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Abstract

The development of complex software requires the implementa-
tion of functions over a variety of recursively defined data struc-
tures. Much of the corresponding code is not necessarily diffi-
cult, but more tedious and/or repetitive and sometimes easy to get
wrong. Data structure traversals fall into this category, particu-
larly in object-oriented languages where traversal code is spread
throughout many cooperating modules. In this paper we present a
new form of generic programming using traversals that lends it-
self to a flexible, safe, and efficient generative implementation. We

* We introduce a new form of traversal-based generic program-
ming that uses function objects to fold over structures (Sec-
tion 4). Functions are flexible, extensible, and written indepen-
dent of the traversal implementation using a variation of multi-
ple dispatch. This provides a special form of shape polymor-
phism with support for both general and specialized generic
functions (Section 5).

Our approach is supported by a class generator that consumes
a concise description of data types and produces Java classes
along with specific instances of generic functions ke se (),

print (), andequals() (Section 6). The generative frame-
work is extensible, so programmers can add their own generic
functions parametrized by datatype definitions.

describe the approach, its relation to generic and generative pro-
gramming, and our implementation and resulting performance.

Function objects (specific and generic) can be type checked
against a given data structure traversal to ensure safety (Sec-
tion 7). A number of different traversal organizations can be
generated for specific data structures including recursive, con-
text passing, and even implicitly parallel versions. Type-correct
function objects can then be inlined in generated traversals to
reach the performance of specialized, hand-written code.

1. Introduction

The development of complex software requires the implementation
of functions over a variety of recursively defined data structures.
The design (or modeling) of these structures can itself be difficult,
but complex data can lead to even more complex functions. How
much of this complexity can be handled for the programmer? Is it
inherent in the problem, or is it more dependent on our choice of
data organization or implementation language?

The programmer’s main tool for managing complexity is ab-
straction: functions abstract over values, generics (also called
bounded, or parametric polymorphism) abstracts over types, and
various forms of polytypic programming support abstraction over
the shape of data. Each of these abstractions can be considere

a different kind of (datatypepeneric programming(15), with naively can hinder performance. Our implementation provides a

many different incarnations in current programming languages. . .
In Object-Oriented (OO) Languages such as Java and C#, the firs type checker to verify safety and code generation facilities to

two forms are quite easy to realize through methods, interfaces, and:qn;ﬁ[jo_\éi drc)aedrf(r)r::eﬁtﬁggg g)\,rgre;“n\,e\,se ?g?a:ier:/ Iﬂgx?buim;) e;itgﬁgﬁ)r”ittgan
generic type parameters, but abstracting over the shape of datatypegnd efficienc ' ' '
is less conventional, and arguably not possible using typical stan- Y-
dard constructs.

In this paper we present a new approach and set of tools, col-2. Background

lectively called DemgterF, for generative, traversal-based genericye begin by thoroughly describing the problem with an interesting
programming. In particular: example. Consider the definition of an OO picture library, similar
to that discussed in (20). Figure 1 contains Java classes that form
the base of the example: the supercBsst has three subclasses
representingircles,Squares, anddffset pictures respectively.
Of course, all the code from the paper is available on the web (8).
ThePict classes are somewhat limited now, and we can fix that
soon, but first let's write a simpleoString() function, usually
referred to agoretty printing As you might have guessed, this
can be difficult in Java, especially once we separate our classes
into different files, since we must insert a new method into each
class. Figure 2 shows the inserted code with comments describing

Our contribution is a combination of approach and implemen-
tation. Traversal-based function classes support a function-centric
design, which eliminates the problems generally associated with
operation extensions in OO languages. But, functions are just
classes and are likewise extensible. This dual extension of func-
gons and data introduces flexibility that cannot be checked stati-

ally in mainstream programming languages and if implemented

[Copyright notice will appear here once "preprint’ option is removed.]
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abstract class Pict{ } class Overlay extends Pict{
Pict top, bot;

class Circle extends Pict{ Overlay (Pict t, Pict by top = t; bot = b; }
int rad;
Circle(int r){ rad =r; } String toString (X
return "Overlay ("+top.toString ()+”,"+
class Square extends Pict{ bot.toString ()+")";
int size; }
Square(nt s){ size = s;} }
C'?nsts g’xffsg;lle“e”ds Pict{ Figure 3. Overlay picture extension
Pict irymer';
Offset(int x, int y, Pict in . . .
{ dx :(X; dy = vy; );nner = in); ) of safety (casting (20)) and/or performance issues (reflectior).(28)
1 In either case we run into problems similar to those above, but is it
_ _ possible to have the best of both worlds, while remaining general,
Figure 1. Picture Class Skeletons safe, and efficient?

where each method belongs; the recursive calififiset is made 3. Our Solution
explicit, but it should otherwise be familiar. If our classes contained Our answer to this question y&s We solve these problems using

other non-primitive classes we must be sure theitring() is a traversal-based approach that encapsulates functions over a data
implemented in them as well, to avoid nonsensical outputs. structure intcfunction objectsinstances of classes that wrap a set
of methods. For our original collection of picture classes (Figure 1),
/I In Pict the function class that implementsString is shown in Figure 4.
7/b5|tnfagtircsltefi“9 toString (); To understand the computation involved, we simply neethitak

String toString (X return "Circle ("+rad+")"; } like a traversal.

/l In Square

String toString (X return "Square("+size+")"; } class ToString extends ID{
/I In Offset String combine(Circle c,int r)
String toString (X { return “Circle ("+r+”)”"; }
return "Offset("+dx+","+dy+","+ String combine (Square sjnt sz)
inner.toString ()+")"; { return "Square("+sz+")"; }
} String combine (Offset o,int dx, int dy, String in)

{ return "Offset("+dx+","+dy+","+in+")"; }

Figure 2. PicturetoString methods ) ) _
String toString (Pict p)

This simple operation extension illustrates a few issues that { return new Traversal(this). traverse(p);}

place unneeded burden on programmers. First, OO class definitions

are generally closed in Java this is especially true fdtinal Figure 4. ToString using a traversal

classes and value types, since these cannot be subclassed. This

is not necessarily a bad thing because it conserves modularity, | this case, the generfraversal (constructed in theoString

but it certainly makes programs difficult to evolve and maintain. method) walks the structure of a given picture. When the walk
Second, our function follows a very typical pattern of recursion (esches acircle or a Square, the fields are expanded and
that exactly mimics the structure of the classes involved. We should passed to the matchingombine method (Circle,int) or

be at_ale to abstract this_ pattern out, and paramgtrize_over only (Square, int) respectively). The same is done when traversing
the different and interesting parts of the computation. Finally, the an gffset, but the recursive fieldifmer) is traversecbeforea
toString function does not depend on anything intrinsic to the .. +ine method is selected and called. In this casedheing

problem, only on the the names and structures within the class ragyting from the traversal afoner is computed and passed to
hierarchy.ToString is, of course, a special case, but in general e (one and only) matchir@f £set method.

there are many functions that can be written directly from datatype = This is similar to generalized folds (29) with an object oriented

descriptions, without the need for programmer specialization. To fayor. The base class for function classes in DemeterB,ishich

our knowledge, such forms of generic and meta programming have ¢ontainscombine methods for Java’s primitive types. The benefit

not previously been thoroughly explored in OO languages such as uf fynction classes is that extending user defined function classes is

Java. . no different than extending data types: when our picture classes are
This can'’t be the whole story though, because OO programmers gyiended wittDverlay, we simply subclasSoString to handle

rely on extensible data structures: adding cooperating function- \he new case. The resulting extension is shown in Figure 5.
s/methods to a collection of classes may be difficult, but adding a

new subclass to extend our data types is relatively easy. To demon- class ToStringOverlay extends ToString{
strate we can ad_d anew picture subclass that allows us to represent String combine ( ngrlay o, String t. String b)
compositions. Figure 3 contains a new cldsssrlay, that repre- { return "Overlay ("+t+" "+b+")"; }
sents a simple overlaying of two pictures.

This brings us to a crossroads: if we use the function-centric ap-
proach (like visitors), then adding to our data types is difficult, but Figure 5. ToString extended foOverlay
if we use a data-centric (OO) approach then adding functions is dif-

ficult. Many abandon the function centric approach due to its lack ~ Perhaps a better way of creating this particular function is to
describe the structure of our picture classes, and use it generate the

1We saygenerallybecause open classes are available in some dynamic and function automatically. DemeterF accepts a textual representation
hybrid OO languages including MultiJava (12) and Ruby (3). of the class structures callectkass dictionary(CD), which looks
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like a mix of BNF and algebraic data types in Haskell (26). The CD 4.1 Functions to Traversals

for ourPict classes appears in Figure 6. Going back to ouPict structures, let's write a slightly simpler
function over pictures that counts the numbeKCofcles it con-

/I pict.cd: class dictionary for pictures tains; the hand-coded methods are shown in Figure 8.
Pict = Circle | Square | Offset | Overlay.
Circle =<rad> int.
Square =<size> int. // In Pict
Offset =<dx> int <dy> int <inner> Pict. abstract int circles ();
Overlay=<top> Pict <bot> Pict. /I In Circle
- int circles(){ return 1; }
Figure 6. CD for Pict classes /I In Square

int circles (){ return 0; }
. . . . /1 In Offset
Our abstract clasBict is described by a list of variants sep- int circles (){ return inner.circles();}

arated by bars|(, while concrete classes list their field names /I In Overlay _ _

(in brackets) and typésThe CD can also include concrete syn- int circles (}{ return top.circles()+bot.circles ();}
tax strings for printing and parsing, but with our CD in hand, we
can generate the necessapString functionality with a call to
DemeterF:

Figure 8. Picturecircles methods

We can think of this function as implementing straight-forward
structural recursion: at each point where the structure is recursive

The code generated fawString is almost exactly the same as thg function is also recursiye. Similar to folds, typical funqtional
what we wrote by hand, but it can be generatedsioy data struc- visitor approaches (6; 13) implement this sort of computation us-
ture described by a CD. We also get other functions for free, like iNd methods that essentially replace the constructors of concrete
parse() and hashCode, but the most important generic func-  Variants. If we added the correct scaffolding for picture visitors, the
tion is traversal itself. Because we've written dwString func- function would look something like Figure 9.

tion without explicit traversal, we can use the picture CD together
with theToString class definition to produce a specializetined

>}, java DemeterF pict.cd --dgp:ToString

class CircsVis extends Visitor<integer>{

traver.sal' Integer visit(Circle c){ return 1; }
Using our type checker we calculate the return value of each Integer visit(Square s return 0; }

traversal and produce code that traverses the each of the classes, Integer visit(Offset o)

calling the appropriateombine methods. In many instances our { return o.inner.accept(this); }

Integer visit(Overlay o)

inlined code can actually perforbetterthan hand-written instance { return o.top.accept( this)+o.bot.accept(this): }

methods. Figure 7 gives average performance numbers of three
different implementations ofoString run 10 times on a very
largePict instance with over 5000 nodes. The firstis the DemeterF Figure 9. A visitor implementation otircles
inlined version; the second is hand-coded methods directly from
Figure 2; and the final one is a hand-written visitor using double-
dispatch, for comparison.

In order to abstract out the traversal, in DemeterF place the
recursive (sub-)traversal results from the object’s fields after the
original object itself. This allows theombine method selection

Type | Average Time to be uniform, with a variant of multiple dispatch. The DemeterF
INLINED 48 ms implementation of circles is shown in Figure 10.

HAND 49 ms
VISITOR 54 ms

. . . - class CircsDemF extends ID{
Figure 7. Performance of variouBoString implementations int combing(Circle c, int rad){ return 1; }

int combing Square s,int siz){ return 0; }
int combing Offset o, int x, int y, int inCs)

In the rest of this paper we provide the details of our traversal- { return inCs; }
based approach, and how generic and generative programming fit int combing Overlay o, int topCs, int botCs)
in to provide flexibility, extensibility, and performance. ) { return topCs+botCs;}
4. Traversals and Computation Figure 10. circles DemeterF implementation

The traversal of data structures can be thought of simply as

a higher-order function; a function that takes a function as an  The hand-coded, visitor, and DemeterF functions all look sim-
argument. In functional languages, such as Scheme (19) andilar, the major difference being that in the DemeterF case the re-
Haskell (18), lists are central data structures. These languages procursion is implicitly done for us: the arguments to the combine
vide several useful abstractions for processing lists, fikgdr, methods have already been traversetbrethe combine method is
map, etc. Traversal is one such function that generalizes to other called. Moreover, the interesting computation involved is precisely
kinds of data structures, and can be used to implement both spe-encapsulated in our function class, with boilerplate code left to the

cific functions (likeprint) and generic functions, likéoldr. In traversal implementation. Creating creating new, or extending ex-
this section we provide a background and overview of our traversal isting, functions over the data structures is rather simple. For exam-
approach as a basis for writing other functions. ple, consider implementing a new functiasquares that counts

the number oBquares in a given picture; the DemeterF version
2In fact, a CD can describe any Java class hierarchy, thoughvevet is shown in Figure 11. Since our computation is succinctly written,
discuss all the features in this paper. the abstract traversal provides a platform for reuse.
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class Squaresextends CircsDemK class TopMost extends ID{

int combing Circle ¢, int rad){ return 0; } Pict combing Pict p, int i){ return p; }
int combingSquare s,int siz){ return 1; } Pict combing Offset o, int x, int y, Pict in)
} { return topMost(in); }
Pict combing Overlay o, Pict top, Pict bot)
Figure 11. squares implementation usingircsDemF { return topMost(top); }

Pict topMost(Pict s
return Traversal.onestefthis).traverse(s);

4.2 Traversal )
The idea of abstraction is to eliminate similarities by parametrizing 4
over only what is different. When abstracting the traversal from
computation we use a depth-first traversal approach that treats all
values as objects.e., primitives are treated as objects without any
fields. Assuming similar implementations for each of our types,
the basic traversal strategy is illustrated with a simple method for mutation in order to communicate values between different calls.

Figure 12. TopMost using aonestep Traversal

Overlay: In DemeterF we have designed our traversal approach to eliminate
D func: side-effects in order to make programs clear and simple to optimize,
<Ret,P> Ret traverse(Overlay o) but this limits the communication of context sensitive (top-down)

P top = traverse(o.top); information over a structure. To facilitate the passing and updating
P bot = traverse(o.bot); of information from a parent to a child, DemeterF supports the idea

return func.combingo, top, bot); of atraversal contextThe initial (root) context is given by passing

an extra argument to theraverse method and the traversal auto-
This method cannot, in general, be implicitly type checked by matically passes the context around. The function object can then
Java, but it shows our interpretation of structural recursion: each useupdate methods to modify the context for children/fields of an
field is traversed in turn, and the results are passed (along with object being traversed.

the originally traversed object) to the function object@mbine For example, if we attempt to generate a visual representation
method. The type parametefe€, P) signify that the traversal of  of a Pict object, we notice that information gets lost during the
different types may return different results. Here bodp andbot generic traversal; apffset instance contains all the positioning
arePicts, so their traversals must return a unified type. information for its children. Using traversal contexts we can easily

The situation is exactly the same for primitive types and user encapsulate this information into a drawing context. A sintale
defined classes without fields: the traversal simply delegates to theclass representation is shown in Figure 13.
function object, since there are no other fields to traverse.

<Ret> Ret traverse(int i){

return func.combing(i); class Ctx{
} int x,y;
] _ . Ctx(int xx, int yy){ x = xx; y = vyy; }
Though theseraverse methods illustrate our point, in DemeterF Ctx move(int dx, int dy)
the combine method chosen by the traversal is based on the dy- { return new Ctx(x+dx, y+dy); }
namic types of all arguments, including the function object itself. }

Since Java is a single dispatch language, the function object dis-
patch and type checking become slightly more involved. We will
get back to these when we discuss type checking and inlining in

Section 7. To show the power of contexts, we'll implement a function
o to convert aPict into a Scalable Vector GraphicéSVG) string.
4.3 Traversal Flexibility SVG is a popular XML format for representri)ng g/sisua)l elem%nts,
Though a traversal that implements structural recursion everywherewhich is very portable and simple to generate. Figure 14 shows
throughout an object is very useful, sometimes other strategiesa function class that implements tiéct conversion to SVG
are needed. One that is particularly usefubigestep (21). In using our drawing contexttx. TheSVG class encapsulates static
DemeterF we provide other types of control (not discussed here) methods that create the SVG specific formatting. The first four
of which the onestep traversal is a special case. This allows combine methods are very similar to what we have written before,
programmers to efficiently implement a traversal style closer to except that the methods f@ircle and Square include a third
hand-coded recursion. Figure 12 shows a function class that returnsparameter of typetx.
the topmost primitive pictureCircle or Square) in a givenPict When thetraverse method is called we pass an extra argu-
Instance. ment that becomes our root context pointing to the center of the
Rather than letting the traversal completely control our path canvas(w/2, h/2). Before recursively traversing the fields of an
through a picture, we can control the recursion ourselves, one steppssset, the traversal will call a matchingpdate method to pro-
atatime, similar to a classic visitor solutidfraversal . onestep () duce a new context. In this case, the update method's second pa-
returns a traversal that steps into an object and passes its fields tGameter typeFields.any, corresponds to a DemeterF class rep-
the function object's matching combine method. The multiple dis- resenting all fields; more complex useswfdate methods will
patch also gives use the added benefit of being able to abstrache discussed in Section 6, where we generate representative field
over multiple method cases. Here the circle and square methodsclasses for each class.
are abstracted into a singtembine overPict. The signature of thepdate method can be read aBefore
traversing any field of anffset, compute a new context from the
4.4 Contexts parent’s In this case wenove the context to include the current
Traditional visitors (14) employoid visit methods to encapsu-  0ffset. If no matchingupdate method is found, then the parent’s
late computations over structures, which forces programmers to usecontext is passed recursively to each child traversal unchanged.

Figure 13. Drawing context offset
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class ToSVG extends ID{

String combing Circle c, int r, Ctx ctx)

{ return SVG.circle(ctx.x, ctx.y, r);}

String combing Square s,int sz, Ctx ctx)

{ return SVG.square(ctx.x, ctx.y, sz);}

String combineg Offset o, int dx, int dy, String in)
{ return in; }

String combing Overlay o, String t, String b)

{ return t+b; }

Ctx update(Offset off,
{ return c.move(off.dx,

Fields .any f,
off .dy); }

int h){

Ctx c)

String toSVG(Pict p,int w,
return SVG. head (w,h)+
new Traversal(this)
.traverse(p, new Ctx(w/2,h/2))+
SVG. foot ();

Figure 14. Pict to SVG format using a traversal context

5. Generic Programming

Now that we have a handle on the programming style of DemeterF,
we can delve into the details of the more generic forms of traversal-
based programming. We call the programming style of DemeterF

that sums the resulting counts. The final method describes the
interesting part of the structur@jrcle, where we return a 1.

class CircsTU extends TU<Integer>{
Integer combing){ return 0; }
Integer fold(Integer a, Integer K)return a+b; }

Integer combing Circle c){ return 1; }

}

Figure 16. Genericcircles count usingru

In our experienceTu is most useful for computations that col-
lect information over a complex data structure, which usually in-
volves some form of library structures to collect instances. Fig-
ure 17 shows a typical use @ff with DemeterFLists to collect
results over a generic structure. Note that we use DemeterF func-
tional (immutable)Lists, soappend returns a nevtist instance.

class ListTU<X> extends TU<List<X>>{
List<X> combing){ return List.create(); }
List<X> fold (List<X> a, List<X> b)
{ return a.append(b);}

}

Figure 17. Typical TU collection intoLists

genericbecause it generalizes the shape of the data types being

traversed: functions do not rely on the specific types of fields, but
on the return types of the traversal of those figlé®r instance, in
theToString function class (Figure 4), the traversal of an instance
of a concret@®ict class returns &tring. Our function class relies

on this, and the fact that the traversal of an integer will return an
integer.

Abstracting from the typical uses of function classes leads us
to two general cases: those which dype unifying and those
that aretype preserving sometimes referred to agueriesand
transformationg21). The first category contains functions similar
to ToString andCircs, where each sub-traversal returns the same
type, with recursive results combined using the same funatigp,
String or int combined usingt-. The second category contains
certain kinds of transformations and functional updates, where we

change interesting parts of the data structure and reconstruct the

rest.

5.1 Type-Unifying Functions

To support generic type-unifying traversals in DemeterF we pro-
vide a special function class that abstracts computation using two
methods: a no argumerbmbine method that provides a default
case, and a two argumefdld method that is used to fold together
multiple results into a single value. The skeleton of Tieclass is
shown in Figure 15.

abstract class TU<X> extends ID{
abstract X combine();
abstract X fold(X a, X b);

X traverse(Object o)} /x

}

C o« )

Figure 15. Abstract class for type-unifying computations

How can we use this class? Figure 16 contains a new definition
of our CircsDenF function class (from Figure 10) that counts the
CirclesinaPict. The first two methods implement our necessary
abstract methods afu, providing a defaultombine, and afold

3You could say our function objects anear-sighted

5.2 Type-Preserving Functions

While TU functions collect various results of a single type together,
type-preserving functions perform recursivansformationsover

a data structure. The basic idea is easily demonstrated by writing a
copyfunction class foPicts, shown in Figure 18.

class Copy extends ID{
Circle combing Circle c, int r)
{ return new Circle(r); }
Square combing Square s,int sz)
{ return new Square(sz);}

Offset combing Offset o, int dx, int dy, Pict in)
{ return new Offset(dx,dy,in); }
Overlay combing Overlay o, Pict t, Pict b)

{ return new Overlay(t,b); }

}

Figure 18. Copy function class foPicts

We write a combine method for eaBhict subclass, which takes
parameters with the same types as its fields and constructs a new in
stance with the recursive results. Whilepy is specific toPicts,
the completely generic version of this function is implemented in
the DemeterF clasBc (the building constructoy. When imple-
menting transformations we can extend the generic function with
specific combine methods; Figure 19 shows a function class that
scales a picture by a given factor. This function class is completely
generic and applicable emydata structure, though sometimes this
kind of function can be too general. It is usually a good idea to
somehow restrict its use, in this case we only apply itiots to
preserve its “scale” meaning.

The benefit here is that we mention as little of our structure as
possible; we only need to write methods for the interesting parts to
be transformed. As another example, Figure 20 shows a function
class that converts all thetircles inPict instance intquares
of the same size. We only refer to the classes to be transformed,
namely thatCircle contains anint radius, or more precisely,
something for which our traversal will return ant.

As a finalBc example, Figure 21 shows a function class that
reverses the top to bottom ordering df&ct instance. This exam-
ple emphasizes the fact that the arguments passed to the combine
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6.2 Special Cases

class Scale extends Bc{
int scl; o A few structure-based methods deserve special cases within our
isncta'fo('r:émiﬁnfci'){" fe’tu}m fescl: ) class generator, mainly because they are not easy to write generi-

' cally, or they require the traversal of more than one data structure si-

Pict scale(Pict p) _ multaneously. For instance, the class generator introduces a canon-
{ return new Traversal(this).traverse(p); } ical equals (Object) method into each concrete class, which im-
} plements deep (extensional) equality. The method generated for our

Overlay class is shown in Figure 22. Although equality could be
implemented using our traversal library, it remains a special case to
enhance both performance and code clarity.

Figure 19. Scale transformation foPicts

class Circ2Sqr extends Bc{

Square combing Circle ¢, int rad) /«x 1s the given object Equal to this Overlay?®/
{ return new Square(rad2); } public boolean equals(Object of
} if (o == this)return true ;

if (!(o instanceof Overlay))return false;
Overlay oo = (Overlay)o;
return (top.equals(oo.top) & bot.equals(oo.bot));

Figure 20. Convert circles into squares

}
method are the recursive results of our function object over the Figure 22. Generategquals method foroverlay
traversal; thet andb arguments have already beEhiped once
our combine is called. The other special case of the generatofiéd classeswhich
are used represent fields, used with update methods. Inner class
class Flip extends Bc{ definitions are added to the generated classes, and are passed to
Overlay combing Overlay o, Pict t, Pict b) matching update methods prior to the traversal of the corresponding
{ return new Overlay(b, t); } field. For example, the field classes generatedferlay would
} be:
Figure 21. Reverse top to bottomict ordering static class top extends Field.any}

static class bot extends Field.any}

which allows us to use the tyferlay. top in update methods to
6. Generative Programming change the context only for thep field. We will see an example

L . . use in Section 8.4.
Specialized versions of the completely generic Demelesversal,

TU, andBc classes depend only on the specific structures involved. 6.3 DGP Functions
In our library these classes are implemented using reflection, which
severely inhibits performance. The key to overcoming this limita-
tion is the idea that dynamic structural reflection can be replaced
by static information from a class dictionary (CD). In this section
we describe the generative possibilities of CDs, focusing on the
generic classes we provide in DemeterF and the specialization of
traversal-based generic functions.

DemeterF supports a generative form of meta-programming over
the structure of data types, an idea similar to PolyP (17). Each dgp
function adds a method to each class, which by default is a lower-
case version of its class name. The built in functions generate a
method body that calls a static stub method; Figure 23 shows a
snippet of the generatéd-int class including the static method to

be called by specific classes. The main goal of dgp functions like
Print is to generate function classes that compute their results over

6.1 Data-generics in DemeterF
a traversal.

We start with an overview of data-generic facilities and a few

typical data-generic functions: equality, parsing and printing. The  ¢jass Print extends ID{

DemeterF class generator has methods that read in a CD, resolving /++ Static stub method for calling prints/

any includes, and creates a list of class descriptions. There are some  public static String PrintM(Object of

functions, like equality, that deserve special mention, but most return new Traversal(new Print()).traverse(o);
other generic functions can be generated over a traversal of a CD. /« ... combine methods ../

Users can choose a number of functions to be generated over the }

class descriptions, but, while many useful functions are provided,
a key feature of DemeterF is that users can implement their own Figure 23. Generate®rint function class

function classes, to be used to generate specific code.

Atypical command-line use of DemeterF to generate the related ~ Print computes a string representation based on the syntax
classes fopict . cd would look like: found in the CD, but as seen in Section 3, other print-like functions
are availableToStr returns a nested constructor-like description of
an object, andisplay returns an indented view of an object no-
Where after--dgp: is a colon separated list of function classes tated with types and field names. Each print based dgp function has

>}, java DemeterF pict.cd --dgp:Print

that describalata generic programminfunctions. Implicit in this a similar class that injects the canoniealString() method in-
command is the generation of the Java classes, a canenicéls stead of its default, so the function can be used for automatic string
method, and parser generator input for JavaCC (4); though eachconversion. These are aptly nameString, PrintToString,

can be suppressed withrnogen, --noequals, and--noparse andDisplayToString respectively.

respectively. The use @frint here introduces arint () method .

into each class that triggers a traversal using a generated functions'4 StaticTU and Be
class. A CD file usually includes concrete syntax strings in class DemeterF’s generic function classes, TU and Bc, are also quite eas-
definitions, which makes its way into parsing and printing code. ily specialize for a given CD. We call the corresponding function
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Type CircsTU ToSVG Scale Circ2sqr Flip Compress

INLINE 18 ms 489 ms 11 ms 11 ms 10 ms 11 ms
HAND 9ms 488 ms 20 ms 19ms 13 ms 13 ms
VISITOR 47 ms 491 ms 63 ms 62 ms 59 ms 86 ms

REFLECTIVE 651 ms 15618 ms| 648 ms 645 ms 650 ms 617 ms

Figure 24. Performance ofict function implementations.

classes;tatigTU andStatich,. and they can be generated by ir)- class Compress extends Copy{

cluding them in the command-line dgp list. The result is something Offset combine(Offset o,int x, int y, Offset in)
quite similar to thecopy function from Figure 18. The main benefit { return new Offset(in.dx+x, in.dy+y, in.inner);}
of generating these functions is to create type-safe (non-reflective) }

versions for precise inlining and improved performance. We'll see N ) :
more uses of these generated functions in Section 8. Figure 25. Reverse top to bottorkict ordering

7. Types, Inlining, and Performance differ only by their last argument. When constraining the recursive
Types play a central role in DemeterF traversals, both in the traver- argument, we choose the common supertypeieft andoffset,
sal of data types and the selectioncefnbine methods. In order which is justPict. Similarly for the traversal of abstract classes
for traversal to be safe we must be sure the functions selected ovedike Pict, the return type of a traversal is a common supertype of
the traversal fit together correctly. As a bonus, with the traversal the return types of subclass traversals.
return types in hand, in many cases we can eliminate the overhead o
of multiple dispatch by generating a specific traversal with inlined 7-2  Inlining
calls to combine methods. In this section we give an overview of Aslong as thecombine methods mesh together and all constraints
type checking in DemeterF and discuss traversal inlining and per- are satisfied, we can calculate thembine methods that might
formance. be called at each point during traversal. To generate a specialized
traversal we insert calls to the correcimbine method(s) at each
point, adding code to dynamically resolve the method selection
In DemeterF each function class is just a Java class and must conwhen needed. For example, when inlinibgnpress, after com-
form to Java's typing rules, but things get interesting when we inter- pleting an0ffset, the traversal is left with a choice between two
pret itscombine methods as a function over a specific data struc- methods. The method chosen depends on the dynamic type of the
ture. For example, consider oGircsDemF function class (Fig- recursive result foinner, so the DemeterF inliner produces code
ure 10); each method returns amt, which means that the traversal  to disambiguate the methods:
of each subclass &fict must return arint. Using the CD (Fig- o .
X - if (inner instanceof Offset)

ure 6), we can check that eacbmbine method has the right num- return func.combine (o, dx, dx, (Offset)inner);
ber and types of arguments to accept the recursive results. A quick return func.combine(o, dx, dy, inner)
walk over the definitions in the CD tells us how many arguments
to expect, and the function class tells us what types the traversal
will return for each. Our goal is to prove that we will always have
an applicableombine method during traversal. The type-unifying  The main motivation for generating traversals is to improve per-
case generalizes for other functions, includwpy (Figure 18) formance, similar to partial evaluation. As a comprehensive perfor-
and more ad hoc transformations li&erc2Sqr (Figure 205. mance test, we have implemented each of the functions described

The basis of our type system has been formalized (9) with a previously in the paper three different ways: DemeterF function
more algotithmic discussion here (7), but there’s one important classes, hand written instance methods, and double-dispatch visi-
trick involved; when the use of a type in the CD is recursive, then tors. Figure 24 contains the results of running each implementation
there’s no way to know what type the traversal will yield. In this of the functions on large generatetict instances. Each time is an
case we assume that it could Arything For instance, the field average of 10 runs, onka ct with approximately 80,000 nodes.
inner of 0ffset is a recursive use #ict. When calculating the The first row of the table shows DemeterF inlined traversal
combine method that will be called f@ffset, we calculate the results, the second is hand coded instance methods, and the third
traversal type for the first two parameters, but the third is unknown, is a double-dispatch visitor implementation, which provides a good
so we look for anycombine applicable to: comparison for typical implementation styles in Java. The final
row is the DemeterF reflective traversal for a base comparison.
The DemeterF inlined traversal performance is comparable to the
In most cases this will limit us to a single function, so a constraint hand-coded versions, actually doing better on most functions. The
can be placed on the recursive type based on the matching methodinlined CircsTU traversal has a reasonable amount of overhead due
ForOffset, in theCircsDenF case this constrains the traversal of to method delegation, but inlinegt based functions perform very
aPict to return anint, whereas foCopy it must return @ict. In well, without the need to write any traversal code by hand.
some cases there may be more than one applicable method, which

simply results in multiple constraints. For example, consider the 8. Example: Expression Compilation
function classCompress in Figure 25, that recursively replaces ’ ’

7.1 Types

7.3 Performance

(Offset, int, int, * )

nestedffsets with a single instance. As a more complicated example using DemeterF, in this section we
Here there are two methods that may be applied after traversingdiscuss the implementation of a compiler for a simple expression

an Offset, the one here and the one inherited fi@upy, which language. We write function classes to simplify constant expres-
sions, calculate the maximum local variable usage, and convert our

4Circ2sqr is not strictlytype-preserving arithmetic language that includes variable definitions and uses, if
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expressions, and binary operations, into a low level stack-based op-the maximum local definition nesting for an expression. Variables
erations similar to those found in the Java Virtual Machine. We first are bound byefs, so we calculate return the maximunbofiy+1
examine our target data structures, then discuss the source strucand the result from the expression. We ext&ndticTU, which
tures and the different operations involved in the transformation handles other cases likiam andBin, and can be used to generate
from one to the other. inlined traversals.

8.1 Structures class MaxEnv extends StaticTU<Integer>{

To build a compiler we need representations for both our source :”tege’ combine(} return 0; }
nteger fold(Integer a, Integer b)
and target languages. The abstract and concrete syntax of both { return Math.max(a,b);}
languages can be described with a few CDs. Figure 26 shows a . S .
CD that defines our target language: a simple stack based assembly Integer combine(Def c,int id, int e, int b)

language with labels, subtraction, and operations for manipulating ) { return fold(e, 1+b); }
control, stack, and definitions.

Figure 28. Maximum local environment calculation.

// asm.cd
Op = Minus | Push | Pop | Define | Undef
| Load | Label [ Jmp | IfNZ. 8.3 Simplification
Minus = "minus”. As a second example, Figure 29 shows a function class that imple-
Push = "push”<i> int. ments the bottom up simplification of constant expressions in our
Pop = "pop”. ini :
Dofine= "Hdeofr mini language. We extend the generated c$ags icBc, SO we can
Undef = "undef”. efficiently inline the function class later.
Load = "load” <i> int.
Label = "label” <id> ident. : : :
Jmp - "jump” <id> ident. class Simplify extends StaticBc{

class Zero extends Num{ Zero(){ super(0); } }
Num combine (Num n,int i)
{ return (i==0) ? new Zero() : new Num(i); }

1fNZ "ifnzero” <id> ident.

Figure 26. Assembly structures CD
Exp combine(Bin b, Sub p, Exp |, Zero {)return 1; }
; ; Exp combine(Bin b, Sub p, Num I, Num r)
We do not show the code associated V\_/lth the asse_mbly struc- { return combine (I, 1.vaFr.val): }
tures, but the full code for all the examples in the paper is available
on the web (8). Figure 27 shows a CD file that describes our ex- Exp combine(Ifz f, Zero z, Exp t, Exp €) return t; }

pression data structures. Exp combine(Ifz f, Num n, Exp t, Exp €) return e; }
Exp combine(Def d, ident i, Exp e, Num l)return b;}
Il exp.cd
Exp = Ifz | Def | Bin | Var | Num.
Ifz = ”ifz” <cnd> Exp “"then” <thn> Exp Figure 29. Simplification function class
"else” <els> Exp.
Def = <id> ident "=" <e> Exp ";" <body> Exp. The special cases in our arithmetic language are each captured
Bin = "(” <op> Oper<left> Exp <right> Exp ")". R . X .
Var = <id> ident . by acombine method, while the rest of the reconstruction is han-
Num = <val> int . dled implicitly by StaticBc. Instances offum that contain zero are
transformed into instances of the more specific inner class.
(Sjt?sr: Sub. SubtractingZero from anyExp yields just the leftExp; for sub-
' traction consisting of only numbers we can propagate the resulting
Figure 27. Expression structures CD constant as a neltum. For Ifz expressions, when the condition is

Zero or Num we can simplify by returning the results from ttien

The command to generate all the class definitions is shown OF €Isfields, respectively.

below. 8.4 TheExp Compiler

>% java DemeterF exp.cd --dgp:Print:StaticTU:StaticBe For the sake of code organization and modularity, we have split

DemeterF uses the dgp functions to generatepatint methods, the final example into four classes; one class for each category of
and static versions of our generic function classes. As for parsing, exPression and a main, top-level entry-point. Figure 30 shows the

(@)

Cond.
ifz (— 4 3) then 5 else 7

and can be parsed with the Java statement below, though for the rest // Compile an Exp File

. . . class Compile extends Cond{
of the example we will parse expressions from file streams. List<Op> compile (String file) throws Exceptionf

Exp e = Exp.parse(”ifz £ 4 3) then 5 else 77); Irzé(tpuri T]esvxpfrpaatlres;asr(;\lﬂl(t;ilée)lnpUtStream(flle));
.traverse (e, List<ident>create ());

8.2 Max Environment }

A typical operation needed when compiling languages with local

definitions is to calculate the maximum number variables used by Figure 30. Main compile class

a procedure. This allows the runtime to allocate the right amount

of space for procedure frames and verify the4d instructions are We have a single methodompile (Exp), that traverses the

always in bounds. Figure 28 shows a function class that calculatesgiven expression to produces representative opcoddsiigita 0p>.
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List is the functional (immutable) list implementation provided in class Cond extends Defs{

the DemeterF library with typical methodsteate, append, and int Inum = 0;

lookup. All our DemeterF library classes are also described by a ident fresh(String s)

CD file, so our generative traversal approach applies equally well. { return new ident(s+""+Inum++); }

When co_mpiling., we use the traversal context to pass t_he stack of List<Op> combine (1fz f, ListOp> ¢, List<Op> t,
local variables{ist<ident>) to nested definitions, starting with List<Op> e){
an emptyList<ident>. ident le = fresh("else”),

Id = fresh("done”);
return c.appendfew IfNZ(le)).append(t)

class Arith extends ID{ .appendfew Jmp(ld))
static List<Op> empty = List.create (); .appendfew Label(le)).append(e)
static List<Op> one(Op o) return empty.append(o);} .appendfew Label(ld));
}
List<Op> combine (Sub s{ return one(new Minus()); } }

List<Op> combine (Num n,int i)

{ return one(new Push(i)); }

List<Op> combine(Bin b, LiskOp> o, List<Op> I,
List<Op> r)

Figure 33. Compile for Conditionals

{ return r.append(l).append(o);} ) ) o ) ) .
} beating both the hand-written and visitor implementations in the
Compile test.

Figure 31. Compile for arithmeti@ps

) Type | MaxEnv | Simplify | Compile
Figure 31 shows theombine methods for math related opera- INLINE | 26 ms 25 ms 1130 ms
tors. The static fielémpty and the methodne (. .) simplify the HAND 9ms 21ms 1160 ms
creation of singldép lists. As is common in stack based assembly VIiSITOR | 34 ms 30 ms 1187 ms
languages we push operands onto the stack, then call an arithmetic
operator. For instance, the simple expresgierd 3) would gen- Figure 34. Performance results for compile related functions
erate the following instruction sequence:
push 3
push 4
Finus 9. Related Work

The traversal-based approach of DemeterF is similar to other
generic and generative programming projects. In OO programming
much work has been centered around the visitor pattern (14) and
related tools, while work in functional languages focus more on
new forms of polymorphism and polytypic programming.

TheDefs class in Figure 32 implements the compilation of vari-
able definition related expressions. We generatesal operation
for a variable reference, with the offset of the identifier from the
environment, which is passed as the last argument aféhbine.
Our update method adds a defined variable to the environment
when traversing into theody of a definition, signified by the use g 1 pemeter Tools and Generators
of the field class. Once all sub-expressions have been compiled, the

body code is wrapped iDefine/Undef and appended to the code ~ Adaptive OO Programming (23) combines datatype descriptions
for the binding evaluating. with a domain specific language that selects a portion of an object

instance, over which a visitor is executed. The two major imple-

class Defs extends Arith { mentations of adaptive programming, DJ (27) and DemeterJ (30),

List<ident> update (Def d, Def.body f, Listidents s) are similar to DemeterF's reflective and static traversals, respec-
{ return s.push(d.id);} tively. DemeterJ uses a similar class dictionary syntax to describe
List<Op> combine(Var v, ident id, Liskident> s) datatypes and generate Java classes, a parser, and various default
{ return one(ew Load(s.index(id)));} visitors. Ideas from both DemeterJ and DJ have flowed into the
List<Op> combine (Def d, ident id, ListOp> e, design of DemeterF, with a purely functional flavor. DemeterF im-
List<Op> bdy){ proves on those tools with type-safe traversals, support for generics
return e.appendew Define ()). append(bdy) and customizable data-generic function generation. Similar to the
-append flew Undef()); Law of Demeter slogantélk only to your friendg the program-
} } ming style of DemeterF can be described &stén only to your
friends’.
Figure 32. Compile for Variables Other generational tools like JAXB (2) and XMLBeans (5)

are used to generate verbose Java classes and parsers from XML
The final class¢ond shown in Figure 33 deals with conditional ~ Schemas. Thought the design of the created classes enforce good

expressions. We use a local variable to create uriigbels within programming practices, the tools seem to have little support for
the generated code, #sesh(-) creates an newdent. The IfNZ other generic features, and no notion of parametrized classes.
opcode is used to branch to thiseportion when the condition is Parser generators like JavaCC (4) and ANTLR (1) have built in
not zero, otherwise ththenwill be executed and wemp to the support for generating code for tree based traversals. JavaCC in-
donelabel. cludes a tool JJTree that includes support for automatic visitor

methods; ANTLR provides similar functionality witiee parsers
8.5 Performance

To demonstrate the performance of DemeterF inlined traversals, we2-2  Visitors and Multi-methods

give timing results for three equivalent implementations of each The visitor pattern is most commonly used in OO languages to im-

of the functions,MaxEnv, Simplify, and Compile. Figure 34 plement functions over datatypes without requiring instance checks
contains the average results of 10 runs of each on a very agge or casts. Typical implementations use a double dispatch technique,
instance. DemeterF inlined traversals perform very competitively, though reflection is also used (28; 27). The visitor pattern has a
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sound type-theoretic background (6; 31), and has been central in
OO discussions of extensible functions (20). There is an opinion
that multi-methods (12; 10) eliminate the need for the visitor pat-
tern, but visitors can still be used to abstract traversals similar to the
Walkabout (28) visitor. In DemeterF we use multiple dispatch to
support both abstraction and specialization within function classes.
Type checking of DemeterF function classes over traversals is sim-
ilar to that employed in multi-method systems (11).

9.3 Generic Programming

Gibbons (15) gives a comprehensive review of datatype generic
programming. Higher-order functions such #sld (25) can be
generalized (29; 16) to other datatype shapes, similar to Deme-

[9] Bryan Chadwick and Karl Lieberherr. A Type System for Etional
Traversal-Based Aspects. WOSD 2009, FOAL WorkshopACM
International Conference Proceeding Series. ACM, 2009.

[10] Craig Chambers. Object-oriented multi-methods in cdailECOOP
'92, pages 33-56. Springer-Verlag, 1992.

[11] Craig Chambers and Gary T. Leavens. Typechecking and lesér
multimethods.TOPLAS 95 17(6):805-843, November 1995.

[12] Curtis Clifton, Gary T. Leavens, Craig Chambers, anddred Mill-
stein. Multijava: modular open classes and symmetric multigge d
patch for java. IMDOPSLA pages 130-145, 2000.

[13] Bruno C. d. S. Oliveira, Meng Wang, and Jeremy Gibbons.e Th
visitor pattern as a reusable, generic, type-safe compoie@regor
Kiczales, editorOOPSLA '08 October 2008.

terF’s traversals, which adapt to the shape of a data structures. Thd14] Erich Gamma, Richard Helm, Ralph Johnson, and John Viéssid

data generic features of DemeterF are modeled after functional lan-
guages that support forms of shape polymorphism. PolyP (17) has
similarities to Generic Haskell (24), both of which support the defi-
nitions of functions that work over datatypes with different shapes.
More light-weight approaches such as Scrap Your Boilerplate (21)

have been developed, making use of modular extension provided by

Design Patterns: Elements of Reusable Object-Orientedware
Addison-Wesley, 1995.

[15] Jeremy Gibbons. Datatype-generic programming. In RoBack-
house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, edianing
School on Datatype-Generic Programmjnglume 4719 of_ecture
Notes in Computer Sciencgpringer-Verlag, 2007.

Haskell’'s typeclasses, and a later paper in the series (22) present$l6] Ralf Hinze. Efficient generalized folds. Technical RepgAl-TR-99-

a solution to extensible generic functions. The type checking and
extensibility of DemeterF function classes sets it apart from other
functional approaches, though our checks are in addition to those
of the underlying language.

10. Conclusion and Future Work
We have introduced a new form of traversal-based generic pro-

8, Institut fur Informatik 111, Universi&t Bonn, jun 1999.

[17] P. Jansson and J. Jeuring. PolyP - a polytypic programfaimguage
extension. IFPOPL '97, pages 470-482. ACM Press, 1997.

[18] Simon P. Jones.Haskell 98 Language and Libraries: The Revised
Report Cambridge University Press, May 2003.

[19] Richard Kelsey, William Clinger, and Jonathan Rees it(id).

Revised report on the algorithmic language ScherA€M SIGPLAN
Notices 33(9):26-76, 1998.

gramming that uses function classes to define both generic and speg2o; shriram Krishnamurthi, Matthias Felleisen, and DarteFriedman.

cific functions over data structures. We use traversals that employ
multiple-dispatch to allow function classes to be both flexible and
extensible. Together with a generic traversal, they provide OO pro-
grammers with a special form of shape polymorphism. Our tool is

able to generate classes and functions from structural descriptions

of data types. Using the structures and types from the function class
we can inline functions to achieve performance that is competitive

with hand written instance methods. The traversal based approach

of DemeterF supports a programming style that promotes functions
that are flexible, extensible, and efficient.

In the future we plan to use our tool to implement parallel traver-
sals without the performance issues that result from reflection. Now
that traversal inlining and method residue have been solved, we

hope to see even better performance when re-targeting traversals

on multi-core architectures.
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