
CS4910: Deep Learning for Robotics

David Klee
klee.d@northeastern.edu

T/F, 3:25-5:05pm
Behrakis Room 204

https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html

https://piazza.com/northeastern/spring2022/cs4910a/home

mailto:klee.d@northeastern.edu
https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html
https://piazza.com/northeastern/spring2022/cs4910a/home

Motion Planning

Today’s Agenda

1. Learn how to move robotic arm
2. Grab a drink (in pybullet)
3. Talk about robotic manipulation setups
4. Install Pytorch
5. Solve XOR

How to represent motions

4

Robot servo actuators

We’d like joint
positions

Cartesian
coordinates make
more sense to me

Human programmer

Sending motor commands in Pybullet

pb.setJointMotorControlArray(bodyUniqueId: int,
jointIndices: List[int],
controlMode: int=pb.POSITION_CONTROL,
targetPositions: List[float],
targetVelocities: List[float],
forces: Optional[List[float]], # max force
positionGains: Optional[List[float]],
velocityGains: Optional[List[float]])

See Quickstart Guide for information on other controlModes

5

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#

It is important to set the gains correctly when
manipulating objects

Simplest option is to limit velocity:

for ji, jp in zip(arm_joint_ids, arm_jpos):
pb.setJointMotorControl2(robot_id,

ji,
pb.POSITION_CONTROL,
jp,
positionGain=0.1,
maxVelocity=0.8)

6

Poorly tuned arm movement results in
unstable object manipulation

It is important to set the gains correctly when
manipulating objects

Simplest option is to limit velocity:

for ji, jp in zip(arm_joint_ids, arm_jpos):
pb.setJointMotorControl2(robot_id,

ji,
pb.POSITION_CONTROL,
jp,
positionGain=0.1,
maxVelocity=0.8)

7

Poorly tuned arm movement results in
unstable object manipulation

Other options for improved grasp stability:
- Increase friction values of object
- Reduce weight of object
- Increase gripper force

Pybullet joints are modeled as motors, so they will ‘hold’
their position by default

If you want a joint to move freely or to simulate a non-active motor…

pb.setJointMotorControl2(robot_id,
joint_id,
pb.POSITION_CONTROL, #or pb.VELOCITY_CONTROL
force=0)

or set force to a small number to simulate joint friction.

You can use pb.setJointMotorControlArray too

8

For many robotic manipulation tasks, we care about tool pose.
Predicting actions according to tool pose can simplify learning.

9
tool == end effector == gripper link

world

tool

A tangent about joint space (i.e. configuration space)

10

http://www.youtube.com/watch?v=W1LWMk7JB80

A tangent about joint space (i.e. configuration space)

Interactive C-space for 2-link arm: https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml
11

By projecting obstacles to
C-space, planning trajectories
becomes a shortest paths problem
in a N-dimensional space

https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Forward Kinematics: Calculating tool pose from joint positions

12

Forward Kinematics: Calculating tool pose from joint positions

13

Inverse Kinematics: calculating joint positions for tool pose

14

There are many joint angles that result in
the same end-effector position, thus
solving inverse kinematics is not as
simple as forward kinematics

Inverse Kinematics as an optimization problem

15Good resource on jacobians for robotics

https://www.rosroboticslearning.com/jacobian

Inverse Kinematics as an optimization problem

16
Good resource on jacobians for robotics

?We can calculate Jacobian by differentiating forward
kinematics equations w.r.t. each joint position

https://www.rosroboticslearning.com/jacobian

Inverse Kinematics as an optimization problem

17
Good resource on jacobians for robotics

Note that the final joint positions are
dependent on the initial joint positions

Pseudo-inverse can be used on
Jacobian, which allows for non-square
matrices

https://www.rosroboticslearning.com/jacobian

Performing Inverse Kinematics in Pybullet

pb.calculateInverseKinematics(
bodyUniqueId: int,
endEffectorLinkIndex: int, # use pb.getJointInfo to find this id
targetPosition: vec3,
targetOrientation: Optional[vec4], # orientation ignored if omitted or None
jointDamping: List[float] # same length as number of joints
maxNumIterations: int,
…,

) -> List[float]

18Samuel Buss "Selectively Damped Least Squares for Inverse Kinematics"

Note: output will be list of *all* joint positions. For
arm with gripper, you should ignore the values for
the gripper joints

http://apc.dcti.iscte.pt/praticas/SdlsPaper.pdf

Tricks for best experience using end-effector control

1. Start IK from a nearby joint configuration (do not have a singularity!)

- Use `pb.getJointStates` and `pb.resetJointState` to instantly teleport arm

2. Ensure that your target pose is actually reachable (xArm is underactuated!)

- Precompute workspace in advance

3. Check residuals before proceeding with motor command

19

Demo: grabbing a drink

Have it start from singularity to show issue

Talk about dummy end effector index to represent grasping location instead of
wrist

Mention iterative process

20

Performing complex motions with inverse kinematics

21

http://www.youtube.com/watch?v=JzEtoHvK11M

Performing complex motions with inverse kinematics

22

https://docs.google.com/file/d/1NLU-R270G_9vuNClAqE2vhotpxN5asqO/preview

Additional details

Example using null space with IK

Libraries on motion planning (klamp’t, OMPL)

CS 4335/5335: lectures on motion planning

23

https://github.com/erwincoumans/pybullet_robots/blob/master/baxter_ik_demo.py
http://motion.cs.illinois.edu/software/klampt/latest/pyklampt_docs/
https://ompl.kavrakilab.org/python.html
https://www.ccs.neu.edu/home/rplatt/cs5335_spring2019/index.html

A workspace and action space should be clearly defined
when performing/training on a task

Workspace: a set or region of 6D end-effector poses where the robot may
perform actions. For learning, you want the most constrained workspace that still
allows task completion

Action space: the space of possible actions that a learning agent can perform
with the robot (end-effector control and gripper control). Choosing a good action
space can greatly reduce the difficulty of learning

24

Example manipulation tasks

25

Workspace: 3D volume existing above table,
extending several centimeters in the air

Action space: 6D grasp poses within
workspace (no variation in gripper control)

http://www.youtube.com/watch?v=kfe5bNt35ZI&t=4

Example manipulation tasks

26

Workspace: 2D region in front of base of
robot

Action space: x,y grasp locations (pose
determined by IK, no gripper variation)

Example manipulation tasks

27

Workspace: 3D volume above table

Action space: 3D delta position control (e.g.
velocity control), no control over gripper

Note about xArm

There are 5 motors in the arm, so it cannot
realize all 6 dimensions of end-effector pose

28

base
x

y

We can express this restricted set of orientations
using euler angles, exercise left to the reader.

