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Reinforcement Learning:
Q-Learning

Some slide material taken from CS7180 F18
For more details see: Sutton & Barto 2018

https://www.ccs.neu.edu/home/rplatt/cs7180_fall2018/slides/intro_rl.pdf
http://incompleteideas.net/book/the-book-2nd.html


Today’s Agenda

1. Deep Q-Network
2. IK from scratch
3. HW3



Reinforcement Learning (RL) is learning through 
trial-and-error without a model of the world
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Extending to Deep Q-learning…

1. Q-function will be implemented as neural network (Q-network)

2. We want to use batch gradient descent.  However, consecutive transitions 
from the environment will be tightly correlated and will bias the gradient.

3. We rely on the Q-network for predicting q_target and q_pred, which 
introduces instability sa the network updates weights
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Deep Q-Network (DQN) implementations
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State as input State & Action as input

s q
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a
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Consider how to calculate max Q(s,a)...



Q-function as neural network (Deep Q-Network)
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State as input State & Action as input

s q

s

a
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Outputting q-values for all actions 
associated with a state is the common 
practice, as it simple to find the maxQ



Storing transitions in replay buffer reduces the correlation 
between samples in a batch
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The gradient of a single batch is a 
sample estimate of the true gradient.  
If the batch is correlated then the 
estimated gradient will be biased

replay buffer = {(s,a,s’,r,d)}1:N

new transition from environment

batch

The replay buffer acts like a ‘moving 
average’ of the agent’s experience.  There 
should be some turnover, since learning is 
faster if distribution is closer to that of 
optimal agent



Target network (frozen copy of Q-network) is used to 
calculate more stable                     values
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Q-Network

Target Q-Network

copy weights

The frequency with which you copy weights from the Q-network to the target 
Q-network is a hyperparameter (often performed every 1000 optimization steps)



Reacher Environment as MDP
GOAL: move joints to achieve desired end-effector position as fast as possible
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STATE: 

ACTION:

REWARD:

GAMMA:

*these next slides refer to example script: `examples/dqn_reacher.py`



Reacher Environment ass MDP
GOAL: move joints to achieve desired end-effector position as fast as possible
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STATE: joint positions for [base,shoulder,elbow,wrist]; 
ignore wristRotation and gripper since we only want 
end-effector position

ACTION: move single joint ±𝛥𝜃 (total 2*4=8 actions)

REWARD: sparse (+1 if at goal); dense ( ~1/dist2goal )

GAMMA: 0.98 (should be <1 for urgency)



Reacher Environment as gym.Env

__init__: create pybullet, add robot, create observation space & action space, set 
goal end-effector position

reset: set joint state of robot randomly within joint limits

step: adjust single joint position accordingly, prevent robot from moving outside 
joint limits

get_obs: return current joint states

get_reward: calculate end-effector position, calculate reward based on distance 
between end-effector position and goal position

is_done: True if t_steps > episode_length or end-effector at goal position
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Implementing Deep Q-Network as MLP

* ReLU between each layer
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In addition to forward, it is often useful to have a 
method called predict which returns the action that 
maximizes the q-function.  This is used during training 
to select actions so the gradient does not need to be 
computed

As an exercise, instantiate the layers in QNetwork.__init__ and 
implement QNetwork.forward



Creating Replay Buffer

__init__: creates data arrays to store a set number of transitions

add_transition: stores <s,a,r,s’,d> in data array; if needed choose 
oldest transition to replace (circular indexing)]

sample: samples a random batch of transitions from data arrays; 
it is common to return numpy arrays (but torch.Tensors would 
work)

14

replay buffer = {(s,a,s’,r,d)}1:N

new transition from environment

batch



Agent class 

__init__: stores hyperparameters, instantiates ReplayBuffer, Q-Network, target 
Q-Network and optimizer to train Q-network

train: runs given number of environment steps, adding transitions to buffer, and 
optimizes Q-network to minimize TD-error on batches from buffer (make sure the 
target network is updated accordingly)

optimize: samples batch from buffer, calculates td-error, and back propagates 
td-error loss to network

select_action: performs epsilon-greedy action selection

policy: calculates action as the argmax of the q-network for a given state, input is 
numpy array provided by environment
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Hyper Parameters

Deep Learning

Architecture (linear vs conv, etc)

Model capacity (hidden units or channels)

Loss function (mse, bce, huber)

Input (one-hot encodings, normalized 
imgs, etc.)

Output (activation function?)

Data augmentation

Learning rate
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Deep Reinforcement Learning

Replay Buffer Size

Target Network Update Frequency

Discount factor (gamma)

Epsilon Schedule

MDP formulation (state and action space, 
reward scheme)



Typical Hyperparameter Values for DQN
Learning rate (1e-3 to 1e-4): decreasing may improve stability

Target update freq (~1000 opt steps): decreasing may improve stability; you should see 
the td-loss flatten out between updates

Epsilon schedule (usually linear from 1 to 0 for 90% of training); learning is faster with 
less epsilon, but insufficient exploration may end at local optima; remember that the 
reward curve is impacted by exploration

Gamma (0.98 is common); for tasks that take fewer time steps you may want to 
decrease it; if you are using 

Buffer size: aim for a few turn-overs during training (if you train for 100k steps, then 
50k buffer size will turn-over twice).  If buffer is too small, it can cause catastrophic 
forgetting; if it is too large it will slow down training since most samples will be from 
bad policy
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Training DQN: Debugging Techniques

- Make sure to plot rewards and loss during training; if rewards suddenly drop 
off or td-loss rises rapidly, then the learning is unstable

- In addition, it may be insightful to log the number of steps per episode or the 
success rate (especially for complex reward function)

- It is almost always worth writing a ‘render’ function so that you can watch 
the policy’s actions and understand the failure modes

- In some cases, it is also useful to log or plot the q-values, which can indicate 
how confident the model is

- There can be a lot of variance between different seeds, so it is best to run 
multiple trials before making a conclusion
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HW3: Top-Down Grasping with Pixel-wise Action Space

In pixel-wise action space, each pixel (px,py) corresponds to performing a grasp at the 
corresponding position in the real world.  Thus, we predict a q-map, that represents the 
q-value of grasping at each pixel.  A fully-convolutional network (FCN) is very effective at 
predicting q-maps.
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FCN

q-mapstate input simulator



A common FCN is called a U-Net, which is designed to 
process information at multiple receptive fields
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local features 
(edges, corners)

global features 
(object pose)

Concatenation along channel 
dimension, torch.cat([*, *], dim=1)

Up-convolution layers that increase 
image size and decrease channel depth. 
nn.ConvTranspose2d(stride>1) or 
nn.Upsample -> nn.Conv2d

Down-convolution layers that decrease 
image size and increase depth. Performed 
with nn.Conv2d(stride>1) 

Legend
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Survey to provide feedback
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https://forms.gle/3XjKf1U4hvT3cSup8


