Definition: a **partial order** (sometimes called a *partially ordered set* or *poset*) is a pair, (D, \sqsubseteq) where: D is a set and

 \Box is a reflexive, transitive, and anti-symetric relation such that:

 $\begin{array}{l} \forall x. \ x \sqsubseteq x \\ \forall x, y, z. \ (x \sqsubseteq y) \land (y \sqsubseteq z) \ \Rightarrow \ (x \sqsubseteq z) \\ \forall xy. \ (x \sqsubseteq y) \land (y \sqsubseteq x) \ \Rightarrow \ (x = y) \end{array}$

Definition: Let X be a subset of D, then:

 $d \in D$ is an **upper-bound** (or UB) for X iff $\forall x \in X$. $(x \sqsubseteq d)$

Definition: d is a **least-upper-bound** (or LUB) for X iff:

(1) d is an *upper-bound* for X and

(2) if d' is any upper-bound for X then $d \sqsubseteq d'$

Property: if d & d' are both *LUBs* of X then d = d'

Proof: Since d and d' are LUBs of X, $(d \sqsubseteq d')$ and $(d' \sqsubseteq d)$, (d = d') by anti-symetry of \sqsubseteq

- If \sqsubseteq is not *anti-symetric* we call it a *pre-order*

- We write $\bigsqcup X$ for the *least-upper-bound* of X, if it exists

What kinds of sets have LUBs?

(1) no restrition: (*poset*)

- (2) Every finite subset has a LUB (*lattice*)
- (3) Every subset has a LUB (complete lattice)

Somewhere between 1 & 2 is our interesting class of sets

Definition: Given a poset (D, \sqsubseteq) , $X \subseteq D$ is **directed** iff every finite set $F \subseteq X$ has an upper-bound in X

a d	directed	not directed
$\sim \land \land$	$\{a,c\}$	$\{a, b\}$
	$\{a, b, c\}$	$\{a, b, c, d\}$
	singleton sets	
a' b	pairs of \sqsubseteq	

Definition: a complete-partial-order (CPO) is a *poset* where every *directed* subset has a *LUB*.

Definition: a **pointed-CPO** is a CPO with a *least-element*, usually *bottom*, (\perp)

Any finite PO is a CPO since any directed set X is finite, choose F = X so X has an *upper-bound* in X, that must be the LUB.

Interesting posets: Singleton: $\{\cdot\}$, **1**, or **U** 2 element: \int_{\perp}^{\top} or **O** 3 element: $true \quad false$ \downarrow ω^{\top} : (**N** \cup { \top })

- If A is any set then $\langle \mathbf{P}(A), \subseteq \rangle$ is a CPO $X \subseteq \mathbf{P}(A), \quad \bigsqcup X = \bigcup X$
- If A is any set then $\langle A, \{(x, y) \mid x = y\} \rangle$ is a CPO (but not *pointed*) but, $\langle A \cup \{\bot\}, \{(x, y) \mid (x = y) \lor (x = \bot)\} \rangle$ is

Definition: Products of Posets

 $\begin{array}{l} (D, \sqsubseteq_D) \times (E, \sqsubseteq_E) = (D \times E, \sqsubseteq_{D \times E}) \\ \text{where} \\ (d, e) \sqsubseteq_{D \times E} (d', e') \quad \text{iff} \quad (d \sqsubseteq_D) \wedge (e \sqsubseteq_E e') \end{array}$

- If $P \subseteq D \times E$ is directed then P has a LUB
- **Claim**: Let P be directed, $P_1 = \{x \mid \exists y.(x, y) \in P\}$ and $P_2 = \{y \mid \exists y.(x, y) \in P\}$, then $P_1 \& P_2$ are directed
- **Proof:** if $\{x_1, ..., x_n\} \in P_1$ and $\{y_1, ..., y_n\} \in P_2$ such that $\{(x_1, y_1), ..., (x_n, y_n)\} \subseteq P$ then by the definition of $\sqsubseteq_{P_1 \times P_2}$, since P is directed so are P_1 and P_2

Partial Functions

- If S and T are sets then $S \longrightarrow T$ defines the set of **partial-functions** from S to T $f \sqsubseteq g$ iff $\forall x \in S$, if f(x) is defined then so is g(x), and f(x) = g(x)
- Alternatively:

$$graph(f) = \{(x, y) \mid x \in S \land y = f(x)\}, \text{ then } f \sqsubseteq g \text{ iff } graph(f) \subseteq graph(f) graph(f) \subseteq graph(f) \subseteq graph(f) graph(f) \subseteq gra$$

 $X \subseteq [S \longrightarrow T]$ is directed iff for any finite $F \subseteq X$, F has a UB in X

Let $X \subseteq S \longrightarrow T$, $F \subset X$ with F finite. Let $f \in F = \{(x_1, f(x_1)), ..., (x_n, f(x_n))\}$

We want $g: S \to T$ such that g(x) = f(x) if $\exists f \in X$ such that f(x) is defined

Lemma I: if $f_1, f_2 \in X$ and $f_1(x) \& f_2(x)$ are defined, then $f_1(x) = f_2(x)$

Proof: $\{f_1, f_2\}$ is a finite subset of X, therefore it has an UB in X, i.e. $\exists f_3$ such that $f_1 \sqsubseteq f_3$ and $f_2 \sqsubseteq f_3$. So $f_1(x) = f_3(x)$ and $f_2(x) = f_3(x)$

This all means that:

 $S \dashrightarrow T$ is a CPO

Definition: Let $f : D \to E$ where $D \equiv (D, \sqsubseteq_D)$ and $E \equiv (E, \sqsubseteq_E)$ The function f is **monotone** iff $\forall d, d'$, if $d \sqsubseteq_D d'$ then $f(d) \sqsubseteq_E f(d')$

Lemma (Exchange):

Let D & D' be CPOs, $P \subseteq D \& Q \subseteq D'$ be directed, and D'' be any *poset*. Let $f : D \times D \to D''$ be monotone, then:

$$\bigsqcup_{x \in P} \bigsqcup_{y \in Q} f(x, y) = \bigsqcup_{y \in Q} \bigsqcup_{x \in P} f(x, y)$$

Proof: Must show that:

$$\bigsqcup_{x \in P} \bigsqcup_{y \in Q} f(x, y) \sqsubseteq \bigsqcup_{y \in Q} \bigsqcup_{x \in P} f(x, y) \quad \text{and} \quad \bigsqcup_{y \in Q} \bigsqcup_{x \in P} f(x, y) \sqsubseteq \bigsqcup_{x \in P} \bigsqcup_{y \in Q} f(x, y)$$

First, $\bigsqcup_{x \in P}$ is a LUB, so it suffices to show that

$$\bigsqcup_{y \in Q} \bigsqcup_{x \in P} f(x, y) \text{ is an upper-bound for } \{\bigsqcup_{y \in Q} f(x, y) \mid x \in P\}$$

So it remains to show that for any $x \in P$

$$\bigsqcup_{y \in Q} f(x,y) \sqsubseteq \bigsqcup_{y \in Q} \bigsqcup_{x \in P} f(x,y)$$

From there it remains to show that for any $y \in Q$

$$f(x,y) \sqsubseteq \bigsqcup_{y \in Q} \bigsqcup_{x \in P} f(x,y)$$

which is obvious since f is *monotone* Options:

(1) ... if these LUBs exist ...

(2) ... let D'' be a CPO, then these LUBs exist ...

Lemma (Diagonal):

Let $D \And D'$ be CPOs, $P \subseteq D$ be directed, and $f: D \times D \to D'$ be monotone then:

$$\bigsqcup_{x \in P} \bigsqcup_{y \in P} f(x, y) = \bigsqcup_{x \in P} f(x, x)$$

Proof: Homework Excercize #5

There are more notes here from the discussion the day after...

Definition: a function $f: D \to E$ where D & E are *pointed-CPOs* is **strict** iff it is *bottom-preserving*.

Definition: a function $f : D \to E$ where D & E are *CPOs* is **continuous** iff $\forall X \subseteq D$ where X is directed, $f(\bigsqcup X) = \bigsqcup_{x \in X} f(x)$.

This leads to the following properties:

(1) If f is continuous, then f is monotone (continuity \Rightarrow monotonicity) Let $X = \{a, b\}$ where $a \sqsubseteq b$. Then X is directed. Therefore $f(\bigsqcup X) = \bigsqcup \{f(x) \mid x \in X\}$, So

 $f(b) = \bigsqcup \{ f(a), f(b) \}, \text{ therefore } f(a) \sqsubseteq f(b)$

- (2) If f is monotone and D is finite, then f is continuous
- (3) If f is monotone and D has no infinite-increasing-chains, then f is continuous
- (4) f is monotone $\neq f$ is continuous Example:

 $f: \omega^{\top} \to \mathbf{O}$ with $f(\top) = \top$ and $f(n) = \bot$

$$\bigsqcup_{x \in X} f(x) = \bot \quad \text{and} \quad f(\bigsqcup_{x \in X} x) = \top$$

f is not *continuous* since $\bigsqcup f(x) \neq f(\bigsqcup x)$

Lemma: If $f: D \to E$ is continuous and $X \subseteq D$ is directed, then

$$\bigsqcup_{x \in X} f(x) \sqsubseteq f(\bigsqcup_{x \in X} x)$$

Proof: For any $x_0 \in X$, $x_0 \sqsubseteq \bigsqcup X$, since f is monotone, $f(x_0) \sqsubseteq \bigsqcup f(x)$ This is true for all $x_0 \in X$, so $\bigsqcup f(x)$ is an UB for $\{f(x) \mid x \in X\}$ and is *least*

Claim: If $f: D \to E$ and $g: E \to F$ are *continuous* then $(g \circ f): D \to F$ is *continuous*

Proof: Must show that:

$$(g \circ f)(\bigsqcup_{x \in X} x) \sqsubseteq \bigsqcup_{x \in X} (g \circ f)(x)$$

Since X is directed, so is $\{f(x) \mid x \in X\}$ by the above Lemma. $g(f(\bigsqcup X)) = g(\bigsqcup \{f(x) \mid x \in X\})$: by continuity of f $= \bigsqcup \{g(f(x)) \mid x \in X\}$: by continuity of g $= \bigsqcup (g \circ f)(x)$ **Definition**: $[D \to E]$ is the set of all *continuous* functions from $D \to E$ such that

$$f \sqsubseteq_{D \to E} g$$
 iff $\forall d \in D. f(d) \sqsubseteq_E g(d)$

For some S and T

 $S \longrightarrow T$ is a partial-function-order $S \to T_{\perp}$ is a one to one correspondence by replacing undefined by \perp

Let $\varphi : (S \to T_{\perp}) \to (S \to T)$ be a function which converts a (total?) function from $S \to T_{\perp}$ to the corresponding partial function, such that $\varphi(f) = g$ where:

g(x) is undefined if $f(x) = \bot$ g(x) = f(x) otherwise

Claim: $f \sqsubseteq_{S \to T_{\perp}} g$ iff $\varphi(f) \sqsubseteq \varphi(g)$

Proof: $\forall s \in S.$ $(f(s) \sqsubseteq_{T_{\perp}} g(s)) \iff f(s) = g(s) \lor f(s) = \bot$ So, either $\varphi(f(s)) = g(s)$ or $\varphi(f(s))$ is undefined

Property: $[D \to E]$ is a CPO Let $P \subseteq [D \to E]$ be *directed* Define $g: D \to E$ such that $g(x) = \bigsqcup \{ f(x) \mid f \in P \}$

Claim: $g = \bigsqcup P$

Proof: We must show that: (1) g is *continuous*,

(1) $\forall f \in P. f \sqsubseteq g$, and

(3) $\forall f' \in ub(P). f' \sqsubseteq g$

?? I'm not sure where this section fits, my notes might be out of order...

Claim: If P is directed then $Q = \{ f(d) \mid f \in P \}$ is directed

Proof: Let $f_1, f_2 \in P$ with $f_1(d), f_2(d) \in Q$ If $f_1, f_2 \in P$ then that share an UB, say $f_3 \in P$ therefore $f_1(d)$ and $f_2(d)$ have an UB, $f_3(d) \in Q$.

So, Q is *directed* and g (from above?) is defined.

Let $Q \subseteq D$ be *directed*. We want to show that:

$$g(\bigsqcup_{x\in Q} x) = \bigsqcup_{x\in Q} g(x)$$

So:

$$\begin{split} g(\bigsqcup_{x \in Q} x) &= \bigsqcup_{f \in P} \left(f(\bigsqcup_{x \in Q} x) \right) & \text{ by definition of } g \\ &= \bigsqcup_{f \in P} \left(\bigsqcup_{x \in Q} f(x) \right) & \text{ since } f \text{ is continuous} \\ &= \bigsqcup_{x \in Q} \left(\bigsqcup_{f \in P} f(x) \right) & \text{ by the Exchange lemma} \end{split}$$

Reminder:

Continuous $\equiv f(\bigsqcup X) = \bigsqcup_{x \in X} f(x)$ - $\lambda x.x$ is continuous $-D \rightarrow E, \{(d, e_0) \mid d \in D\}$ is continuous $-E \rightarrow [D \rightarrow E]$ for any D, E is continuous

Definition: $K_{d,e} = \lambda e . \lambda d . e$

If $X \subseteq E$ is *directed* then:

$$K(\bigsqcup X) = \bigsqcup_{e \in X} K(e) = \bigsqcup_{e \in X} (\lambda d.e)$$
$$\bigsqcup_{e \in X} K(e)(d) = \bigsqcup_{e \in X} (e) = \bigsqcup X$$
$$\bigsqcup_{e \in X} \lambda e.\lambda d.e = \bigsqcup_{e \in X} (e) = \bigsqcup X$$

Definition: S(f)(g)(x) = (f(x))(g(x))x:D

 $g:D\to E$ $f: D \to [E \to F]$ $S: [[D \to [E \to F]] \to [D \to E] \to D] \to F$

Claim: S is continuous

Proof: Homework Excercize #6

Must show that if f & q are *continuous* then F is (*continuous*?) - Requires three results...

$$\begin{split} S: [[[D \Rightarrow [D \Rightarrow F]] \Rightarrow [D \Rightarrow E] \Rightarrow D] \Rightarrow F] \\ K: [D \Rightarrow [D \Rightarrow E]] \end{split}$$

Application:

$$\frac{D \Rightarrow E}{E}$$

These are complete for propositional logic of *pure-implication*

Definition: Terms $t ::= x \mid K \mid S \mid (t_1 \ t_2)$ $S = \lambda f. \lambda g. \lambda x. ((f \ x)(g \ x))$ $K = \lambda x . \lambda y . x$

Claim: Any lambda expression is equivalent to some combinatory term [e]

(1) $\lceil x \rceil = x$ $(2) [e_1 \ e_2] = ([e_1] \ [e_2])$ (3) $\lceil \lambda x.e \rceil = [x](\lceil e \rceil)$ where [x] is an operator on combinatory terms: (*Curry* bracket abstraction) [x]x = ((S K) K) x[x]t = (K t) $[x](t_1 \ t_2) = S([x]t_1)([x]t_2) = \lambda x.(([x]t_1)([x]t_1)) = \lambda x.(t_1 \ t_2)$

Conclusion... continuous functions are closed under composition