
Definition: a partial order (sometimes called a partially ordered set or poset) is a pair, (D,v) where:
D is a set and
v is a reflexive, transitive, and anti-symetric relation such that:

∀x. x v x
∀x, y, z. (x v y) ∧ (y v z) ⇒ (x v z)
∀xy. (x v y) ∧ (y v x) ⇒ (x = y)

Definition: Let X be a subset of D, then:
d ∈ D is an upper-bound (or UB) for X iff ∀x ∈ X. (x v d)

c d

a b

c is an upper-bound for {a, b, c} and
c & d are both upper-bounds for {a, b}
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Definition: d is a least-upper-bound (or LUB) for X iff:
(1) d is an upper-bound for X and
(2) if d′ is any upper-bound for X then d v d′

Property: if d & d′ are both LUBs of X then d = d′

Proof: Since d and d′ are LUBs of X, (d v d′) and (d′ v d), (d = d′) by anti-symetry of v
- If v is not anti-symetric we call it a pre-order
- We write

⊔
X for the least-upper-bound of X, if it exists

What kinds of sets have LUBs ?
(1) no restrition: (poset)
(2) Every finite subset has a LUB (lattice)
(3) Every subset has a LUB (complete lattice)

Somewhere between 1 & 2 is our interesting class of sets

Definition: Given a poset (D,v), X ⊆ D is directed iff every finite set F ⊆ X has an upper-bound in X

c d

a b

directed not directed
{a, c} {a, b}
{a, b, c} {a, b, c, d}
singleton sets
pairs of v�
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Definition: a complete-partial-order (CPO) is a poset where every directed subset has a LUB .

Definition: a pointed-CPO is a CPO with a least-element, usually bottom, (⊥)

Any finite PO is a CPO since any directed set X is finite, choose F = X so X has an upper-bound in X, that
must be the LUB .
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Interesting posets:
Singleton: {·}, 1, or U

2 element:
⊥

>aa or O

3 element:

⊥

true falsea aa ZZZ �
�� , B, or T

ω> : (N ∪ {>})

If A is any set then 〈P(A),⊆〉 is a CPO
X ⊆ P(A),

⊔
X =

⋃
X

If A is any set then 〈A, {(x, y) | x = y}〉 is a CPO (but not pointed)
but, 〈A ∪ {⊥}, {(x, y) | (x = y) ∨ (x = ⊥)}〉 is

—————————————————————————————————————–

Definition: Products of Posets
(D,vD)× (E,vE) = (D × E,vD×E)

where
(d, e) vD×E (d′, e′) iff (d vD) ∧ (e vE e′)

If P ⊆ D × E is directed then P has a LUB

Claim: Let P be directed, P1 = {x | ∃y.(x, y) ∈ P} and P2 = {y | ∃y.(x, y) ∈ P},
then P1 & P2 are directed

Proof: if {x1, ..., xn} ∈ P1 and {y1, ..., yn} ∈ P2 such that {(x1, y1), ..., (xn, yn)} ⊆ P then
by the definition of vP1×P2 , since P is directed so are P1 and P2

Partial Functions

If S and T are sets then S −→◦ T defines the set of partial-functions from S to T
f v g iff ∀x ∈ S, if f(x) is defined then so is g(x), and f(x) = g(x)

Alternatively:
graph(f) = {(x, y) | x ∈ S ∧ y = f(x)}, then f v g iff graph(f) ⊆ graph(f)

X ⊆ [S −→◦ T ] is directed iff for any finite F ⊆ X, F has a UB in X

Let X ⊆ S −→◦ T , F ⊂ X with F finite.
Let f ∈ F = {(x1, f(x1)), ..., (xn, f(xn))}

We want g : S → T such that g(x) = f(x) if ∃f ∈ X such that f(x) is defined

Lemma I: if f1, f2 ∈ X and f1(x) & f2(x) are defined, then f1(x) = f2(x)

Proof: {f1, f2} is a finite subset of X, therefore it has an UB in X,
i.e. ∃f3 such that f1 v f3 and f2 v f3. So f1(x) = f3(x) and f2(x) = f3(x)

This all means that:

S −→◦ T is a CPO
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Definition: Let f : D → E where D ≡ (D,vD) and E ≡ (E,vE)
The function f is monotone iff ∀d, d′, if d vD d′ then f(d) vE f(d′)

Lemma (Exchange):
Let D & D′ be CPOs, P ⊆ D & Q ⊆ D′ be directed, and D′′ be any poset.
Let f : D ×D → D′′ be monotone, then:⊔

x∈P

⊔
y∈Q

f(x, y) =
⊔
y∈Q

⊔
x∈P

f(x, y)

Proof: Must show that:⊔
x∈P

⊔
y∈Q

f(x, y) v
⊔
y∈Q

⊔
x∈P

f(x, y) and
⊔
y∈Q

⊔
x∈P

f(x, y) v
⊔
x∈P

⊔
y∈Q

f(x, y)

First,
⊔
x∈P is a LUB , so it suffices to show that⊔

y∈Q

⊔
x∈P

f(x, y) is an upper-bound for {
⊔
y∈Q

f(x, y) | x ∈ P}

So it remains to show that for any x ∈ P ⊔
y∈Q

f(x, y) v
⊔
y∈Q

⊔
x∈P

f(x, y)

From there it remains to show that for any y ∈ Q

f(x, y) v
⊔
y∈Q

⊔
x∈P

f(x, y)

which is obvious since f is monotone
Options:

(1) ... if these LUBs exist ...
(2) ... let D′′ be a CPO, then these LUBs exist ...

—————————————————————————————————————–

Lemma (Diagonal):
Let D & D′ be CPOs, P ⊆ D be directed, and f : D ×D → D′ be monotone
then: ⊔

x∈P

⊔
y∈P

f(x, y) =
⊔
x∈P

f(x, x)

Proof: Homework Excercize #5

There are more notes here from the discussion the day after...

—————————————————————————————————————–

Definition: a function f : D → E where D & E are pointed-CPOs is strict iff it is bottom-preserving.

Definition: a function f : D → E where D & E are CPOs is continuous iff
∀X ⊆ D where X is directed, f(

⊔
X) =

⊔
x∈X f(x).
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This leads to the following properties:
(1) If f is continuous, then f is monotone (continuity ⇒ monotonicity)

Let X = {a, b} where a v b. Then X is directed.
Therefore f(

⊔
X) =

⊔
{f(x) | x ∈ X}, So

f(b) =
⊔
{f(a), f(b)}, therefore f(a) v f(b)

(2) If f is monotone and D is finite, then f is continuous
(3) If f is monotone and D has no infinite-increasing-chains, then f is continuous
(4) f is monotone 6⇒ f is continuous

Example:
f : ω> → O with f(>) = > and f(n) = ⊥⊔

x∈X
f(x) = ⊥ and f(

⊔
x∈X

x) = >

f is not continuous since
⊔
f(x) 6= f(

⊔
x)

Lemma: If f : D → E is continuous and X ⊆ D is directed, then⊔
x∈X

f(x) v f(
⊔
x∈X

x)

Proof: For any x0 ∈ X, x0 v
⊔
X, since f is monotone, f(x0) v

⊔
f(x)

This is true for all x0 ∈ X, so
⊔
f(x) is an UB for {f(x) | x ∈ X} and is least

Claim: If f : D → E and g : E → F are continuous then (g ◦ f) : D → F is continuous

Proof: Must show that:
(g ◦ f)(

⊔
x∈X

x) v
⊔
x∈X

(g ◦ f)(x)

Since X is directed, so is {f(x) | x ∈ X} by the above Lemma.
g(f(

⊔
X)) = g(

⊔
{ f(x) | x ∈ X}) : by continuity of f

=
⊔
{ g(f(x)) | x ∈ X} : by continuity of g

=
⊔

(g ◦ f)(x)
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Definition: [D → E] is the set of all continuous functions from D → E such that

f vD→E g iff ∀d ∈ D. f(d) vE g(d)

For some S and T

S −→◦ T is a partial-function-order
S → T⊥ is a one to one correspondence by replacing undefined by ⊥

Let ϕ : (S → T⊥)→ (S −→◦ T ) be a function which converts a (total?) function from S → T⊥ to the
corresponding partial function, such that ϕ(f) = g where:

g(x) is undefined if f(x) = ⊥
g(x) = f(x) otherwise

Claim: f vS→T⊥ g iff ϕ(f) v ϕ(g)

Proof: ∀s ∈ S. (f(s) vT⊥ g(s)) ⇐⇒ f(s) = g(s) ∨ f(s) = ⊥
So, either ϕ(f(s)) = g(s) or ϕ(f(s)) is undefined

Property: [D → E] is a CPO
Let P ⊆ [D → E] be directed
Define g : D → E such that g(x) =

⊔
{ f(x) | f ∈ P}

Claim: g =
⊔
P

Proof: We must show that:
(1) g is continuous,
(2) ∀f ∈ P. f v g, and
(3) ∀f ′ ∈ ub(P ). f ′ v g

—————————————————————————————————————–
?? I’m not sure where this section fits, my notes might be out of order...

Claim: If P is directed then Q = { f(d) | f ∈ P} is directed

Proof: Let f1, f2 ∈ P with f1(d), f2(d) ∈ Q
If f1, f2 ∈ P then that share an UB, say f3 ∈ P therefore f1(d) and f2(d) have an UB, f3(d) ∈ Q.

So, Q is directed and g (from above?) is defined.

Let Q ⊆ D be directed. We want to show that:

g(
⊔
x∈Q

x) =
⊔
x∈Q

g(x)

So:

g(
⊔
x∈Q

x) =
⊔
f∈P

(
f(
⊔
x∈Q

x)
)

by definition of g

=
⊔
f∈P

( ⊔
x∈Q

f(x)
)

since f is continuous

=
⊔
x∈Q

( ⊔
f∈P

f(x)
)

by the Exchange lemma

5



Reminder:

Continuous ≡ f(
⊔
X) =

⊔
x∈X f(x)

- λx.x is continuous
- D → E, {(d, e0) | d ∈ D} is continuous
- E → [D → E] for any D,E is continuous

Definition: Kd,e = λe.λd.e

If X ⊆ E is directed then:

K(
⊔
X) =

⊔
e∈X

K(e) =
⊔
e∈X

(λd.e)⊔
e∈X

K(e)(d) =
⊔
e∈X

(e) =
⊔
X⊔

e∈X
λe.λd.e =

⊔
e∈X

(e) =
⊔
X

Definition: S(f)(g)(x) = (f(x))(g(x))
x : D
g : D → E
f : D → [E → F ]
S : [[D → [E → F ]]→ [D → E]→ D]→ F

Claim: S is continuous

Proof: Homework Excercize #6

Must show that if f & g are continuous then F is (continuous ?)
- Requires three results...

S : [[[D ⇒ [D ⇒ F ]]⇒ [D ⇒ E]⇒ D]⇒ F ]
K : [D ⇒ [D ⇒ E]]

Application:
D ⇒ E D

E

These are complete for propositional logic of pure-implication
—————————————————————————————————————–

Definition: Terms
t ::= x | K | S | (t1 t2)
S = λf.λg.λx.((f x)(g x))
K = λx.λy.x

Claim: Any lambda expression is eqivalent to some combinatory term dee

(1) dxe = x
(2) de1 e2e = (de1e de2e)
(3) dλx.ee = [x](dee)
where [x] is an operator on combinatory terms: (Curry bracket abstraction)

[x]x = ((S K) K) x
[x]t = (K t)
[x](t1 t2) = S([x]t1)([x]t2) = λx.(([x]t1)([x]t1)) = λx.(t1 t2)

Conclusion... continuous functions are closed under composition
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