
CS4910: Deep Learning for Robotics

David Klee
klee.d@northeastern.edu

T/F, 3:25-5:05pm
Behrakis Room 204

https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html

https://piazza.com/northeastern/spring2022/cs4910a/home

mailto:klee.d@northeastern.edu
https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html
https://piazza.com/northeastern/spring2022/cs4910a/home

Neural Networks in Pytorch

Today’s Agenda

1. Review HW1
2. Using Convolutional layers in network
3. Normalizing functions
4. Datasets and DataLoaders
5. Training and Debugging
6. Introduce HW2
7. nuro.arm API

4

Multi-Layer
Perceptron (MLP)

Convolutional
Neural Network

(CNN)

Input
Image

Output
Vector

nn.Conv2d(in_channels: int, out_channels: int, kernel_size,
stride, padding, dilation, bias: bool, …)

5

Intuitively, convolution can be
thought of as a

template-matching process

Visualizing convolution

https://ezyang.github.io/convolution-visualizer/index.html

6

https://ezyang.github.io/convolution-visualizer/index.html

Output shape after convolution

7
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Example: Implement CNN (examples/cnn_module.py)

Add ReLU after every layer. Make sure to calculate the output_size.

8

Normalization layers

nn.BatchNorm2d(num_features: int)

- Expectation is taken over batch, height, and width dimensions, each image
channel is normalized

- Increases learning speed for CNNs (bias is redundant in Conv2d)

nn.LayerNorm

- Normalizes values of each sample in batch
- Sometimes used on feature vectors between CNN and MLP

9

Normalization layers

10

There are two other well-known normalization layers, but they are not often used in
robotic manipulation work.

Eval vs train modes, and no_grad()

network.train()
- enables certain modules that keep running stats like BatchNorm
- add it after you initialize the network

network.eval()
- Disables these modules
- Make sure to call it before passing

with torch.no_grad(): (...)
- Gradient info is not stored in this context
- Use it whenever you don’t need to backprop, it’s faster

11

from torch.utils.data import Dataset

class CustomDataset(Dataset):
def __init__(self, *args):

reads data from file or stores paths to files

def __len__(self):
provides number of data in the dataset

def __getitem__(self, idx: int):
returns indexed data as a tuple of tensors or dict with tensor values
applies a transformation to data if applicable
tensors should be shaped appropriately, but kept on cpu

12
Taken from: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

DataLoaders load batches from the dataset for training

to get single sample
batch = next(iter(train_dataloader))

to use it for training, it will iterate over entire dataset
for batch in train_dataloader:

pass

13
Taken from: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Dataloader will stack your data samples
along a new batch dimension, so you do
not need to unsqueeze your samples

from torchvision.transforms import ToTensor, …

A transform is a Callable object that modifies some part of your data

Preprocessing Data

- ToTensor() : converts from (H,W,C) np.uint image array to (C,H,W) float tensor
- Normalize(px_range) : normalizes pixel values to be within pixel range

Augmenting Data

- RandomAffine : applies random affine transformation to image
- RandomHorizontalFlip

14https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html,
https://pytorch.org/vision/0.8/transforms.html

https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html
https://pytorch.org/vision/0.8/transforms.html

Ensure that entire data sample is augmented

Come back to this with HW2

15

Debugging Training with Loss Curves

16

While checking loss curves is useful, you should also find a way to visualize predictions/actions.
This can be immensely useful for understanding what might be off

Overfitting:
collect larger training dataset, add data
augmentation, regularize, early-stoppage

Instability/Jitter:
Adjust learning rate, add gradient clipping,

The training process is stochastic, so it is important that
your results are statistically significant

Train multiple times and plot the mean, standard deviation of the losses

- Use different random seed every run
- Use cross-validation if needed

Use a holdout set to evaluate to double check that your network is not cheating
on the test set.

17

Saving and loading models

torch.save(model.state_dict(), PATH) # models are saved with .pt extension

model = ModelClass(...)
model.load_state_dict(torch.load(PATH))

18

My rules of thumb

A lot can be done with 3-layer MLP with 256 units

Conv kernels should be 3x3

Number of channels in CNN should be inversely proportional to downsampling

Check that you can overfit on easy dataset/task first

There should be a non-linearity (activation function) between all layers

Double check tensor shapes are consistent when computing loss

19

HW2

Make sure they pull again

Show training loop

20

Survey to provide feedback

21

https://forms.gle/iP5mXYhU1Wpk8JP67

Using xArm with nuro.arm API

https://dmklee.github.io/nuro-arm/

$ git clone https://github.com/dmklee/nuro-arm.git

$ cd nuro-arm

$ pip install .

22

https://dmklee.github.io/nuro-arm/
https://github.com/dmklee/nuro-arm.git

Calibrating xArm

Make sure it is plugged in and connected to computer

$ python nuro_arm/robot/calibrate.py

23

Programming arm

$ python nuro_arm/examples/record_movements.py

24

