
MONSTERMASH: Multidirectional,
Overlapping, Nested, Spiral Text Extraction for

Recognition Models of Arabic-Script Handwriting

Danlu Chen1[0000000285828151], Jacob Murel2, Taimoor Shahid3, Xiang Zhang1,
Jonathan Parkes Allen3, Taylor Berg-Kirkpatrick1, and David A. Smith2

1 University of California, San Diego, CA, U.S.A.
2 Northeastern University, Boston, MA, U.S.A.

3 University of Maryland, College Park, MD, U.S.A.
dac013@ucsd.edu

Abstract. Most current models for handwritten text recognition tran-
scribe individual lines and thus depend on accurate line extraction from
page images. This line extraction task is particularly challenging for
Arabic-script manuscripts, which exhibit a high proportion of curved
lines, word baselines that vary within the line, and varying line orien-
tation on the page. We present a new corpus for studying Arabic-script
line extraction in the presence of these phenomena and evaluate differ-
ent model architectures using several pixel-level, object-level, and extrin-
sic recognition metrics. Training all models on the same data, we find
that the CNN-based Kraken model slightly outperforms the transformer-
based TESTR model on recognition character accuracy and some object-
level metrics, even though it lags behind on pixel-level metrics.

Keywords: Islamicate manuscripts · Text line extraction · HTR

1 Introduction

Methods for handwritten text recognition (HTR) have an array of applications
for advancing research on historical manuscripts—from enabling full-text search
of library collections, to conducting large-scale linguistic analyses of digitized
documents. HTR has made significant progress since adopting line-level tran-
scription approaches such as connectionist temporal classification (CTC). Just
as earlier word-spotting approaches required segmenting a page image into word
patches, line-level models require that the lines of text be extracted from a page
to produce both training and test data. Although whole-page encoder-decoder
models have been proposed, their successful deployment still requires, at the
current state of the art, a set of phased training steps involving individual lines.

While there are many annotated datasets and shared-task evaluations to
choose from for the task of transcribing images of single lines, annotated datasets
and published evaluations of line extraction are less common. In any case, line
extraction for handwritten text in Latin, Hebrew, Chinese, and other scripts



2 Chen et al.

can achieve a high degree of accuracy. The effectiveness of line extraction for
Arabic-script manuscripts—in Arabic, Persian, Ottoman Turkish, Urdu, and
other languages—seems anecdotally to be lower and less well explored.

This paper, therefore, seeks to fill this gap and provide a systematic anal-
ysis of the effectiveness of different line-extraction approaches for Arabic-script
manuscripts. In the literature, these models have been evaluated on scripts such
as Latin and Hebrew with various levels of success. Our contributions are both
observational, resulting in a compilation of existing and new annotated data, and
experimental, evaluating the effectiveness of pixel-labeling and object-detection
approaches and convolutional and transformer neural architectures.

To perform our evaluations, we compile existing annotated data for Arabic-
script manuscripts and also produce a newly annotated test set. Unlike some
existing annotated datasets, which may omit marginalia and confine themselves
to main-text horizontal lines, our new test set marks all lines of written text on
each page and balances samples from simpler and more complex page layouts.

We evaluate three line-extraction approaches, training and testing them on
the same data. First, kraken [10] labels pixels on a page as belonging to a baseline
and then, in a postprocessing step, heuristically infers a polygon that bounds
the characters on that baseline. Second, doc-ufcn [5] labels pixels as belonging
to a line region. Third, TESTR directly infers a polygon bounding a line region.

We find that the pixel-based kraken performs best according to the object-
level AP@0.75 metric, while the detection-based method TESTR performs best
according to pixel-level metrics. While TESTR is slower than our other models,
it is also the most accurate on the most difficult line extraction examples: non-
linear text with extreme curvature. In terms of downstream recognition accuracy,
TESTR markedly outperforms doc-ufcn, but is marginally worse than kraken.
Our results show that each system has its own strengths and weaknesses. We
hope our provided datasets encourage further work on Arabic-script HTR for
complex document layouts.

2 Related Work

2.1 Text Line Extraction

As mentioned, a critical initial step in most HTR pipelines is text line extraction.
In the literature, there are three major approaches to line extraction: baseline-
based [10], region-based [6], and detection-based [23] methods.

Baseline-based methods identify which pixels in the input image correspond
to a baseline of a text line in the image. After the baselines have been iden-
tified, a post-processing step infers the surrounding polygon for each text line.
Region-based methods also make pixel-level predictions, but instead of identify-
ing baselines, they identify all pixels within a text line region. Detection-based
methods, on the other hand, instead directly predict the vertices of polygons
surrounding each text line.

The former two methods show suitable performance for horizontal lines,
which has been the primary focus of past research [7, 21, 1]. Natural scene text



MONSTERMASH 3

extraction has similarly focused on linear text [18, 12]. Non-linear lines, however,
pose a significant challenge for these systems.

Previous approaches to detecting non-linear text lines have involved character-
level bounding boxes [3] and semantic segmentation tools [15, 13]. While these
approaches show promise, they require computationally expensive pre- and post-
processing steps. By contrast, transformer-based text-detection promises an ef-
fective and less expensive approach for non-linear text line extraction [23, 9, 20]

2.2 Arabic Script HTR

As with much language-focused research, HTR experiments have traditionally fo-
cused on Latinate texts—e.g. English, Spanish, French, etc. In the past few years,
however, researchers have turned to non-Latinate documents. Arabic-script HTR
poses several unique challenges due to its connecting script, use of diacritical
marks, and changing character forms [14, 11].

Existing Arabic-script HTR datasets include IFN-ENIT databse4, AHDB
[2], and KHATT [16]. Each of these, however, consists of images of text regions
demarcated at the word or paragraph level sourced from modern writers for
HTR research. As such, text lines are straight and undisturbed by peripheral
text regions occupying image space.

Other studies that use datasets of historical Arabic-script documents do show
promising work for Arabic-script text line extraction [21, 1]. Unfortunately, these
studies similarly focus on documents with exclusively horizontal lines. Moreover,
neither publicly release their respective datasets for use, making it difficult to
replicate and build upon their work.

We know of only two other study that exclusively addresses non-linear text
line extraction for handwritten Arabic-script. [22] proposes partial contouring
and projection to recognize curved text lines as horizontal segments and con-
catenate these segments for transcription. This approach evidences useful results.
Given its dated-ness, however, it does not take advantage of the significant devel-
opments in test line extraction from the past decades. [4] also collected a curved
text line dataset but only pixel-wise labels are available.

3 Dataset Description

3.1 Dataset Overview

The different subsets of ITI-bench are summarized in Table 1. There are two
subsets for training and the other two for testing. We estimated the quality of
the data by sampling 20 pages from each dataset and manually counted the
number of missing lines or incorrectly labelled lines. We calculated the missing
ratio for main body text (main) and marginalia separately, which is reported in
the last two column in Table 1. 7.5% of the main body text is missing in the
arabic_ms set.
4 http://www.ifnenit.com/



4 Chen et al.

pages drop rate

subset usage bsln. poly. HT trans. lines body margin

aocp_print train 2,970 2,718 No Yes 67,750 2.7% 17.3%
arabic_ms train 873 873 Yes Yes 16,635 7.5% 15.7%

aocp_ms_eval test 113 112 Yes Yes 2,025 0.0% 22.4%
iti-complex test 52 52 Yes No 2,536 0.0% 0.8%

Table 1. Overview of dataset statistics. bsln. standards for number of pages have valid
baseline annotation and poly. for number of pages that have valid polygon annotation.

1. aocp_print, annotated printed documents, total about 2,970 pages. Only
2,718 of them can be converted into polygons automatically.

2. arabic_ms, 873 annotated pages.
3. aocp_ms_eval, 113 annotated pages with transcription, https://github.

com/OpenITI/aocp_ms_eval
4. iti-complex, a complex layout selection of Islamicate manuscripts.

3.2 Annotation protocol

The iti-complex subset is a newly annotated set of line extractions that we
provide. Our goal was to provide a more challenging benchmark for line ex-
traction in this domain that more accurately represents the diversity of page
layouts and line orientations. Thus, iti-complex consists of a set of 52 single
page images selected from a wide range of manuscripts held within a diversity
of digital repositories large and small. We aimed to represent multiple vectors of
that diversity as much as possible within the constraints of the data set, plac-
ing an emphasis on manuscript pages with high degrees of layout complexity
and line and word-form variability (that is, complex ligatures, full vocalization,
tall ascending and descending letter forms, and so forth). We also captured a
high degree of chronological, regional, and linguistic diversity, sampling not only
Arabic and Persian but also Ottoman Turkish, Urdu, and Uyghur texts, along
with multi-script texts including Coptic, Sanskrit, and Latin scripts. Generic
diversity was somewhat constrained by our privileging high complexity layouts,
although there too we included a wide range of texts. Finally, we also sought
to represent the diversity of digitized exemplars, which range from high quality
scans typical of recent digitization efforts to much lower quality, lower resolution
and often grey scale or even black-and-white scans that are more typical of early
digitization efforts or represent the digitization of microfilm.

Each page in this set is annotated with a polygon of up to 16 vertices using
Labelme [19] by our experts. After selecting a page for use in the dataset, we
saved a JPEG or PNG file, added the metadata relevant to the manuscript in
question along with brief descriptions of layout features, and opened the image
in Labelme. While we did practice some export and editing of previously an-
notated images (generated using the transcription platform eScriptorium, and



MONSTERMASH 5

Fig. 1. Example pages from iti-complex (image id 3, 6, 20, 23, 37, 49). There are not
only vertical or diagonal aligned text lines, but also spiral, curved text lines.

then geometrically simplified), most of the material in our data set was anno-
tated using previously un-annotated images taken directly from publicly open
online repositories. We then drew the polygons within the application, maintain-
ing a maximum of sixteen points, and including all letter-forms and orthographic
devices as well as ’punctuation’ marks. We treated words within a continuous
line as units for polygon generation, which entailed in some cases breaking up
continuous semantic units which however were not spatially continuous. In gen-
eral this approach allowed us to capture the entirety of the letter-forms while
minimizing neutral space and overlap with lines above and below (and on oc-
casion intersecting in some way from the left or right). On the other hand, we
treated lines in two columns that were a semantic unit as one continuous line. It
is common in the Islamicate poetic tradition, which frequently employs two-line
poetry units, to inscribe the two lines in separate columns. However, these are
not true columns and are ignored while reading the text as the reading order
involves reading the first line from the right column and jumping to the next
column (left), and then jumping back to the first column for the next line. As
such, for these cases, we treated the two lines in two columns as one. On occasion



6 Chen et al.

we were forced to make educated guesses about the relationship of a given dot
to two lines, a not uncommon occurrence in Arabic script, but such instances
were rare. Other edge cases included lines in which poor ink quality or damage
to the manuscript over time made the precise decipherment of a line and its
letter-forms difficult if not impossible. Finally, we had to make determinations
about the occasional use of superscript letters used for in-text annotation and
other purposes, choosing to include them as part of the line which they modified.

Figure 1 shows several examples from the ITI-complex subset.

4 Methods

There are three major kinds of line extraction methods: baseline-based, region-
based, and detection-based. Both baseline-based and region-based methods pro-
duce pixel-wise predictions: baseline-based approaches identify pixels that rep-
resent the baseline of each text line, while region-based methods identify pixels
that makeup the entire text line region. (In the computer vision community,
models that predict dense pixel-wise outputs are also called segmentation-based
methods.) In contrast, detection-based methods predict the vertices of polygons
that contain each individual text line. In order to compare these paradigms,
we train and test three representative line extraction models: kraken (baseline-
based) [10], doc-ufcn (region-based) [6] and TESTR (detection-based)[23].

type output overlap post-process backbone train iter.

kraken baseline binarized pixels No Yes convnet <50,000
doc-ufcn region binarized pixels No Yes convnet 10,000
TESTR detection vertices of polygon Yes No transformer 200,000

Table 2. A summary of the three kinds of line extraction methods. The overlap
column indicates whether the method can represent overlapping line regions, while the
post-process column indicates whether the backbone model’s output requires post-
processing in order to specify lines. Finally, thetrain iter. column shows the number
of training iterations needed for each model.

4.1 Kraken and DOC-UFCN

Kraken is an open-source OCR system that specializes in historical and non-
Latin scripts. Both Kraken’s line detection module and DOC-UFCN are U-
NET-based models which consist of sequences of convolutional layers followed
by transposed convolutional layers. A U-Net-like model generates 2D pixel-wise
predictions that maintain the same dimensions as the input. Each pixel receives a
numerical prediction ranging from 0 to 1. Kraken specifically predicts baselines,
whereas DOC-UFCN classifies all pixels within the text line polygon as positive.
For post-processing, Kraken employs heuristic methods to expand the baseline
into a bounding box, while DOC-UFCN identifies connected components in the
2D prediction heatmap to extract polygons.



MONSTERMASH 7

4.2 TESTR

TESTR is a transformer-based text detection model and predicts vertices of
polygons directly. As the predictions does not restricted to be non-overlapping,
or sometimes they can be identical, therefore we need to remove the redundant
polygons. We perform non-maximum suppression (NMS) to reduce overlapping
polygons and keep only the polygons with highest scores.

5 Experiments

For Kraken, we inference on the model checkpoints released by [17]. For the rest
two models, we trained from scratch using similar training procedure.

5.1 Pre-processing

DOC-UFCN requires shrunken polygon to achieve the best performance. We set
the shrink ratio to 0.1. We resize the image so that the width or height is no
longer than 768 px for training data.

TESTR requires polygons with no more than 16 vertices. There are usually
more than 40 vertices for each polygon for all subsets expect the iti-complex
subset. We use the Douglas-Peucker algorithm[8] to simply the polygon and then
compute the convex hull of the polygon.

5.2 Training

For DOC-UFCN and TESTR training, we followed Kraken’s training recipe for
fair comparison. We first train on AOCP_print (phase I) and then fine-tuning on
arabic_ms (phase II).

DOC-UFCN We trained from scratch with a learning rate 5−5 and batch size
32. We trained for 10, 000 iterations.

TESTR In Phase I, we trained from scratch with a learning rate 5−4 and batch
size 8. We trained for 200, 000 iterations. In Phase II, we trained on the last
checkpoints from Phase I with a learning rate 5−5 and batch size 8. We trained
for 200, 000 iterations.

5.3 Inference

Kraken If any side of the image is greater than 3000px, we need to resize it first
to feed to Kraken. We simply using the default setting of Kraken for inference.

DOC-UFCN We use the default setting of the model for inference.



8 Chen et al.

TESTR During influence, we set the confidence threshold to 0.05, i.e. we ig-
nore predictions whose confidence scores are lower than 0.05. We perform non-
maximum suppression (NMS) to reduce overlapping polygons. The IoU threshold
for running NMS is 0.3.

5.4 Evaluation metrics

Following [7], we use both pixel-level and object-level metrics for intrinsic eval-
uation of extracted lines, while we use downstream OCR performance as an ex-
trinsic evaluation. In contrast with [7], however, we use macro-averaging across
lines in all pixel-based metrics (i.e. those that compare areas of regions) to avoid
issues arising from double counting overlapping line regions.5

Pixel-level metrics. These metrics are also used widely in general semantic
segmentation tasks in the computer vision community. They evaluate the predic-
tion performance aggregating across individual pixels in predicted and ground
truth regions. However, these metrics sometimes fail to reflect whether a com-
plete line region has been detected accurately.

1. (macro) IoU. For each page, we first compute the union of all the predicted
line regions, predict_union, and similarly, compute the union of all ground
truth line regions, label_union. Finally, the intersection over union (IoU)
metric is given by calculating the ratio of the areas of the intersection and
union of predict_union and label_union.

2. (macro) recall/precision/F1. Similarly, recall is given by computing the
ratio of the area of the intersection of predict_union and label_union with
the area of label_union, while precision is calculated in a similar fashion
but using the area of predict_union as the denominator. F1 is the geometric
mean of precision and recall.

Object-level metrics. These metrics are commonly used to evaluate object
detection tasks in computer vision. We first greedily map predicted line regions
to ground truth regions to maximize IoU, and then set an IoU threshold to
determine which predicted regions can be considered correct. After determining
the correct and incorrect predicted line regions based on the chosen threshold,
we compute object-level precision, recall, and F1. By varying the IoU threshold,
we can compute metrics with variable tolerance in determining ‘correctness’.
Further, by varying the underlying threshold of model score that determines the
confidence level at which the model makes a prediction, we can measure the
tradeoff between precision and recall.

5 Alternatively, it would also be possible to align predict and groundtruth regions
first, and then calculate micro-averaged pixel-based metrics. However, this cause the
pixel-based metrics somewhat redundant with the separate object-based metrics we
calculate.



MONSTERMASH 9

1. AP (Average Precision). This commonly used metric in the objective
detection literature is derived by plotting the object-level precision-recall
curve while sweeping the model confidence threshold across its full range and
then computing the area under this curve. AP@.5 refers to the area under
the precision-recall curve when the intersection over union (IoU) threshold
is set to 0.5.

OCR performance. Finally, as an extrinsic metric of line extraction perfor-
mance, we pass the extractions of the pedicted line regions to a downstream
OCR engine and measure OCR performance against a groundtuth transcrip-
tion. Specifically, we calculate the character accuracy rate (CAR) for each line
extraction model using the recognition model from [17] as an OCR engine.

pixel-level object-level OCR

IOU P R F1 AP@.5 AP@.75 CAR

kraken 83.04 98.39 80.95 87.77 68.27 56.49 65.08
doc-ufcn 62.93 94.29 65.78 76.78 68.55 13.23 47.42
TESTR 91.21 87.00 98.95 92.60 76.74 32.09 63.83

manual 77.94
Table 3. Result on aocp_ms_eval. Manual reports the CAR when feeding the recog-
nition system with manually labelled gold bounding boxes as a reference.

5.5 Results

The results on three subsets of the ITI dataset. Table 3 shows performance on
aocp_ms_eval. As summarized in Table 3, about 25% of the annotation for
marginalia is missing and therefore, the performance of TESTR–the method
can predict fairly good on marginalia is penalized, as shown in Fig 2. Note that
TESTR predict the polygon directly, therefore, the IOU is calculated by the the
IOU of the union of predicted polygons and the union of labels.

We run the recognition model from [17] on the exacted lines from different
models and report the character accuracy rate (CAR). We take the average of
CAR from each page. Note that some of the labelled data does not have any
manual transcription, and we just skip it.

pixel-level object-level

IOU Precision Recall F1 AP@.5 AP@.75

kraken-ft 45.22 95.37 45.48 57.16 47.16 24.39
doc-ufcn-ft 51.01 91.75 54.31 66.67 36.03 1.03
TESTR-ft 83.60 91.99 88.62 87.89 51.66 17.71

Table 4. Result on iti-complex.



10 Chen et al.

6 Analysis and Discussion

Fig. 2. Annotations sometimes miss the marginalia, which increases the false positive
rate in models such as TESTR. Left: the annotation. Right: TESTR’s prediction.

Fig. 4. Prediction of aocp_ms_eval (image id 46), From left t o right: Kraken, DOC-
UFCN, TESTR. All three models predict most of the main-text body and Kraken
works best on main-text body. TESTR recalls most of the text in marginalia.

We analyse the experimental results and summarize them into the following
key aspects.



MONSTERMASH 11

Fig. 3. Prediction of aocp_ms_eval (image id 47). From left to right: Kraken, DOC-
UFCN, TESTR. DOC-UFCN is able to capture text lines in main text body, but the
adjacent lines can not be differentiated.

1. Kraken works best on regular, dense, main-body text. It sometimes fail to
capture the full line. It mostly fails to handle outliers. We also observe that
Kraken achieve best number for the AP@.75 metric on both test sets. We
argue it may be because Kraken use a comparably heavy post-processing
algorithm to obtain the final bounding boxes.

2. DOC-UFCN performs very bad on iti-complex mainly because it cannot
predict clean single lines when lines are irregular.

3. Overall, TESTR achieved the best performance in term of recall and AP@0.5.
This indicates that TESTR is more robust to out-of-distribution new exam-
ples. As shown in Fig 3 and Fig 4, TESTR retrieved most of the margina-
lia text. However, we notice that the TESTR is expected to have uniform
performance on similar text blocks on same page while TESTR usually
drop one line. Another issue we found on TESTR is that the confidence
of predicted polygons is low within [0.1, 0.3] (shown in Fig. 5). Interestingly,
the average confidence on iti-complex is significantly larger than that on
arabic_ms_eval.

4. The CAR (Character Accuracy Rate) for DOC-UFCN is notably low. As ob-
served, DOC-UFCN struggles to differentiate between closely spaced lines,
often predicting adjacent lines as a single polygon. To address this issue,
additional post-processing efforts could be implemented to enhance perfor-
mance without necessitating modifications to the neural network model.

5. TESTR is approximately 8 times slower in training compared to the other
two models, primarily due to its use of a Transformer-based backbone. Con-
versely, during inference, Kraken exhibits the slowest performance owing to
its extensive post-processing requirements.



12 Chen et al.

Fig. 5. Histograms of confidence scores of polygons predicted by TESTR on two test
sets. The majority of the confidence scores are lower than 0.5.

7 Case study: How Noisy data Affects Performance

As we observed, the annotations in the training dataset, specifically in arabic_ms_data,
are incomplete with approximately 7.5% of the main body text lines missing, and
the missing rate for marginalia are doubled to 15.7%. Additionally, we note that
the confidence scores for the predicted polygons from TESTR are lower than
expected (shown in Fig. 5). These two observations prompt further investigation
into how such noisy data influences model performance.

We also tested checkpoints before the model loss.
We randomly drop 20% and 50% of the polygons in arabic_ms_data be-

fore beginning the fine-tuning phase (phase II) and then evaluate the impact
on test performance using both aocp_ms_eval and iti-complex datasets. As
anticipated, there was a significant deterioration in performance with a 20%
reduction in annotations. Surprisingly, however, performance did not decrease
further when we removed an additional 30% of the annotations, as shown in
Table 5. The AP@.5 metrics barely changed when we reduced the number of
annotated lines, when we manually look at some of the prediction, .

arabic_ms_data iti-complex

drop rate 0% 20% 50% 0% 20% 50%

AP@.50 76.74 73.11 70.98 51.66 43.32 43.19
AP@.75 32.09 18.24 18.00 17.71 13.76 13.58

avg. confidence 31.36 26.45 22.81 40.67 30.48 27.75
Table 5. Ablation study on noisy data with a drop rate of 0 %, 20%, 50%.



MONSTERMASH 13

8 Conclusion

We empirically evaluate three major methods for text line extraction on Is-
lamicate documents: baseline (kraken), region (doc-ufcn), and detection-based
(TESTR). Scores for all three methods decrease drastically when tested exclusively
on non-linear lines (i.e. the iti-complex dataset).

Evaluated at the object level, we find that a pixel-based model such as kraken
works best on AP@0.75, while a detection-based method like TESTR performs
better on AP@0.5. Indeed, TESTR achieves the highest performance for non-
linear text line extraction in terms of recall and AP@0.5. Both TESTR and kraken
significantly outperform doc-ufcn with respect to OCR CAR. Evaluated at the
pixel level for F1, TESTR notably outperforms both kraken and doc-ufcn.

Our comparative evaluation reveals that each system has its unique strengths
and weaknesses. Nevertheless, we believe these results also evidence the potential
for transformer-based approaches to non-linear text line extraction.

References

1. Al-Barhamtoshy, H.M., Jambi, K.M., Abdou, S.M., Rashwan, M.A.: Arabic docu-
ments information retrieval for printed, handwritten, and calligraphy image. IEEE
Access 9, 51242–51257 (2021)

2. Al-Ma’adeed, S., Elliman, D., Higgins, C.: A data base for arabic handwritten text
recognition research. In: Proceedings Eighth International Workshop on Frontiers
in Handwriting Recognition. pp. 485–489 (2002)

3. Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. p. 9365–9374 (2019)

4. Barakat, B.K., Cohen, R., El-Sana, J.: Vml-moc: Segmenting a multiply oriented
and curved handwritten text line dataset. In: 2019 International Conference on
Document Analysis and Recognition Workshops (ICDARW). vol. 6, pp. 13–18.
IEEE (2019)

5. Boillet, M., Kermorvant, C., Paquet, T.: Multiple document datasets
pre-training improves text line detection with deep neural networks.
In: 2020 25th International Conference on Pattern Recognition (ICPR).
pp. 2134–2141. IEEE Computer Society, Los Alamitos, CA, USA (jan
2021). https://doi.org/10.1109/ICPR48806.2021.9412447, https://doi.
ieeecomputersociety.org/10.1109/ICPR48806.2021.9412447

6. Boillet, M., Kermorvant, C., Paquet, T.: Multiple Document Datasets Pre-training
Improves Text Line Detection With Deep Neural Networks. In: 2020 25th Inter-
national Conference on Pattern Recognition (ICPR). pp. 2134–2141 (Jan 2021).
https://doi.org/10.1109/ICPR48806.2021.9412447

7. Boillet, M., Kermorvant, C., Paquet, T.: Robust text line detection in his-
torical documents: learning and evaluation methods. In: International Jour-
nal on Document Analysis and Recognition (IJDAR). pp. 1433–2825 (Mar
2022). https://doi.org/10.1007/s10032-022-00395-7, https://doi.org/10.1007/
s10032-022-00395-7



14 Chen et al.

8. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: the inter-
national journal for geographic information and geovisualization 10(2), 112–122
(1973)

9. Huang, M., Zhang, J., Peng, D., Lu, H., Huang, C., Liu, Y., Bai, X., Jin, L.:
Estextspotter: Towards better scene text spotting with explicit synergy in trans-
former. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 19495–19505 (October 2023)

10. Kiessling, B.: The Kraken OCR system (Apr 2022), https://kraken.re
11. Lamsaf, A., Aitkerroum, M., Boulaknadel, S., Fakhri, Y.: Text line and word ex-

traction of arabic handwritten documents. In: Ben Ahmed, M., Boudhir, A.A.,
Younes, A. (eds.) Innovations in Smart Cities Applications. pp. 492–503 (2019)

12. Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: Textboxes: A fast text detector with
a single deep neural network. In: Proceedings of the thirty-first AAAI conference
on artificial intelligence. pp. 4161–4167 (2017)

13. Long, S., Ruan, J., Zhang, W., He, X., Wu, W., Yao, C.: Textsnake: A flexible
representation for detecting text of arbitrary shapes. In: European Conference on
Computer Vision (ECCV). p. 19–35 (2018)

14. Lorigo, L., Govindaraju, V.: Segmentation and pre-recognition of arabic handwrit-
ing. In: Eighth International Conference on Document Analysis and Recognition
(ICDAR). pp. 605–609 (2005)

15. Lyu, P., Liao, M., Yao, C., Wu, W., Bai, X.: Mask textspotter: An end-to-end
trainable neural network for spotting text with arbitrary shapes. In: Proceedings
of the European Conference on Computer Vision (ECCV) (2018)

16. Mahmoud, S.A., Ahmad, I., Alshayeb, M., Al-Khatib, W.G., Parvez, M.T., Fink,
G.A., Märgner, V., Abed, H.E.: Khatt: Arabic offline handwritten text database.
In: 2012 International Conference on Frontiers in Handwriting Recognition. pp.
449–454 (2012)

17. Smith, D.A., Murel, J., Allen, J.P., Miller, M.T.: Automatic collation for diversi-
fying corpora: Commonly copied texts as distant supervision for handwritten text
recognition. In: Computational Humanities Research Conference (CHR) (2023)

18. Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with
connectionist text proposal network. In: Proceedings of the European conference
on computer vision. p. 56–72 (2016)

19. Wada, K.: Labelme: Image Polygonal Annotation with Python.
https://doi.org/10.5281/zenodo.5711226, https://github.com/wkentaro/
labelme

20. Ye, M., Zhang, J., Zhao, S., Liu, J., Du, B., Tao, D.: Dptext-detr: Towards better
scene text detection with dynamic points in transformer. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 37, pp. 3241–3249 (2023)

21. Zahour, A., Likforman-Sulem, L., Boussalaa, W., Taconet, B.: Text line segmen-
tation of historical arabic documents. In: Ninth International Conference on Doc-
ument Analysis and Recognition (ICDAR). vol. 1, pp. 138–142 (2007)

22. Zahour, A., Taconet, B., Mercy, P., Ramdane, S.: Arabic hand-written text-line ex-
traction. In: Proceedings of Sixth International Conference on Document Analysis
and Recognition. pp. 281–285 (2001)

23. Zhang, X., Su, Y., Tripathi, S., Tu, Z.: Text spotting transformers. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 9519–9528 (June 2022)


