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Motion Planning



Today’s Agenda

1. Learn how to move robotic arm
2. Grab a drink (in pybullet)
3. Talk about robotic manipulation setups
4. Install Pytorch
5. Solve XOR



How to represent motions
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Robot servo actuators

We’d like joint 
positions

Cartesian 
coordinates make 
more sense to me

Human programmer



Sending motor commands in Pybullet

pb.setJointMotorControlArray(bodyUniqueId: int,
jointIndices: List[int],
controlMode: int=pb.POSITION_CONTROL,
targetPositions: List[float],
targetVelocities: List[float],
forces: Optional[ List[float] ], # max force
positionGains: Optional[ List[float] ],
velocityGains: Optional[ List[float] ])

See Quickstart Guide for information on other controlModes
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https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#


It is important to set the gains correctly when 
manipulating objects

Simplest option is to limit velocity:

for ji, jp in zip(arm_joint_ids, arm_jpos):
pb.setJointMotorControl2(robot_id,

ji,
pb.POSITION_CONTROL,
jp,
positionGain=0.1,
maxVelocity=0.8)
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Poorly tuned arm movement results in 
unstable object manipulation
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Poorly tuned arm movement results in 
unstable object manipulation

Other options for improved grasp stability:
- Increase friction values of object
- Reduce weight of object
- Increase gripper force



Pybullet joints are modeled as motors, so they will ‘hold’ 
their position by default

If you want a joint to move freely or to simulate a non-active motor…

pb.setJointMotorControl2(robot_id,
joint_id,
pb.POSITION_CONTROL,  #or pb.VELOCITY_CONTROL
force=0)

or set force to a small number to simulate joint friction.

You can use pb.setJointMotorControlArray too
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For many robotic manipulation tasks, we care about tool pose.  
Predicting actions according to tool pose can simplify learning.
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tool == end effector == gripper link

world

tool



A tangent about joint space (i.e. configuration space)
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http://www.youtube.com/watch?v=W1LWMk7JB80


A tangent about joint space (i.e. configuration space)

Interactive C-space for 2-link arm: https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml
11

By projecting obstacles to 
C-space, planning trajectories 
becomes a shortest paths problem 
in a N-dimensional space

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml


Forward Kinematics: Calculating tool pose from joint positions
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Forward Kinematics: Calculating tool pose from joint positions
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Inverse Kinematics: calculating joint positions for tool pose
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There are many joint angles that result in 
the same end-effector position, thus 
solving inverse kinematics is not as 
simple as forward kinematics



Inverse Kinematics as an optimization problem

15Good resource on jacobians for robotics

https://www.rosroboticslearning.com/jacobian


Inverse Kinematics as an optimization problem
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Good resource on jacobians for robotics

?We can calculate Jacobian by differentiating forward 
kinematics equations w.r.t. each joint position

https://www.rosroboticslearning.com/jacobian


Inverse Kinematics as an optimization problem
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Good resource on jacobians for robotics

Note that the final joint positions are 
dependent on the initial joint positions

Pseudo-inverse can be used on 
Jacobian, which allows for non-square 
matrices

https://www.rosroboticslearning.com/jacobian


Performing Inverse Kinematics in Pybullet

pb.calculateInverseKinematics(
bodyUniqueId: int,
endEffectorLinkIndex: int, # use pb.getJointInfo to find this id
targetPosition: vec3,
targetOrientation: Optional[vec4], # orientation ignored if omitted or None
jointDamping: List[float] # same length as number of joints
maxNumIterations: int,
…,

) -> List[float] 

18Samuel Buss "Selectively Damped Least Squares for Inverse Kinematics"

Note: output will be list of *all* joint positions.  For 
arm with gripper, you should ignore the values for 
the gripper joints

http://apc.dcti.iscte.pt/praticas/SdlsPaper.pdf


Tricks for best experience using end-effector control

1. Start IK from a nearby joint configuration (do not have a singularity!)

- Use `pb.getJointStates` and `pb.resetJointState` to instantly teleport arm 

2. Ensure that your target pose is actually reachable (xArm is underactuated!)

- Precompute workspace in advance

3. Check residuals before proceeding with motor command
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Demo: grabbing a drink 

Have it start from singularity to show issue

Talk about dummy end effector index to represent grasping location instead of 
wrist

Mention iterative process
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Performing complex motions with inverse kinematics

21

http://www.youtube.com/watch?v=JzEtoHvK11M


Performing complex motions with inverse kinematics
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https://docs.google.com/file/d/1NLU-R270G_9vuNClAqE2vhotpxN5asqO/preview


Additional details

Example using null space with IK

Libraries on motion planning (klamp’t, OMPL) 

CS 4335/5335: lectures on motion planning
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https://github.com/erwincoumans/pybullet_robots/blob/master/baxter_ik_demo.py
http://motion.cs.illinois.edu/software/klampt/latest/pyklampt_docs/
https://ompl.kavrakilab.org/python.html
https://www.ccs.neu.edu/home/rplatt/cs5335_spring2019/index.html


A workspace and action space should be clearly defined 
when performing/training on a task

Workspace: a set or region of 6D end-effector poses where the robot may 
perform actions.  For learning, you want the most constrained workspace that still 
allows task completion

Action space: the space of possible actions that a learning agent can perform 
with the robot (end-effector control and gripper control).  Choosing a good action 
space can greatly reduce the difficulty of learning
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Example manipulation tasks
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Workspace: 3D volume existing above table, 
extending several centimeters in the air

Action space: 6D grasp poses within 
workspace (no variation in gripper control)

http://www.youtube.com/watch?v=kfe5bNt35ZI&t=4


Example manipulation tasks
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Workspace: 2D region in front of base of 
robot

Action space: x,y grasp locations (pose 
determined by IK, no gripper variation)



Example manipulation tasks
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Workspace: 3D volume above table

Action space: 3D delta position control (e.g. 
velocity control), no control over gripper



Note about xArm 

There are 5 motors in the arm, so it cannot 
realize all 6 dimensions of end-effector pose
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base
x

y

We can express this restricted set of orientations 
using euler angles, exercise left to the reader.


