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Motivation

• Probabilistic process calculi (e.g. stochastic CCS)
• Probabilistic choice

• Stochastic process calculi (e.g. stochastic π calculus)
• Probabilistic delay on actions
• Take the first enabled communication

• Probabilistic vs. “stochastic”
• Categorical models for first-order languages
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1. Adding delay to categorical models of iteration

2. Adding delay to the category of stochastic relations
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Adding delay to categorical models of iteration
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Monadic models of iteration

• First-order imperative language of loops

S ::= skip

| S;S
| let v = E in S

| v := E

| if E then S else S

| while E do S

• Monadic state-transformer semantics

!S" : !Γ" → T !Γ" (Γ " S)

• T models nontermination/failure (at least)
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Monadic models of iteration

C
• Finite products

• State spaces: !Γ" = !τ1"× · · ·× !τn"

• Finite coproducts, distributive category
• !bool" = 1 + 1
• X × (1 + 1) −→ (X + 1)× (X + 1)

CT

• Partially additive [Manes,Arbib 86]
• Loops
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Iteration

• Par ∼= Set−⊥ semantics

!S" : !Γ" → !Γ"⊥

• Unrollings of loop body

!while E do S" = +
⋃

!¬E"!,
!E"!; !S"; !¬E"!,
!E"!; !S"; !E"!; !S"; !¬E"!,
...

• Infinite summation

• Partially defined
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Iteration: partially additive categories

• Summation on arrows
• Partial functions

∑
X,Y on countable subets of D(X, Y )

• {f}i∈I summable if
∑

{f}i∈I defined

• . . .

• Examples
• Par – disjoint domains, graph union

• Rel – graph union (not partial)

• CPO⊥ – directed sets, lub

• Zero arrows: 0X,Y =
∑

X,Y ∅
• Failure effect
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Iteration: partially additive categories

Every
X

f! X+Y
decomposes as

f =
∑ {

X
f1! X

ι1! X+Y
,

X
f2! Y

ι2! X+Y

}

and gives the iterate

X
f †! Y

=
∑

n<ω
X

fn
1! X

f2! Y

!while E do S" =
!Γ"

(
!Γ"

!E"?! !Γ"+!Γ"
!S" + η! T !Γ"+T !Γ"

)†

! T !Γ"
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Delay

• Time taken by computation

• Delay effect: −×M monad (M monoid)

!wait E" = !Γ"
〈1, !E"〉! !Γ"×M

• Not impure monoids in CT

m : M ×M → TM

e : 1 → TM

• Pure monoids in C

m : M ×M → M

e : 1 → M
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Delay and T

?

C−×M

!

CT

"

C

!
"

• (−×M) · T – coarse-grained timing

• T · (−×M) – fine-grained timing, failure from T

• Assume distributive law λX : TX ×M → T (X ×M)
• Strong monad suffices
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Delay and iteration

CT (−×M)
∼ D′

C−×M

!

CT
∼

"

D

#

C

!
"
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Lifting partial additivity

Definition
Given D and D′ partially additive, F : D → D′ preserves partial
additivity iff

• {fi} summable ⇒ {Ffi} summable

• F (
∑

fi) =
∑

Ffi

Proposition
If S : D → D preserves partial additivity then DS is partial
additive where

•
{

XS

(fi)S! YS

}
summable iff

{
X

fi! SY

}
summable

•
∑

XS

(fi)S! YS
=

(∑
X

fi! SY

)

S
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Lifting partial additivity

CT (−×M)
∼ D′

C−×M

!

CT
∼

"

D

#

C

!
"
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Lifting monads

Proposition
If S distributes over T , then S lifts to a monad S : CT → CT st.

CTS
∼= (CT )S

The monad:

S
(

XT

fT! YT

)
=

(SX)T

(
SX

Sf! STY
λY! TSY

)

T! (SY )T

XT

ηS
XT! (SX)T

=
(

X

ηTS
X! TSX

)

T

(SSX)T

µS
XT! (SX)T

=
(

SSX
(ηT ◦ µS)X! TSX

)

T
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Lifting monads

(CT )−×M
∼ D−×M

C−×M

!

CT
∼

"

D

#

C

!
"
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Lifting partial additivity

Theorem
Let S, T : C → C be monads with CT partially additive. If S
distributes over T and S : CT → CT perserves partial additivity,
then CTS is partially additive.

Corollary
Let C have finite products with monoid M , let T : C → C be a
strong monad, and CT be partially additive. Then
T (−×M) : C → C is a monad and, if −×M : CT → CT

preserves partial additivity, then CT (−×M) is partially additive.

Par
• −⊥ : Set → Set strong

• −×M : Par → Par preserves partial additivity
• Par−×M models iteration and delay

• !S" : !Γ" → (!Γ"×M)⊥
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Adding delay to the category of stochastic relations
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CT (−×M)
∼ D−×M

C−×M

!

CT
∼

"

D

#

C

!
"
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MeasΠ(−×M)
∼ TSRelM

Meas−×M

!

MeasΠ
∼

"

SRel

#

Meas

!
"

Categories of Timed Stochastic Relations Daniel Brown and Riccardo Pucella



Meas: a category for probability

• Probability distribution / probability measure

N → [0, 1]
R → [0, 1]

PR → [0, 1]
ΣR → [0, 1] (ΣR ⊆ PR)

• Measurable space—σ-algebra of observable events

(X, ΣX)

• Measurable function

f : (X, ΣX) → (Y, ΣY )

f−1 : ΣY → ΣX

• Category of measurable spaces: Meas
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SRel: Stochastic relations

• Stochastic relation / transition function / sub-Markov kernel

f : X × ΣY → [0, 1]
f(x,−) sub-probability measure

f(−, B) measurable function

• SRel
• Objects: measurable spaces (X, ΣX)
• Arrows: f : X → Y is a stochastic relation X × ΣY → [0, 1]
• Composition: . . .

• More concisely
f : X → ΠY ∈ Meas

where ΠY = {sub-probability measures on Y }
• Π : Meas → Meas monad [Giry 81]

• SRel ∼= MeasΠ
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SRel: Stochastic relations

• Composition ∼ existential join of relations

f : X → ΠY g : Y → ΠZ

f : X × ΣY → [0, 1] g : Y × ΣZ → [0, 1]

gf(x,C) =
∫

Y
f(x, dy) g(y, C)

• Discrete case:

f : X × Y → [0, 1] g : Y × Z → [0, 1]

gf(x, z) =
∑

y∈Y

f(x, y) g(y, z)
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SRel for probabilistic while languages

• Meas has finite products, finite coproducts, and distributivity
• (Think: topological spaces)

• SRel is partially additive ! iteration [Panangaden 99]

• SRel models probabilistic behavior

!S1 +p S2" = !Γ"

∑
{(1− p)!S1", p!S2"}! Π!Γ"
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SRel with delay

• Π : Meas → Meas strong:

tX,Y : X ×ΠY → Π(X × Y )
(x, ν) ,→ δx × ν

• Π(−×M) : Meas → Meas monad

• −×M : SRel → SRel preserves partial additivity

• SRel−×M partially additive

• SRel−×M models probabilistic behavior, iteration, and delay

• Let TSRelM ∼= SRel−×M
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TSRelM: Timed stochastic relations

• Composition: existential join on states, accumulate delay

f : X → Π(Y ×M) g : Y → Π(Z ×M)
f : X × ΣY×M → [0, 1] g : Y × ΣZ×M → [0, 1]

gf(x,C) =
∫

Y×M

∫

Z×M
f(x, dy, da)) g(y, dz, db)) χC(z,m(b, a))

• Discrete case:

f : X × Y ×M→ [0, 1] g : Y × Z ×M→ [0, 1]

gf(x, z, c) =
∑

y∈Y,a∈M

∑

z∈Z,b∈M
f(x, y, a) g(y, z, b) χ{c}(m(b, a))
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TSRelM for timed probabilistic while languages
• Models delay

!wait E" =
!Γ"
〈1, !E"〉! !Γ"×M

ηΠ
! Π(!Γ"×M)

!pwait E" = !Γ"
〈1, !E"〉! !Γ"×ΠM

t! Π(!Γ"×M)

• Models probabilistic behavior

!S1 +p S2" = !Γ"

∑
{(1− p)!S1", p!S2"}! Π(!Γ"×M)

!v ← E" =
!Γ"×!τ"×!Γ′"

〈π1, !E",π3〉! !Γ"×Π!τ"×!Γ′"
t̂; Πη−×M! Π(!Γ"×!τ"×!Γ′"×M)

• wait and ← primitive

!pwait E" = !let v = 0 in v ← E;wait v" (v /∈ fv(E))
!S1 +p S2" = !let v = true in v ← bern(p); if v then S1 else S2"

(v /∈ fv(S1, S2))
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Summary

CT (−×M)
∼ D−×M

C−×M

!

CT
∼

"

D

#

C

!
"

MeasΠ(−×M)
∼ TSRelM

Meas−×M

!

MeasΠ
∼

"

SRel

#

Meas

!
"

Thanks!
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