
4 Statics

Most programming languages exhibit a phase distinction between the static and dynamic
phases of processing. The static phase consists of parsing and type checking to ensure
that the program is well-formed; the dynamic phase consists of execution of well-formed
programs. A language is said to be safe exactly when well-formed programs are well-
behaved when executed.

The static phase is specified by a statics comprising a set of rules for deriving typing
judgments stating that an expression is well-formed of a certain type. Types mediate the
interaction between the constituent parts of a program by “predicting” some aspects of the
execution behavior of the parts so that we may ensure they fit together properly at run-time.
Type safety tells us that these predictions are correct; if not, the statics is considered to be
improperly defined, and the language is deemed unsafe for execution.

In this chapter, we present the statics of a simple expression language, E, as an illustration
of the method that we will employ throughout this book.

4.1 Syntax

When defining a language we shall be primarily concerned with its abstract syntax, specified
by a collection of operators and their arities. The abstract syntax provides a systematic,
unambiguous account of the hierarchical and binding structure of the language and is
considered the official presentation of the language. However, for the sake of clarity, it
is also useful to specify minimal concrete syntax conventions, without going through the
trouble to set up a fully precise grammar for it.

We will accomplish both of these purposes with a syntax chart, whose meaning is best
illustrated by example. The following chart summarizes the abstract and concrete syntax
of E.

Typ τ ::= num num numbers
str str strings

Exp e ::= x x variable
num[n] n numeral
str[s] "s" literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition

https://doi.org/10.1017/CBO9781316576892.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.006

34 Statics

This chart defines two sorts, Typ, ranged over by τ , and Exp, ranged over by e. The chart
defines a set of operators and their arities. For example, it specifies that the operator let
has arity (Exp,Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and
binds a variable of sort Exp in the second argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of phrases that
are sensitive to the context in which they occur. For example, whether the expression
plus(x; num[n]) is sensible depends on whether the variable x is restricted to have type
num in the surrounding context of the expression. This example is, in fact, illustrative of
the general case, in that the only information required about the context of an expression is
the type of the variables within whose scope the expression lies. Consequently, the statics
of E consists of an inductive definition of generic hypothetical judgments of the form

�x | � � e : τ,

where �x is a finite set of variables, and � is a typing context consisting of hypotheses of the
form x : τ , one for each x ∈ �x. We rely on typographical conventions to determine the set
of variables, using the letters x and y to stand for them. We write x /∈ dom(�) to say that
there is no assumption in � of the form x : τ for any type τ , in which case we say that the
variable x is fresh for �.

The rules defining the statics of E are as follows:

�, x : τ � x : τ (4.1a)

� � str[s] : str (4.1b)

� � num[n] : num (4.1c)

� � e1 : num � � e2 : num
� � plus(e1; e2) : num

(4.1d)

� � e1 : num � � e2 : num
� � times(e1; e2) : num

(4.1e)

� � e1 : str � � e2 : str
� � cat(e1; e2) : str

(4.1f)

� � e : str
� � len(e) : num (4.1g)

� � e1 : τ1 �, x : τ1 � e2 : τ2

� � let(e1; x.e2) : τ2
(4.1h)

In rule (4.1h), we tacitly assume that the variable x is not already declared in �. This
condition may always be met by choosing a suitable representative of the α-equivalence
class of the let expression.

https://doi.org/10.1017/CBO9781316576892.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.006

35 4.3 Structural Properties

It is easy to check that every expression has at most one type by induction on typing,
which is rule induction applied to rules (4.1).

Lemma 4.1 (Unicity of Typing). For every typing context � and expression e, there exists
at most one τ such that � � e : τ .

Proof By rule induction on rules (4.1), making use of the fact that variables have at most
one type in any typing context.

The typing rules are syntax-directed in the sense that there is exactly one rule for
each form of expression. Consequently, it is easy to give necessary conditions for typing
an expression that invert the sufficient conditions expressed by the corresponding typing
rule.

Lemma 4.2 (Inversion for Typing). Suppose that � � e : τ . If e = plus(e1; e2), then
τ = num, � � e1 : num, and � � e2 : num, and similarly for the other constructs of the
language.

Proof These may all be proved by induction on the derivation of the typing judgment
� � e : τ .

In richer languages such inversion principles are more difficult to state and to prove.

4.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judgment.

Lemma 4.3 (Weakening). If � � e′ : τ ′, then �, x : τ � e′ : τ ′ for any x /∈ dom(�) and
any type τ .

Proof By induction on the derivation of � � e′ : τ ′. We will give one case here, for
rule (4.1h). We have that e′ = let(e1; z.e2), where by the conventions on variables we may
assume z is chosen such that z /∈ dom(�) and z �= x. By induction, we have

1. �, x : τ � e1 : τ1,
2. �, x : τ, z : τ1 � e2 : τ ′,

from which the result follows by rule (4.1h).

Lemma 4.4 (Substitution). If �, x : τ � e′ : τ ′ and � � e : τ , then � � [e/x]e′ : τ ′.

https://doi.org/10.1017/CBO9781316576892.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.006

36 Statics

Proof By induction on the derivation of �, x : τ � e′ : τ ′. We again consider only
rule (4.1h). As in the preceding case, e′ = let(e1; z.e2), where z is chosen so that z �= x

and z /∈ dom(�). We have by induction and Lemma 4.3 that

1. � � [e/x]e1 : τ1,
2. �, z : τ1 � [e/x]e2 : τ ′.

By the choice of z, we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by rule (4.1h) that � � [e/x]let(e1; z.e2) : τ ′, as desired.

From a programming point of view, Lemma 4.3 allows us to use an expression in
any context that binds its free variables: if e is well-typed in a context �, then we may
“import” it into any context that includes the assumptions �. In other words, introducing
new variables beyond those required by an expression e does not invalidate e itself; it
remains well-formed, with the same type.1 More importantly, Lemma 4.4 expresses the
important concepts of modularity and linking. We may think of the expressions e and e′

as two components of a larger system in which e′ is a client of the implementation e. The
client declares a variable specifying the type of the implementation and is type checked
knowing only this information. The implementation must be of the specified type to satisfy
the assumptions of the client. If so, then we may link them to form the composite system
[e/x]e′. This implementation may itself be the client of another component, represented by
a variable y that is replaced by that component during linking. When all such variables have
been implemented, the result is a closed expression that is ready for execution (evaluation).

The converse of Lemma 4.4 is called decomposition. It states that any (large) expression
can be decomposed into a client and implementor by introducing a variable to mediate their
interaction.

Lemma 4.5 (Decomposition). If � � [e/x]e′ : τ ′, then for every type τ such that � � e : τ ,
we have �, x : τ � e′ : τ ′.

Proof The typing of [e/x]e′ depends only on the type of e wherever it occurs, if at all.

Lemma 4.5 tells us that any sub-expression can be isolated as a separate module of a
larger system. This property is especially useful when the variable x occurs more than once
in e′, because then one copy of e suffices for all occurrences of x in e′.

The statics of E given by rules (4.1) exemplifies a recurrent pattern. The constructs of
a language are classified into one of two forms, the introduction and the elimination. The
introduction forms for a type determine the values, or canonical forms, of that type. The
elimination forms determine how to manipulate the values of a type to form a computation
of another (possibly the same) type. In the language E, the introduction forms for the type
num are the numerals, and those for the type str are the literals. The elimination forms for

https://doi.org/10.1017/CBO9781316576892.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.006

37 Exercises

the type num are addition and multiplication, and those for the type str are concatenation
and length.

The importance of this classification will become clear once we have defined the dynam-
ics of the language in Chapter 5. Then we will see that the elimination forms are inverse
to the introduction forms in that they “take apart” what the introduction forms have “put
together.” The coherence of the statics and dynamics of a language expresses the concept
of type safety, the subject of Chapter 6.

4.4 Notes

The concept of the static semantics of a programming language was historically slow to
develop, perhaps because the earliest languages had relatively few features and only very
weak type systems. The concept of a static semantics in the sense considered here was
introduced in the definition of the Standard ML programming language (Milner et al.,
1997), building on earlier work by Church and others on the typed λ-calculus (Barendregt,
1992). The concept of introduction and elimination, and the associated inversion principle,
was introduced by Gentzen in his pioneering work on natural deduction (Gentzen, 1969).
These principles were applied to the structure of programming languages by Martin-Löf
(1984, 1980).

Exercises

4.1. It is sometimes useful to give the typing judgment � � e : τ an “operational” reading
that specifies more precisely the flow of information required to derive a typing
judgment (or determine that it is not derivable). The analytic mode corresponds to
the context, expression, and type being given, with the goal to determine whether
the typing judgment is derivable. The synthetic mode corresponds to the context and
expression being given, with the goal to find the unique type τ , if any, possessed by
the expression in that context. These two readings can be made explicit as judgments
of the form e ↓ τ , corresponding to the analytic mode, and e ↑ τ , corresponding to
the synthetic mode.

Give a simultaneous inductive definition of these two judgments according to the
following guidelines:
(a) Variables are introduced in synthetic form.
(b) If we can synthesize a unique type for an expression, then we can analyze it with

respect to a given type by checking type equality.
(c) Definitions need care, because the type of the defined expression is not given, even

when the type of the result is given.
There is room for variation; the point of the exercise is to explore the possibilities.

https://doi.org/10.1017/CBO9781316576892.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.006

38 Statics

4.2. One way to limit the range of possibilities in the solution to Exercise 4.1 is to restrict
and extend the syntax of the language so that every expression is either synthetic or
analytic according to the following suggestions:
(a) Variables are analytic.
(b) Introduction forms are analytic, elimination forms are synthetic.
(c) An analytic expression can be made synthetic by introducing a type cast of the

form cast{τ }(e) specifying that e must check against the specified type τ , which
is synthesized for the whole expression.

(d) The defining expression of a definition must be synthetic, but the scope of the
definition can be either synthetic or analytic.

Reformulate your solution to Exercise 4.1 to take account of these guidelines.

Note

1 This point may seem so obvious that it is not worthy of mention, but, surprisingly, there are
useful type systems that lack this property. Because they do not validate the structural principle of
weakening, they are called substructural type systems.

https://doi.org/10.1017/CBO9781316576892.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.006

