
5 Dynamics

The dynamics of a language describes how programs are executed. The most important
way to define the dynamics of a language is by the method of structural dynamics, which
defines a transition system that inductively specifies the step-by-step process of executing
a program. Another method for presenting dynamics, called contextual dynamics, is a
variation of structural dynamics in which the transition rules are specified in a slightly
different way. An equational dynamics presents the dynamics of a language by a collection
of rules defining when one program is definitionally equivalent to another.

5.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.
2. s final, where s state, asserting that s is a final state.
3. s initial, where s state, asserting that s is an initial state.
4. s �−→ s ′, where s state and s ′ state, asserting that state s may transition to state s ′.

In practice, we always arrange things so that no transition is possible from a final state: if
s final, then there is no s ′ state such that s �−→ s ′. A state from which no transition is
possible is stuck. Whereas all final states are, by convention, stuck, there may be stuck states
in a transition system that are not final. A transition system is deterministic iff for every
state s there exists at most one state s ′ such that s �−→ s ′; otherwise, it is non-deterministic.

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial, and si �−→ si+1

for every 0 ≤ i < n. A transition sequence is maximal iff there is no s such that sn �−→ s,
and it is complete iff it is maximal and sn final. Thus, every complete transition sequence
is maximal, but maximal sequences are not necessarily complete. The judgment s ↓means
that there is a complete transition sequence starting from s, which is to say that there exists
s ′ final such that s �−→∗ s ′.

The iteration of transition judgment s �−→∗ s ′ is inductively defined by the following
rules:

s �−→∗ s (5.1a)

s �−→ s ′ s ′ �−→∗ s ′′

s �−→∗ s ′′
(5.1b)

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


40 Dynamics

When applied to the definition of iterated transition, the principle of rule induction states
that to show that P (s, s ′) holds when s �−→∗ s ′, it is enough to show these two properties
of P :

1. P (s, s).
2. if s �−→ s ′ and P (s ′, s ′′), then P (s, s ′′).

The first requirement is to show that P is reflexive. The second is to show that P is closed
under head expansion, or closed under inverse evaluation. Using this principle, it is easy
to prove that �−→∗ is reflexive and transitive.

The n-times iterated transition judgment s �−→n s ′, where n ≥ 0, is inductively defined
by the following rules:

s �−→0 s (5.2a)

s �−→ s ′ s ′ �−→n s ′′

s �−→n+1 s ′′
(5.2b)

Theorem 5.1. For all states s and s ′, s �−→∗ s ′ iff s �−→k s ′ for some k ≥ 0.

Proof From left to right, by induction on the definition of multi-step transition. From right
to left, by mathematical induction on k ≥ 0.

5.2 Structural Dynamics

A structural dynamics for the language E is given by a transition system whose states are
closed expressions. All states are initial. The final states are the (closed) values, which
represent the completed computations. The judgment e val, which states that e is a value,
is inductively defined by the following rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment e �−→ e′ between states is inductively defined by the following
rules:

n1 + n2 = n

plus(num[n1]; num[n2]) �−→ num[n] (5.4a)

e1 �−→ e′1
plus(e1; e2) �−→ plus(e′1; e2)

(5.4b)

e1 val e2 �−→ e′2
plus(e1; e2) �−→ plus(e1; e′2)

(5.4c)

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


41 5.2 Structural Dynamics

s1 ˆ s2 = s str

cat(str[s1]; str[s2]) �−→ str[s]
(5.4d)

e1 �−→ e′1
cat(e1; e2) �−→ cat(e′1; e2)

(5.4e)

e1 val e2 �−→ e′2
cat(e1; e2) �−→ cat(e1; e′2)

(5.4f)

[
e1 �−→ e′1

let(e1; x.e2) �−→ let(e′1; x.e2)

]
(5.4g)

[e1 val]
let(e1; x.e2) �−→ [e1/x]e2

(5.4h)

We have omitted rules for multiplication and computing the length of a string, which follow
a similar pattern. Rules (5.4a), (5.4d), and (5.4h) are instruction transitions, because they
correspond to the primitive steps of evaluation. The remaining rules are search transitions
that determine the order of execution of instructions.

The bracketed rule (5.4g) and bracketed premise on rule (5.4h) are included for a by-value
interpretation of let and omitted for a by-name interpretation. The by-value interpretation
evaluates an expression before binding it to the defined variable, whereas the by-name
interpretation binds it in unevaluated form. The by-value interpretation saves work if the
defined variable is used more than once but wastes work if it is not used at all. Conversely,
the by-name interpretation saves work if the defined variable is not used and wastes work
if it is used more than once.

A derivation sequence in a structural dynamics has a two-dimensional structure, with
the number of steps in the sequence being its “width” and the derivation tree for each step
being its “height.” For example, consider the following evaluation sequence:

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
�−→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
�−→ plus(plus(num[3]; num[3]); num[4])
�−→ plus(num[6]; num[4])
�−→ num[10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4).
For example, the third transition in the preceding example is justified by the following
derivation:

plus(num[3]; num[3]) �−→ num[6]
(5.4a)

plus(plus(num[3]; num[3]); num[4]) �−→ plus(num[6]; num[4])
(5.4b)

The other steps are similarly justified by composing rules.
The principle of rule induction for the structural dynamics of E states that to show

P(e �−→ e′) when e �−→ e′, it is enough to show that P is closed under rules (5.4). For
example, we may show by rule induction that the structural dynamics of E is determinate,

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


42 Dynamics

which means that an expression may transition to at most one other expression. The proof
requires a simple lemma relating transition to values.

Lemma 5.2 (Finality of Values). For no expression e do we have both e val, and e �−→ e′

for some e′.

Proof By rule induction on rules (5.3) and (5.4).

Lemma 5.3 (Determinacy). If e �−→ e′ and e �−→ e′′, then e′ and e′′ are α-equivalent.

Proof By rule induction on the premises e �−→ e′ and e �−→ e′′, carried out either
simultaneously or in either order. The primitive operators, such as addition, are assumed to
have a unique value when applied to values.

Rules (5.4) exemplify the inversion principle of language design, which states that
the elimination forms are inverse to the introduction forms of a language. The search
rules determine the principal arguments of each elimination form, and the instruction
rules specify how to evaluate an elimination form when all of its principal arguments are
in introduction form. For example, rules (5.4) specify that both arguments of addition are
principal and specify how to evaluate an addition once its principal arguments are evaluated
to numerals. The inversion principle is central to ensuring that a programming language is
properly defined, the exact statement of which is given in Chapter 6.

5.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes useful. There
is no fundamental difference between contextual and structural dynamics, but rather one
of style. The main idea is to isolate instruction steps as a special form of judgment, called
instruction transition, and to formalize the process of locating the next instruction using a
device called an evaluation context. The judgment e val defining whether an expression is
a value, remains unchanged.

The instruction transition judgment e1 → e2 for E is defined by the following rules,
together with similar rules for multiplication of numbers and the length of a string.

m+ n is p nat

plus(num[m]; num[n]) → num[p]
(5.5a)

s ˆ t = u str
cat(str[s]; str[t]) → str[u] (5.5b)

let(e1; x.e2) → [e1/x]e2 (5.5c)

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


43 5.3 Contextual Dynamics

The judgment E ectxt determines the location of the next instruction to execute in a larger
expression. The position of the next instruction step is specified by a “hole,” written ◦, into
which the next instruction is placed, as we shall detail shortly. (The rules for multiplication
and length are omitted for concision, as they are handled similarly.)

◦ ectxt (5.6a)

E1 ectxt

plus(E1; e2) ectxt
(5.6b)

e1 val E2 ectxt

plus(e1; E2) ectxt
(5.6c)

The first rule for evaluation contexts specifies that the next instruction may occur “here,” at
the occurrence of the hole. The remaining rules correspond one-for-one to the search rules
of the structural dynamics. For example, rule (5.6c) states that in an expression plus(e1; e2),
if the first argument, e1, is a value, then the next instruction step, if any, lies at or within the
second argument, e2.

An evaluation context is a template that is instantiated by replacing the hole with an
instruction to be executed. The judgment e′ = E{e} states that the expression e′ is the result
of filling the hole in the evaluation context E with the expression e. It is inductively defined
by the following rules:

e = ◦{e} (5.7a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e} (5.7b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e} (5.7c)

There is one rule for each form of evaluation context. Filling the hole with e results in e;
otherwise, we proceed inductively over the structure of the evaluation context.

Finally, the contextual dynamics for E is defined by a single rule:

e = E{e0} e0 → e′0 e′ = E{e′0}
e �−→ e′

(5.8)

Thus, a transition from e to e′ consists of (1) decomposing e into an evaluation context
and an instruction, (2) execution of that instruction, and (3) replacing the instruction by the
result of its execution in the same spot within e to obtain e′.

The structural and contextual dynamics define the same transition relation. For the sake
of the proof, let us write e �−→s e′ for the transition relation defined by the structural
dynamics (rules (5.4)), and e �−→c e′ for the transition relation defined by the contextual
dynamics (rules (5.8)).

Theorem 5.4. e �−→s e′ if, and only if, e �−→c e′.

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


44 Dynamics

Proof From left to right, proceed by rule induction on rules (5.4). It is enough in each
case to exhibit an evaluation context E such that e = E{e0}, e′ = E{e′0}, and e0 → e′0.
For example, for rule (5.4a), take E = ◦, and note that e → e′. For rule (5.4b), we
have by induction that there exists an evaluation context E1 such that e1 = E1{e0}, e′1 =
E1{e′0}, and e0 → e′0. Take E = plus(E1; e2), and note that e = plus(E1; e2){e0} and
e′ = plus(E1; e2){e′0} with e0 → e′0.

From right to left, note that if e �−→c e′, then there exists an evaluation context E
such that e = E{e0}, e′ = E{e′0}, and e0 → e′0. We prove by induction on rules (5.7)
that e �−→s e′. For example, for rule (5.7a), e0 is e, e′0 is e′, and e → e′. Hence,
e �−→s e′. For rule (5.7b), we have that E = plus(E1; e2), e1 = E1{e0}, e′1 = E1{e′0},
and e1 �−→s e′1. Therefore, e is plus(e1; e2), e′ is plus(e′1; e2), and therefore by rule (5.4b),
e �−→s e′.

Because the two transition judgments coincide, contextual dynamics can be considered
an alternative presentation of a structural dynamics. It has two advantages over structural
dynamics, one relatively superficial, one rather less so. The superficial advantage stems
from writing rule (5.8) in the simpler form

e0 → e′0
E{e0} �−→ E{e′0}

. (5.9)

This formulation is superficially simpler in that it does not make explicit how an expression
is decomposed into an evaluation context and a reducible expression. The deeper advantage
of contextual dynamics is that all transitions are between complete programs. One need
never consider a transition between expressions of any type other than the observable type,
which simplifies certain arguments, such as the proof of Lemma 47.16.

5.4 Equational Dynamics

Another formulation of the dynamics of a language regards computation as a form of
equational deduction, much in the style of elementary algebra. For example, in algebra, we
may show that the polynomials x2+2 x+1 and (x+1)2 are equivalent by a simple process
of calculation and re-organization using the familiar laws of addition and multiplication.
The same laws are enough to determine the value of any polynomial, given the values of
its variables. So, for example, we may plug in 2 for x in the polynomial x2 + 2 x + 1
and calculate that 22 + 2 × 2 + 1 = 9, which is indeed (2 + 1)2. We thus obtain a model
of computation in which the value of a polynomial for a given value of its variable is
determined by substitution and simplification.

Very similar ideas give rise to the concept of definitional, or computational, equivalence
of expressions in E, which we write as X | � � e ≡ e′ : τ , where � consists of one
assumption of the form x : τ for each x ∈ X . We only consider definitional equality of
well-typed expressions, so that when considering the judgment � � e ≡ e′ : τ , we tacitly

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


45 5.4 Equational Dynamics

assume that � � e : τ and � � e′ : τ . Here, as usual, we omit explicit mention of the
variables X when they can be determined from the forms of the assumptions �.

Definitional equality of expressions in E under the by-name interpretation of let is
inductively defined by the following rules:

� � e ≡ e : τ (5.10a)

� � e′ ≡ e : τ

� � e ≡ e′ : τ
(5.10b)

� � e ≡ e′ : τ � � e′ ≡ e′′ : τ

� � e ≡ e′′ : τ
(5.10c)

� � e1 ≡ e′1 : num � � e2 ≡ e′2 : num
� � plus(e1; e2) ≡ plus(e′1; e′2) : num

(5.10d)

� � e1 ≡ e′1 : str � � e2 ≡ e′2 : str
� � cat(e1; e2) ≡ cat(e′1; e′2) : str

(5.10e)

� � e1 ≡ e′1 : τ1 �, x : τ1 � e2 ≡ e′2 : τ2

� � let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(5.10f)

n1 + n2 is n nat

� � plus(num[n1]; num[n2]) ≡ num[n] : num
(5.10g)

s1 ˆ s2 = s str

� � cat(str[s1]; str[s2]) ≡ str[s] : str
(5.10h)

� � let(e1; x.e2) ≡ [e1/x]e2 : τ (5.10i)

Rules (5.10a) through (5.10c) state that definitional equality is an equivalence relation.
Rules (5.10d) through (5.10f) state that it is a congruence relation, which means that
it is compatible with all expression-forming constructs in the language. Rules (5.10g)
through (5.10i) specify the meanings of the primitive constructs ofE. We say that rules (5.10)
define the strongest congruence closed under rules (5.10g), (5.10h), and (5.10i).

Rules (5.10) suffice to calculate the value of an expression by a deduction similar to that
used in high school algebra. For example, we may derive the equation

let x be 1+ 2 in x + 3+ 4 ≡ 10 : num

by applying rules (5.10). Here, as in general, there may be many different ways to derive
the same equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we might intuitively
think are true are not derivable from rules (5.10). A prototypical example is the putative
equivalence

x1 : num, x2 : num � x1 + x2 ≡ x2 + x1 : num, (5.11)

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


46 Dynamics

which, intuitively, expresses the commutativity of addition. Although we shall not prove
this here, this equivalence is not derivable from rules (5.10). And yet we may derive all of
its closed instances,

n1 + n2 ≡ n2 + n1 : num, (5.12)

where n1 nat and n2 nat are particular numbers.
The “gap” between a general law, such as Equation (5.11), and all of its instances,

given by Equation (5.12), may be filled by enriching the notion of equivalence to include a
principle of proof by mathematical induction. Such a notion of equivalence is sometimes
called semantic equivalence, because it expresses relationships that hold by virtue of the
dynamics of the expressions involved. (Semantic equivalence is developed rigorously for a
related language in Chapter 46.)

Theorem 5.5. For the expression language E, the relation e ≡ e′ : τ holds iff there exists
e0 val such that e �−→∗ e0 and e′ �−→∗ e0.

Proof The proof from right to left is direct, because every transition step is a valid
equation. The converse follows from the following, more general, proposition, which
is proved by induction on rules (5.10): if x1 : τ1, . . . , xn : τn � e ≡ e′ : τ , then when
e1 : τ1, e

′
1 : τ1, . . . , en : τn, e

′
n : τn, if for each 1 ≤ i ≤ n the expressions ei and e′i evaluate

to a common value vi , then there exists e0 val such that

[e1, . . . , en/x1, . . . , xn]e �−→∗ e0

and

[e′1, . . . , e
′
n/x1, . . . , xn]e′ �−→∗ e0.

5.5 Notes

The use of transition systems to specify the behavior of programs goes back to the early
work of Church and Turing on computability. Turing’s approach emphasized the concept
of an abstract machine consisting of a finite program together with unbounded memory.
Computation proceeds by changing the memory in accordance with the instructions in the
program. Much early work on the operational semantics of programming languages, such
as the SECD machine (Landin, 1965), emphasized machine models. Church’s approach
emphasized the language for expressing computations and defined execution in terms of the
programs themselves, rather than in terms of auxiliary concepts such as memories or tapes.
Plotkin’s elegant formulation of structural operational semantics (Plotkin, 1981), which we
use heavily throughout this book, was inspired by Church’s and Landin’s ideas (Plotkin,
2004). Contextual semantics, which was introduced by Felleisen and Hieb (1992), may
be seen as an alternative formulation of structural semantics in which “search rules” are
replaced by “context matching.” Computation viewed as equational deduction goes back
to the early work of Herbrand, Gödel, and Church.

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007


47 Exercises

Exercises

5.1. Prove that if s �−→∗ s ′ and s ′ �−→∗ s ′′, then s �−→∗ s ′′.
5.2. Complete the proof of Theorem 5.1 along the lines suggested there.
5.3. Complete the proof of Theorem 5.5 along the lines suggested there.

https://doi.org/10.1017/CBO9781316576892.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.007



