) and the value is defined by a policy (i.e. how future actions are chosen)



Markov Decision Process

MDP = < S, A, R, T, gamma >

State: state of the system

Action: action space

R: reward function R(s,a,s’)

T: transition function T(s’|s,a)

Gamma: discount factor
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The objective of RL is to learn a policy that maximizes 
discounted future rewards
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Deterministic policy maps state to action Stochastic policy assigns probability to each action

The key insight here is that the policy will only be effective if the Markov property 
holds: the current state contains all information needed to make a decision



Example: express driving to the store as MDP

Multiple levels of abstraction are possible

Ensure that the Markov property holds
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Implementing MDP as an Environment

Attributes:
observation_space 
action_space

Methods:
reset -> obs
step (action) -> obs, reward, done, info
render -> None
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Grid world environment

See ‘examples/tabular_rl.py’

Let’s add an avoid state, where the agent receives a reward of -1.  We will place 
it in the same column as the goal state
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Value of a state is the expected return when following a 
given policy from the state
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Return (G) is the sum of 
future discounted rewards



Exercise: calculate returns for trajectories
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st rt+1 Gt

s1 -0.1

s2 0.5

s3 0

s4 0

s5 -1

st rt+1 Gt

s1 1

s3 0

s4 0.1

s5 -2

Trajectory 1 Trajectory 2



Exercise: calculate returns for trajectories
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st rt+1 Gt

s1 -0.1 -0.1+𝛾0.5+𝛾20+𝛾30+𝛾4(-2)

s2 0.5 0.5+𝛾0+𝛾20+𝛾3(-2)

s3 0 0+𝛾0+𝛾2(-2)

s4 0 0+𝛾(-1)

s5 -1 -1

st rt+1 Gt

s1 1 1 + 𝛾0+𝛾20.1+𝛾3(-2)

s3 0 0+𝛾0.1+𝛾2(-2)

s4 0.1 0.1+𝛾(-2)

s5 -2 -2

Trajectory 1 Trajectory 2



Exercise: calculate returns for trajectories
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Do you notice any pattern in the 
calculation of returns?

st rt+1 Gt

s1 -0.1 -0.1+𝛾0.5+𝛾20+𝛾30+𝛾4(-1)

s2 0.5 0.5+𝛾0+𝛾20+𝛾3(-1)

s3 0 0+𝛾0+𝛾2(-1)

s4 0 0+𝛾(-1)

s5 -1 -1

st rt+1 Gt

s1 1 1 + 𝛾0+𝛾20.1+𝛾3(-2)

s3 0 0+𝛾0.1+𝛾2(-2)

s4 0.1 0.1+𝛾(-2)

s5 -2 -2

Trajectory 1 Trajectory 2



More efficient value function calculations with dynamic 
programming
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How can we express the value function of st 
in terms of the value function of st+1?



More efficient value function calculations with dynamic 
programming
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Bellman Update Equation
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Why is it impractical to calculate value functions like this?



Learning without transition model using temporal 
difference learning (TD-learning)
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TD error 



Policy evaluation: learn value function associated with a 
given policy
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Implement policy evaluation for 2d grid world
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Result of running policy_evaluation



Extending to policy evaluation to action-value function 
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Extending to policy evaluation to action-value function 
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Policy evaluation 

Policy Evaluation: given policy, estimate 
action-value function based on trajectories

Policy Improvement: generate a new policy 
by selection actions that have higher values 
in a given state
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Policy improvement 



Q-learning update for off-policy learning
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Q-learning Algorithm
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Implement Q-learning for 2d navigation problem
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Implement Q-learning for 2d navigation problem
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Tuning exploration or using 
optimistic q-function initialization 

speeds up learning and finds 
optimal path



Maximization bias of Q-learning
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Double Q-learning reduces overestimation of q-targets 
and improves learning
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Next Class

1. Tabular to Deep Q-learning
2. Debugging DQN and relevant hyperparameters
3. Case studies on formulating environments
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Survey to provide feedback
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https://forms.gle/a2KasSG5UsPzVzqQ6


