
A Generative Approach to Traversal-based Generic
Programming

Bryan Chadwick Karl Lieberherr
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.
{chadwick, lieber}@ccs.neu.edu

Abstract
The development of complex software requires the implementa-
tion of functions over a variety of recursively defined data struc-
tures. Much of the corresponding code is not necessarily diffi-
cult, but more tedious and/or repetitive and sometimes easy to get
wrong. Data structure traversals fall into this category, particu-
larly in object-oriented languages where traversal code is spread
throughout many cooperating modules. In this paper we present a
new form of generic programming using traversals that lends it-
self to a flexible, safe, and efficient generative implementation. We
describe the approach, its relation to generic and generative pro-
gramming, and our implementation and resulting performance.

1. Introduction
The development of complex software requires the implementation
of functions over a variety of recursively defined data structures.
The design (or modeling) of these structures can itself be difficult,
but complex data can lead to even more complex functions. How
much of this complexity can be handled for the programmer? Is it
inherent in the problem, or is it more dependent on our choice of
data organization or implementation language?

The programmer’s main tool for managing complexity is ab-
straction: functions abstract over values, generics (also called
bounded, or parametric polymorphism) abstracts over types, and
various forms of polytypic programming support abstraction over
the shape of data. Each of these abstractions can be considered
a different kind of (datatype)generic programming(15), with
many different incarnations in current programming languages.
In Object-Oriented (OO) Languages such as Java and C#, the first
two forms are quite easy to realize through methods, interfaces, and
generic type parameters, but abstracting over the shape of datatypes
is less conventional, and arguably not possible using typical stan-
dard constructs.

In this paper we present a new approach and set of tools, col-
lectively called DemeterF, for generative, traversal-based generic
programming. In particular:

[Copyright notice will appear here once ’preprint’ option is removed.]

• We introduce a new form of traversal-based generic program-
ming that uses function objects to fold over structures (Sec-
tion 4). Functions are flexible, extensible, and written indepen-
dent of the traversal implementation using a variation of multi-
ple dispatch. This provides a special form of shape polymor-
phism with support for both general and specialized generic
functions (Section 5).

• Our approach is supported by a class generator that consumes
a concise description of data types and produces Java classes
along with specific instances of generic functions likeparse(),
print(), and equals() (Section 6). The generative frame-
work is extensible, so programmers can add their own generic
functions parametrized by datatype definitions.

• Function objects (specific and generic) can be type checked
against a given data structure traversal to ensure safety (Sec-
tion 7). A number of different traversal organizations can be
generated for specific data structures including recursive, con-
text passing, and even implicitly parallel versions. Type-correct
function objects can then be inlined in generated traversals to
reach the performance of specialized, hand-written code.

Our contribution is a combination of approach and implemen-
tation. Traversal-based function classes support a function-centric
design, which eliminates the problems generally associated with
operation extensions in OO languages. But, functions are just
classes and are likewise extensible. This dual extension of func-
tions and data introduces flexibility that cannot be checked stati-
cally in mainstream programming languages and if implemented
naively can hinder performance. Our implementation provides a
type checker to verify safety and code generation facilities to
improve performance, sometimes achieving numbers better than
hand-coded methods. Overall we retain flexibility, extensibility,
and efficiency.

2. Background
We begin by thoroughly describing the problem with an interesting
example. Consider the definition of an OO picture library, similar
to that discussed in (20). Figure 1 contains Java classes that form
the base of the example: the superclassPict has three subclasses
representingCircles,Squares, andOffset pictures respectively.
Of course, all the code from the paper is available on the web (8).

ThePict classes are somewhat limited now, and we can fix that
soon, but first let’s write a simpletoString() function, usually
referred to aspretty printing. As you might have guessed, this
can be difficult in Java, especially once we separate our classes
into different files, since we must insert a new method into each
class. Figure 2 shows the inserted code with comments describing

1 2009/10/6

a b s t r a c t c l a s s P i c t{ }

c l a s s C i r c l e ex tends P i c t{
i n t rad ;
C i r c l e (i n t r){ rad = r ; }

}
c l a s s Square ex tends P i c t{

i n t s i z e ;
Square (i n t s){ s i z e = s ; }

}
c l a s s O f f s e t ex tends P i c t{

i n t dx , dy ;
P i c t i n n e r ;
O f f s e t (i n t x , i n t y , P i c t i n)
{ dx = x ; dy = y ; i n n e r = i n ; }

}

Figure 1. Picture Class Skeletons

where each method belongs; the recursive call inOffset is made
explicit, but it should otherwise be familiar. If our classes contained
other non-primitive classes we must be sure thattoString() is
implemented in them as well, to avoid nonsensical outputs.

/ / In P i c t
a b s t r a c t S t r i n g t o S t r i n g () ;
/ / In C i r c l e
S t r i n g t o S t r i n g (){ re turn ” C i r c l e (”+ rad +”) ” ; }
/ / In Square
S t r i n g t o S t r i n g (){ re turn ” Square (”+ s i z e +”) ” ; }
/ / In O f f s e t
S t r i n g t o S t r i n g (){

re turn ” O f f s e t (”+dx+” , ”+dy+” , ”+
i n n e r . t o S t r i n g () + ”) ” ;

}

Figure 2. PicturetoString methods

This simple operation extension illustrates a few issues that
place unneeded burden on programmers. First, OO class definitions
are generally1 closed; in Java this is especially true forfinal
classes and value types, since these cannot be subclassed. This
is not necessarily a bad thing because it conserves modularity,
but it certainly makes programs difficult to evolve and maintain.
Second, our function follows a very typical pattern of recursion
that exactly mimics the structure of the classes involved. We should
be able to abstract this pattern out, and parametrize over only
the different and interesting parts of the computation. Finally, the
toString function does not depend on anything intrinsic to the
problem, only on the the names and structures within the class
hierarchy.ToString is, of course, a special case, but in general
there are many functions that can be written directly from data type
descriptions, without the need for programmer specialization. To
our knowledge, such forms of generic and meta programming have
not previously been thoroughly explored in OO languages such as
Java.

This can’t be the whole story though, because OO programmers
rely on extensible data structures: adding cooperating function-
s/methods to a collection of classes may be difficult, but adding a
new subclass to extend our data types is relatively easy. To demon-
strate we can add a new picture subclass that allows us to represent
compositions. Figure 3 contains a new class,Overlay, that repre-
sents a simple overlaying of two pictures.

This brings us to a crossroads: if we use the function-centric ap-
proach (like visitors), then adding to our data types is difficult, but
if we use a data-centric (OO) approach then adding functions is dif-
ficult. Many abandon the function centric approach due to its lack

1 We saygenerallybecause open classes are available in some dynamic and
hybrid OO languages including MultiJava (12) and Ruby (3).

c l a s s Over lay ex tends P i c t{
P i c t top , bo t ;
Over lay (P i c t t , P i c t b){ t op = t ; bo t = b ; }

S t r i n g t o S t r i n g (){
re turn ” Over lay (”+ top . t o S t r i n g () + ” , ”+

bo t . t o S t r i n g () + ”) ” ;
}

}

Figure 3. Overlay picture extension

of safety (casting (20)) and/or performance issues (reflection (28)).
In either case we run into problems similar to those above, but is it
possible to have the best of both worlds, while remaining general,
safe, and efficient?

3. Our Solution
Our answer to this question isyes. We solve these problems using
a traversal-based approach that encapsulates functions over a data
structure intofunction objects: instances of classes that wrap a set
of methods. For our original collection of picture classes (Figure 1),
the function class that implementstoString is shown in Figure 4.
To understand the computation involved, we simply need tothink
like a traversal.

c l a s s ToS t r i ng ex tends ID{
S t r i n g combine (C i r c l e c , i n t r)
{ re turn ” C i r c l e (”+ r +”) ” ; }
S t r i n g combine (Square s ,i n t sz)
{ re turn ” Square (”+ sz +”) ” ; }
S t r i n g combine (O f f s e t o , i n t dx , i n t dy , S t r i n g i n)
{ re turn ” O f f s e t (”+dx+” , ”+dy+” , ”+ i n +”) ” ; }

S t r i n g t o S t r i n g (P i c t p)
{ re turn new T r a v e r s a l (t h i s) . t r a v e r s e (p) ; }

}

Figure 4. ToString using a traversal

In this case, the genericTraversal (constructed in thetoString
method) walks the structure of a given picture. When the walk
reaches aCircle or a Square, the fields are expanded and
passed to the matchingcombine method ((Circle,int) or
(Square,int) respectively). The same is done when traversing
an Offset, but the recursive field (inner) is traversedbeforea
combine method is selected and called. In this case theString
resulting from the traversal ofinner is computed and passed to
the (one and only) matchingOffset method.

This is similar to generalized folds (29) with an object oriented
flavor. The base class for function classes in DemeterF isID, which
containscombine methods for Java’s primitive types. The benefit
of function classes is that extending user defined function classes is
no different than extending data types: when our picture classes are
extended withOverlay, we simply subclassToString to handle
the new case. The resulting extension is shown in Figure 5.

c l a s s ToS t r i ngOve r l a y ex tends ToS t r i ng{
S t r i n g combine (Over lay o , S t r i n g t , S t r i n g b)
{ re turn ” Over lay (”+ t +” , ”+b+”) ” ; }

}

Figure 5. ToString extended forOverlay

Perhaps a better way of creating this particular function is to
describe the structure of our picture classes, and use it generate the
function automatically. DemeterF accepts a textual representation
of the class structures called aclass dictionary(CD), which looks

2 2009/10/6

like a mix of BNF and algebraic data types in Haskell (26). The CD
for ourPict classes appears in Figure 6.

/ / p i c t . cd : c l a s s d i c t i o n a r y f o r p i c t u r e s
P i c t = C i r c l e | Square | O f f s e t | Over lay .
C i r c l e = <rad> i n t .
Square =<s i z e> i n t .
O f f s e t = <dx> i n t <dy> i n t <i nne r> P i c t .
Over lay = <top> P i c t <bot> P i c t .

Figure 6. CD for Pict classes

Our abstract classPict is described by a list of variants sep-
arated by bars (|), while concrete classes list their field names
(in brackets) and types2. The CD can also include concrete syn-
tax strings for printing and parsing, but with our CD in hand, we
can generate the necessarytoString functionality with a call to
DemeterF:

>% java DemeterF pict.cd --dgp:ToString

The code generated forToString is almost exactly the same as
what we wrote by hand, but it can be generated foranydata struc-
ture described by a CD. We also get other functions for free, like
parse() and hashCode, but the most important generic func-
tion is traversal itself. Because we’ve written ourToString func-
tion without explicit traversal, we can use the picture CD together
with theToString class definition to produce a specializedinlined
traversal.

Using our type checker we calculate the return value of each
traversal and produce code that traverses the each of the classes,
calling the appropriatecombine methods. In many instances our
inlined code can actually performbetterthan hand-written instance
methods. Figure 7 gives average performance numbers of three
different implementations ofToString run 10 times on a very
largePict instance with over 5000 nodes. The first is the DemeterF
inlined version; the second is hand-coded methods directly from
Figure 2; and the final one is a hand-written visitor using double-
dispatch, for comparison.

Type Average Time
INLINED 48 ms

HAND 49 ms
V ISITOR 54 ms

Figure 7. Performance of variousToString implementations

In the rest of this paper we provide the details of our traversal-
based approach, and how generic and generative programming fit
in to provide flexibility, extensibility, and performance.

4. Traversals and Computation
The traversal of data structures can be thought of simply as
a higher-order function; a function that takes a function as an
argument. In functional languages, such as Scheme (19) and
Haskell (18), lists are central data structures. These languages pro-
vide several useful abstractions for processing lists, likefoldr,
map, etc.. Traversal is one such function that generalizes to other
kinds of data structures, and can be used to implement both spe-
cific functions (likeprint) and generic functions, likefoldr. In
this section we provide a background and overview of our traversal
approach as a basis for writing other functions.

2 In fact, a CD can describe any Java class hierarchy, though wewon’t
discuss all the features in this paper.

4.1 Functions to Traversals

Going back to ourPict structures, let’s write a slightly simpler
function over pictures that counts the number ofCircles it con-
tains; the hand-coded methods are shown in Figure 8.

/ / In P i c t
a b s t r a c t i n t c i r c l e s () ;
/ / In C i r c l e
i n t c i r c l e s (){ re turn 1 ; }
/ / In Square
i n t c i r c l e s (){ re turn 0 ; }
/ / In O f f s e t
i n t c i r c l e s (){ re turn i n n e r . c i r c l e s () ; }
/ / In Over lay
i n t c i r c l e s (){ re turn t op . c i r c l e s () + bo t . c i r c l e s () ;}

Figure 8. Picturecircles methods

We can think of this function as implementing straight-forward
structural recursion: at each point where the structure is recursive,
the function is also recursive. Similar to folds, typical functional
visitor approaches (6; 13) implement this sort of computation us-
ing methods that essentially replace the constructors of concrete
variants. If we added the correct scaffolding for picture visitors, the
function would look something like Figure 9.

c l a s s C i r c s V i s ex tends V i s i t o r <I n t e g e r>{
I n t e g e r v i s i t (C i r c l e c){ re turn 1 ; }
I n t e g e r v i s i t (Square s){ re turn 0 ; }
I n t e g e r v i s i t (O f f s e t o)
{ re turn o . i n n e r .a c c e p t(t h i s) ; }
I n t e g e r v i s i t (Over lay o)
{ re turn o . top .a c c e p t(t h i s)+ o . bo t .a c c e p t(t h i s) ; }

}

Figure 9. A visitor implementation ofcircles

In order to abstract out the traversal, in DemeterF place the
recursive (sub-)traversal results from the object’s fields after the
original object itself. This allows thecombine method selection
to be uniform, with a variant of multiple dispatch. The DemeterF
implementation of circles is shown in Figure 10.

c l a s s CircsDemF ex tends ID{
i n t combine(C i r c l e c , i n t rad){ re turn 1 ; }
i n t combine(Square s , i n t s i z){ re turn 0 ; }
i n t combine(O f f s e t o , i n t x , i n t y , i n t inCs)
{ re turn inCs ; }
i n t combine(Over lay o , i n t topCs , i n t botCs)
{ re turn topCs+botCs ; }

}

Figure 10. circles DemeterF implementation

The hand-coded, visitor, and DemeterF functions all look sim-
ilar, the major difference being that in the DemeterF case the re-
cursion is implicitly done for us: the arguments to the combine
methods have already been traversedbeforethecombine method is
called. Moreover, the interesting computation involved is precisely
encapsulated in our function class, with boilerplate code left to the
traversal implementation. Creating creating new, or extending ex-
isting, functions over the data structures is rather simple. For exam-
ple, consider implementing a new function,squares that counts
the number ofSquares in a given picture; the DemeterF version
is shown in Figure 11. Since our computation is succinctly written,
the abstract traversal provides a platform for reuse.

3 2009/10/6

c l a s s Squares ex tends CircsDemF{
i n t combine(C i r c l e c , i n t rad){ re turn 0 ; }
i n t combine(Square s , i n t s i z){ re turn 1 ; }

}

Figure 11. squares implementation usingCircsDemF

4.2 Traversal

The idea of abstraction is to eliminate similarities by parametrizing
over only what is different. When abstracting the traversal from
computation we use a depth-first traversal approach that treats all
values as objects,i.e., primitives are treated as objects without any
fields. Assuming similar implementations for each of our types,
the basic traversal strategy is illustrated with a simple method for
Overlay:

ID f unc ;
<Ret , P> Ret t r a v e r s e(Over lay o){

P top = t r a v e r s e(o . top) ;
P bo t = t r a v e r s e(o . bo t) ;
re turn f unc .combine(o , top , bo t) ;

}

This method cannot, in general, be implicitly type checked by
Java, but it shows our interpretation of structural recursion: each
field is traversed in turn, and the results are passed (along with
the originally traversed object) to the function object’scombine
method. The type parameters (Ret, P) signify that the traversal of
different types may return different results. Here bothtop andbot
arePicts, so their traversals must return a unified type.

The situation is exactly the same for primitive types and user
defined classes without fields: the traversal simply delegates to the
function object, since there are no other fields to traverse.

<Ret> Ret t r a v e r s e(i n t i){
re turn f unc .combine(i) ;

}

Though thesetraverse methods illustrate our point, in DemeterF
the combine method chosen by the traversal is based on the dy-
namic types of all arguments, including the function object itself.
Since Java is a single dispatch language, the function object dis-
patch and type checking become slightly more involved. We will
get back to these when we discuss type checking and inlining in
Section 7.

4.3 Traversal Flexibility

Though a traversal that implements structural recursion everywhere
throughout an object is very useful, sometimes other strategies
are needed. One that is particularly useful isonestep (21). In
DemeterF we provide other types of control (not discussed here)
of which the onestep traversal is a special case. This allows
programmers to efficiently implement a traversal style closer to
hand-coded recursion. Figure 12 shows a function class that returns
the topmost primitive picture (Circle or Square) in a givenPict
instance.

Rather than letting the traversal completely control our path
through a picture, we can control the recursion ourselves, one step
at a time, similar to a classic visitor solution.Traversal.onestep()
returns a traversal that steps into an object and passes its fields to
the function object’s matching combine method. The multiple dis-
patch also gives use the added benefit of being able to abstract
over multiple method cases. Here the circle and square methods
are abstracted into a singlecombine overPict.

4.4 Contexts

Traditional visitors (14) employvoid visit methods to encapsu-
late computations over structures, which forces programmers to use

c l a s s TopMost ex tends ID{
P i c t combine(P i c t p , i n t i){ re turn p ; }
P i c t combine(O f f s e t o , i n t x , i n t y , P i c t i n)
{ re turn topMost (i n) ; }
P i c t combine(Over lay o , P i c t top , P i c t bo t)
{ re turn topMost (top) ; }

P i c t topMost (P i c t s){
re turn T r a v e r s a l. o n e s t e p(t h i s) . t r a v e r s e(s) ;

}
}

Figure 12. TopMost using aonestep Traversal

mutation in order to communicate values between different calls.
In DemeterF we have designed our traversal approach to eliminate
side-effects in order to make programs clear and simple to optimize,
but this limits the communication of context sensitive (top-down)
information over a structure. To facilitate the passing and updating
of information from a parent to a child, DemeterF supports the idea
of a traversal context. The initial (root) context is given by passing
an extra argument to thetraverse method and the traversal auto-
matically passes the context around. The function object can then
useupdate methods to modify the context for children/fields of an
object being traversed.

For example, if we attempt to generate a visual representation
of a Pict object, we notice that information gets lost during the
generic traversal; anOffset instance contains all the positioning
information for its children. Using traversal contexts we can easily
encapsulate this information into a drawing context. A simpleCtx
class representation is shown in Figure 13.

c l a s s Ctx{
i n t x , y ;
Ctx (i n t xx , i n t yy){ x = xx ; y = yy ; }
Ctx move (i n t dx , i n t dy)
{ re turn new Ctx (x+dx , y+dy) ; }

}

Figure 13. Drawing context offset

To show the power of contexts, we’ll implement a function
to convert aPict into a Scalable Vector Graphics(SVG) string.
SVG is a popular XML format for representing visual elements,
which is very portable and simple to generate. Figure 14 shows
a function class that implements thePict conversion to SVG
using our drawing context,Ctx. TheSVG class encapsulates static
methods that create the SVG specific formatting. The first four
combine methods are very similar to what we have written before,
except that the methods forCircle andSquare include a third
parameter of typeCtx.

When thetraverse method is called we pass an extra argu-
ment that becomes our root context pointing to the center of the
canvas,(w/2, h/2). Before recursively traversing the fields of an
Offset, the traversal will call a matchingupdate method to pro-
duce a new context. In this case, the update method’s second pa-
rameter type,Fields.any, corresponds to a DemeterF class rep-
resenting all fields; more complex uses ofupdate methods will
be discussed in Section 6, where we generate representative field
classes for each class.

The signature of theupdate method can be read as:Before
traversing any field of anOffset, compute a new context from the
parent’s. In this case wemove the context to include the current
Offset. If no matchingupdate method is found, then the parent’s
context is passed recursively to each child traversal unchanged.

4 2009/10/6

c l a s s ToSVG ex tends ID{
S t r i n g combine(C i r c l e c , i n t r , Ctx c t x)
{ re turn SVG. c i r c l e (c t x . x , c t x . y , r) ; }
S t r i n g combine(Square s , i n t sz , Ctx c t x)
{ re turn SVG. s q u a r e (c t x . x , c t x . y , sz) ;}
S t r i n g combine(O f f s e t o , i n t dx , i n t dy , S t r i n g i n)
{ re turn i n ; }
S t r i n g combine(Over lay o , S t r i n g t , S t r i n g b)
{ re turn t +b ; }

Ctx update(O f f s e t o f f , F i e l d s . any f , Ctx c)
{ re turn c . move (o f f . dx , o f f . dy) ; }

S t r i n g toSVG (P i c t p , i n t w, i n t h){
re turn SVG. head (w, h)+

new T r a v e r s a l(t h i s)
. t r a v e r s e(p , new Ctx (w/ 2 , h / 2)) +

SVG. f o o t () ;
}

}

Figure 14. Pict to SVG format using a traversal context

5. Generic Programming
Now that we have a handle on the programming style of DemeterF,
we can delve into the details of the more generic forms of traversal-
based programming. We call the programming style of DemeterF
genericbecause it generalizes the shape of the data types being
traversed: functions do not rely on the specific types of fields, but
on the return types of the traversal of those fields3. For instance, in
theToString function class (Figure 4), the traversal of an instance
of a concretePict class returns aString. Our function class relies
on this, and the fact that the traversal of an integer will return an
integer.

Abstracting from the typical uses of function classes leads us
to two general cases: those which aretype unifying, and those
that are type preserving, sometimes referred to asqueries and
transformations(21). The first category contains functions similar
toToString andCircs, where each sub-traversal returns the same
type, with recursive results combined using the same function,e.g.,
String or int combined using+. The second category contains
certain kinds of transformations and functional updates, where we
change interesting parts of the data structure and reconstruct the
rest.

5.1 Type-Unifying Functions

To support generic type-unifying traversals in DemeterF we pro-
vide a special function class that abstracts computation using two
methods: a no argumentcombine method that provides a default
case, and a two argumentfold method that is used to fold together
multiple results into a single value. The skeleton of theTU class is
shown in Figure 15.

a b s t r a c t c l a s s TU<X> ex tends ID{
a b s t r a c t X combine() ;
a b s t r a c t X f o l d (X a , X b) ;

X t r a v e r s e(Ob jec t o){ / * . . . * / }
}

Figure 15. Abstract class for type-unifying computations

How can we use this class? Figure 16 contains a new definition
of our CircsDemF function class (from Figure 10) that counts the
Circles in aPict. The first two methods implement our necessary
abstract methods ofTU, providing a defaultcombine, and afold

3 You could say our function objects arenear-sighted.

that sums the resulting counts. The final method describes the
interesting part of the structure,Circle, where we return a 1.

c l a s s CircsTU ex tends TU<I n t e g e r>{
I n t e g e r combine(){ re turn 0 ; }
I n t e g e r f o l d (I n t e g e r a , I n t e g e r b){ re turn a+b ; }

I n t e g e r combine(C i r c l e c){ re turn 1 ; }
}

Figure 16. Genericcircles count usingTU

In our experience,TU is most useful for computations that col-
lect information over a complex data structure, which usually in-
volves some form of library structures to collect instances. Fig-
ure 17 shows a typical use ofTU with DemeterFLists to collect
results over a generic structure. Note that we use DemeterF func-
tional (immutable)Lists, soappend returns a newList instance.

c l a s s ListTU<X> ex tends TU<L i s t<X>>{
L i s t<X> combine(){ re turn L i s t . c r e a t e () ; }
L i s t<X> f o l d (L i s t<X> a , L i s t<X> b)
{ re turn a . append (b) ;}

}

Figure 17. Typical TU collection intoLists

5.2 Type-Preserving Functions

While TU functions collect various results of a single type together,
type-preserving functions perform recursivetransformationsover
a data structure. The basic idea is easily demonstrated by writing a
copyfunction class forPicts, shown in Figure 18.

c l a s s Copy ex tends ID{
C i r c l e combine(C i r c l e c , i n t r)
{ re turn new C i r c l e (r) ; }
Square combine(Square s , i n t sz)
{ re turn new Square (sz) ; }
O f f s e t combine(O f f s e t o , i n t dx , i n t dy , P i c t i n)
{ re turn new O f f s e t (dx , dy , i n) ; }
Over lay combine(Over lay o , P i c t t , P i c t b)
{ re turn new Over lay (t , b) ; }

}

Figure 18. Copy function class forPicts

We write a combine method for eachPict subclass, which takes
parameters with the same types as its fields and constructs a new in-
stance with the recursive results. WhileCopy is specific toPicts,
the completely generic version of this function is implemented in
the DemeterF classBc (the building constructor). When imple-
menting transformations we can extend the generic function with
specific combine methods; Figure 19 shows a function class that
scales a picture by a given factor. This function class is completely
generic and applicable toanydata structure, though sometimes this
kind of function can be too general. It is usually a good idea to
somehow restrict its use, in this case we only apply it toPicts to
preserve its “scale” meaning.

The benefit here is that we mention as little of our structure as
possible; we only need to write methods for the interesting parts to
be transformed. As another example, Figure 20 shows a function
class that converts all theCircles in Pict instance intoSquares
of the same size. We only refer to the classes to be transformed,
namely thatCircle contains anint radius, or more precisely,
something for which our traversal will return anint.

As a finalBc example, Figure 21 shows a function class that
reverses the top to bottom ordering of aPict instance. This exam-
ple emphasizes the fact that the arguments passed to the combine

5 2009/10/6

c l a s s S c a le ex tends Bc{
i n t s c l ;
S c a le (i n t s){ s c l = s ; }
i n t combine(i n t i){ re turn i * s c l ; }

P i c t s c a l e (P i c t p)
{ re turn new T r a v e r s a l(t h i s) . t r a v e r s e(p) ; }

}

Figure 19. Scale transformation forPicts

c l a s s Ci rc2Sqr ex tends Bc{
Square combine(C i r c l e c , i n t rad)
{ re turn new Square (rad* 2) ; }

}

Figure 20. Convert circles into squares

method are the recursive results of our function object over the
traversal; thet andb arguments have already beenFliped once
ourcombine is called.

c l a s s F l i p ex tends Bc{
Over lay combine(Over lay o , P i c t t , P i c t b)
{ re turn new Over lay (b , t) ; }

}

Figure 21. Reverse top to bottomPict ordering

6. Generative Programming
Specialized versions of the completely generic DemeterFTraversal,
TU, andBc classes depend only on the specific structures involved.
In our library these classes are implemented using reflection, which
severely inhibits performance. The key to overcoming this limita-
tion is the idea that dynamic structural reflection can be replaced
by static information from a class dictionary (CD). In this section
we describe the generative possibilities of CDs, focusing on the
generic classes we provide in DemeterF and the specialization of
traversal-based generic functions.

6.1 Data-generics in DemeterF

We start with an overview of data-generic facilities and a few
typical data-generic functions: equality, parsing and printing. The
DemeterF class generator has methods that read in a CD, resolving
any includes, and creates a list of class descriptions. There are some
functions, like equality, that deserve special mention, but most
other generic functions can be generated over a traversal of a CD.
Users can choose a number of functions to be generated over the
class descriptions, but, while many useful functions are provided,
a key feature of DemeterF is that users can implement their own
function classes, to be used to generate specific code.

A typical command-line use of DemeterF to generate the related
classes forpict.cd would look like:

>% java DemeterF pict.cd --dgp:Print

Where after--dgp: is a colon separated list of function classes
that describedata generic programmingfunctions. Implicit in this
command is the generation of the Java classes, a canonicalequals
method, and parser generator input for JavaCC (4); though each
can be suppressed with--nogen, --noequals, and--noparse
respectively. The use ofPrint here introduces aprint() method
into each class that triggers a traversal using a generated function
class. A CD file usually includes concrete syntax strings in class
definitions, which makes its way into parsing and printing code.

6.2 Special Cases

A few structure-based methods deserve special cases within our
class generator, mainly because they are not easy to write generi-
cally, or they require the traversal of more than one data structure si-
multaneously. For instance, the class generator introduces a canon-
ical equals(Object) method into each concrete class, which im-
plements deep (extensional) equality. The method generated for our
Overlay class is shown in Figure 22. Although equality could be
implemented using our traversal library, it remains a special case to
enhance both performance and code clarity.

/ * * I s t h e g i v e n o b j e c t Equal t o t h i s Over lay ?* /
pub l i c boolean e q u a l s (Ob jec t o){

i f (o == t h i s) re turn t rue ;
i f (! (o i n s t a n c e o f Over lay))re turn f a l s e ;
Over lay oo = (Over lay) o ;
re turn (t op . e q u a l s (oo . top) && bo t . e q u a l s (oo . bo t)) ;

}

Figure 22. Generatedequals method forOverlay

The other special case of the generator isfield classes, which
are used represent fields, used with update methods. Inner class
definitions are added to the generated classes, and are passed to
matching update methods prior to the traversal of the corresponding
field. For example, the field classes generated forOverlay would
be:

s t a t i c c l a s s t op ex tends F i e l d . any{}
s t a t i c c l a s s bo t ex tends F i e l d . any{}

which allows us to use the typeOverlay.top in update methods to
change the context only for thetop field. We will see an example
use in Section 8.4.

6.3 DGP Functions

DemeterF supports a generative form of meta-programming over
the structure of data types, an idea similar to PolyP (17). Each dgp
function adds a method to each class, which by default is a lower-
case version of its class name. The built in functions generate a
method body that calls a static stub method; Figure 23 shows a
snippet of the generatedPrint class including the static method to
be called by specific classes. The main goal of dgp functions like
Print is to generate function classes that compute their results over
a traversal.

c l a s s P r i n t ex tends ID{
/ * * S t a t i c s t u b method f o r c a l l i n g p r i n t* /
pub l i c s t a t i c S t r i n g Pr in tM (Ob jec t o){

re turn new T r a v e r s a l(new P r i n t ()) . t r a v e r s e(o) ;
}

/ * . . . combine methods . . .* /
}

Figure 23. GeneratedPrint function class

Print computes a string representation based on the syntax
found in the CD, but as seen in Section 3, other print-like functions
are available.ToStr returns a nested constructor-like description of
an object, andDisplay returns an indented view of an object no-
tated with types and field names. Each print based dgp function has
a similar class that injects the canonicaltoString() method in-
stead of its default, so the function can be used for automatic string
conversion. These are aptly namedToString, PrintToString,
andDisplayToString respectively.

6.4 StaticTU and Bc

DemeterF’s generic function classes, TU and Bc, are also quite eas-
ily specialize for a given CD. We call the corresponding function

6 2009/10/6

Type CircsTU ToSVG Scale Circ2sqr Flip Compress

INLINE 18 ms 489 ms 11 ms 11 ms 10 ms 11 ms
HAND 9 ms 488 ms 20 ms 19 ms 13 ms 13 ms

V ISITOR 47 ms 491 ms 63 ms 62 ms 59 ms 86 ms
REFLECTIVE 651 ms 15618 ms 648 ms 645 ms 650 ms 617 ms

Figure 24. Performance ofPict function implementations.

classesStaticTU andStaticBc, and they can be generated by in-
cluding them in the command-line dgp list. The result is something
quite similar to theCopy function from Figure 18. The main benefit
of generating these functions is to create type-safe (non-reflective)
versions for precise inlining and improved performance. We’ll see
more uses of these generated functions in Section 8.

7. Types, Inlining, and Performance
Types play a central role in DemeterF traversals, both in the traver-
sal of data types and the selection ofcombine methods. In order
for traversal to be safe we must be sure the functions selected over
the traversal fit together correctly. As a bonus, with the traversal
return types in hand, in many cases we can eliminate the overhead
of multiple dispatch by generating a specific traversal with inlined
calls to combine methods. In this section we give an overview of
type checking in DemeterF and discuss traversal inlining and per-
formance.

7.1 Types

In DemeterF each function class is just a Java class and must con-
form to Java’s typing rules, but things get interesting when we inter-
pret itscombine methods as a function over a specific data struc-
ture. For example, consider ourCircsDemF function class (Fig-
ure 10); each method returns anint, which means that the traversal
of each subclass ofPict must return anint. Using the CD (Fig-
ure 6), we can check that eachcombine method has the right num-
ber and types of arguments to accept the recursive results. A quick
walk over the definitions in the CD tells us how many arguments
to expect, and the function class tells us what types the traversal
will return for each. Our goal is to prove that we will always have
an applicablecombine method during traversal. The type-unifying
case generalizes for other functions, includingCopy (Figure 18)
and more ad hoc transformations likeCirc2Sqr (Figure 20)4.

The basis of our type system has been formalized (9) with a
more algotithmic discussion here (7), but there’s one important
trick involved; when the use of a type in the CD is recursive, then
there’s no way to know what type the traversal will yield. In this
case we assume that it could beanything. For instance, the field
inner of Offset is a recursive use ofPict. When calculating the
combine method that will be called forOffset, we calculate the
traversal type for the first two parameters, but the third is unknown,
so we look for anycombine applicable to:

(O f f se t , i n t , i n t , *)

In most cases this will limit us to a single function, so a constraint
can be placed on the recursive type based on the matching method.
ForOffset, in theCircsDemF case this constrains the traversal of
aPict to return anint, whereas forCopy it must return aPict. In
some cases there may be more than one applicable method, which
simply results in multiple constraints. For example, consider the
function classCompress in Figure 25, that recursively replaces
nestedOffsets with a single instance.

Here there are two methods that may be applied after traversing
an Offset, the one here and the one inherited fromCopy, which

4Circ2Sqr is not strictlytype-preserving

c l a s s Compress ex tends Copy{
O f f s e t combine (O f f s e t o , i n t x , i n t y , O f f s e t i n)
{ re turn new O f f s e t (i n . dx+x , i n . dy+y , i n . i n n e r) ;}

}

Figure 25. Reverse top to bottomPict ordering

differ only by their last argument. When constraining the recursive
argument, we choose the common supertype ofPict andOffset,
which is justPict. Similarly for the traversal of abstract classes
like Pict, the return type of a traversal is a common supertype of
the return types of subclass traversals.

7.2 Inlining

As long as thecombine methods mesh together and all constraints
are satisfied, we can calculate thecombine methods that might
be called at each point during traversal. To generate a specialized
traversal we insert calls to the correctcombine method(s) at each
point, adding code to dynamically resolve the method selection
when needed. For example, when inliningCompress, after com-
pleting anOffset, the traversal is left with a choice between two
methods. The method chosen depends on the dynamic type of the
recursive result forinner, so the DemeterF inliner produces code
to disambiguate the methods:

i f (i n n e r i n s t a n c e o f O f f s e t)
re turn f unc . combine (o , dx , dx , (O f f s e t) i n n e r) ;

re turn f unc . combine (o , dx , dy , i n n e r)

7.3 Performance

The main motivation for generating traversals is to improve per-
formance, similar to partial evaluation. As a comprehensive perfor-
mance test, we have implemented each of the functions described
previously in the paper three different ways: DemeterF function
classes, hand written instance methods, and double-dispatch visi-
tors. Figure 24 contains the results of running each implementation
of the functions on large generatedPict instances. Each time is an
average of 10 runs, on aPict with approximately 80,000 nodes.

The first row of the table shows DemeterF inlined traversal
results, the second is hand coded instance methods, and the third
is a double-dispatch visitor implementation, which provides a good
comparison for typical implementation styles in Java. The final
row is the DemeterF reflective traversal for a base comparison.
The DemeterF inlined traversal performance is comparable to the
hand-coded versions, actually doing better on most functions. The
inlinedCircsTU traversal has a reasonable amount of overhead due
to method delegation, but inlinedBc based functions perform very
well, without the need to write any traversal code by hand.

8. Example: Expression Compilation
As a more complicated example using DemeterF, in this section we
discuss the implementation of a compiler for a simple expression
language. We write function classes to simplify constant expres-
sions, calculate the maximum local variable usage, and convert our
arithmetic language that includes variable definitions and uses, if

7 2009/10/6

expressions, and binary operations, into a low level stack-based op-
erations similar to those found in the Java Virtual Machine. We first
examine our target data structures, then discuss the source struc-
tures and the different operations involved in the transformation
from one to the other.

8.1 Structures

To build a compiler we need representations for both our source
and target languages. The abstract and concrete syntax of both
languages can be described with a few CDs. Figure 26 shows a
CD that defines our target language: a simple stack based assembly
language with labels, subtraction, and operations for manipulating
control, stack, and definitions.

/ / asm . cd
Op = Minus | Push | Pop | Def ine | Undef

| Load | Labe l | Jmp | IfNZ .

Minus = ” minus ” .
Push = ” push ”<i> i n t .
Pop = ” pop ” .
De f ine = ” de f ” .
Undef = ” undef ” .
Load = ” l oad ” <i> i n t .
Labe l = ” l a b e l ” <id> i d e n t .
Jmp = ” jump ” <id> i d e n t .
IfNZ = ” i f n z e r o ” <id> i d e n t .

Figure 26. Assembly structures CD

We do not show the code associated with the assembly struc-
tures, but the full code for all the examples in the paper is available
on the web (8). Figure 27 shows a CD file that describes our ex-
pression data structures.

/ / exp . cd
Exp = I f z | Def | Bin | Var | Num.
I f z = ” i f z ” <cnd> Exp ” then ” <thn> Exp

” e l s e ” <e l s> Exp .
Def = <id> i d e n t ”=” <e> Exp ” ; ” <body> Exp .
Bin = ” (” <op> Oper < l e f t > Exp <r i g h t> Exp ”) ” .
Var = <id> i d e n t .
Num = <va l> i n t .

Oper= Sub .
Sub = ”−” .

Figure 27. Expression structures CD

The command to generate all the class definitions is shown
below.

>% java DemeterF exp.cd --dgp:Print:StaticTU:StaticBc

DemeterF uses the dgp functions to generate ourprint methods,
and static versions of our generic function classes. As for parsing,
a simple term in this expression syntax would look something like:

i f z (− 4 3) then 5 e l s e 7

and can be parsed with the Java statement below, though for the rest
of the example we will parse expressions from file streams.

Exp e = Exp . p a r s e (” i f z (− 4 3) then 5 e l s e 7”) ;

8.2 Max Environment

A typical operation needed when compiling languages with local
definitions is to calculate the maximum number variables used by
a procedure. This allows the runtime to allocate the right amount
of space for procedure frames and verify thatLoad instructions are
always in bounds. Figure 28 shows a function class that calculates

the maximum local definition nesting for an expression. Variables
are bound byDefs, so we calculate return the maximum ofbody+1
and the result from the expression. We extendStaticTU, which
handles other cases likeNum andBin, and can be used to generate
inlined traversals.

c l a s s MaxEnv ex tends Stat icTU<I n t e g e r>{
I n t e g e r combine (){ re turn 0 ; }
I n t e g e r f o l d (I n t e g e r a , I n t e g e r b)
{ re turn Math . max (a , b) ; }

I n t e g e r combine (Def c , i n t id , i n t e , i n t b)
{ re turn f o l d (e , 1+b) ; }

}

Figure 28. Maximum local environment calculation.

8.3 Simplification

As a second example, Figure 29 shows a function class that imple-
ments the bottom up simplification of constant expressions in our
mini language. We extend the generated classStaticBc, so we can
efficiently inline the function class later.

c l a s s S i m p l i f y ex tends S t a t i c B c{
c l a s s Zero ex tends Num{ Zero (){ super (0) ; } }
Num combine (Num n , i n t i)
{ re turn (i ==0) ? new Zero () : new Num(i) ; }

Exp combine (Bin b , Sub p , Exp l , Zero r){ re turn l ; }
Exp combine (Bin b , Sub p , Num l , Num r)
{ re turn combine (l , l . va l−r . v a l) ; }

Exp combine (I f z f , Zero z , Exp t , Exp e){ re turn t ; }
Exp combine (I f z f , Num n , Exp t , Exp e){ re turn e ; }

Exp combine (Def d , i d e n t i , Exp e , Num b){ re turn b ;}
}

Figure 29. Simplification function class

The special cases in our arithmetic language are each captured
by acombine method, while the rest of the reconstruction is han-
dled implicitly byStaticBc. Instances ofNum that contain zero are
transformed into instances of the more specific inner classZero.
SubtractingZero from anyExp yields just the leftExp; for sub-
traction consisting of only numbers we can propagate the resulting
constant as a newNum. ForIfz expressions, when the condition is
Zero or Num we can simplify by returning the results from thethn
or elsfields, respectively.

8.4 TheExp Compiler

For the sake of code organization and modularity, we have split
the final example into four classes; one class for each category of
expression and a main, top-level entry-point. Figure 30 shows the
main compiler class,Compile, that extends our final function class,
Cond.

/ / Compi le an Exp F i l e
c l a s s Compile ex tends Cond{

L i s t<Op> compi le (S t r i n g f i l e) throws Excep t i on{
Exp e = Exp . p a r s e (new F i l e I n p u t S t r e a m (f i l e)) ;
re turn new T r a v e r s a l (t h i s)

. t r a v e r s e (e , L i s t .< i d e n t>c r e a t e ()) ;
}

}

Figure 30. Main compile class

We have a single method,compile(Exp), that traverses the
given expression to produces representative opcodes in aList<Op>.

8 2009/10/6

List is the functional (immutable) list implementation provided in
the DemeterF library with typical methods:create, append, and
lookup. All our DemeterF library classes are also described by a
CD file, so our generative traversal approach applies equally well.
When compiling, we use the traversal context to pass the stack of
local variables (List<ident>) to nested definitions, starting with
an emptyList<ident>.

c l a s s A r i t h ex tends ID{
s t a t i c L i s t<Op> empty = L i s t . c r e a t e () ;
s t a t i c L i s t<Op> one (Op o){ re turn empty . append (o) ;}

L i s t<Op> combine (Sub s){ re turn one (new Minus ()) ; }
L i s t<Op> combine (Num n , i n t i)
{ re turn one (new Push (i)) ; }
L i s t<Op> combine (Bin b , L i s t<Op> o , L i s t<Op> l ,

L i s t<Op> r)
{ re turn r . append (l) . append (o) ;}

}

Figure 31. Compile for arithmeticOps

Figure 31 shows thecombine methods for math related opera-
tors. The static fieldempty and the methodone(..) simplify the
creation of singleOp lists. As is common in stack based assembly
languages we push operands onto the stack, then call an arithmetic
operator. For instance, the simple expression(- 4 3) would gen-
erate the following instruction sequence:

push 3
push 4
minus

TheDefs class in Figure 32 implements the compilation of vari-
able definition related expressions. We generate aLoad operation
for a variable reference, with the offset of the identifier from the
environment, which is passed as the last argument of thecombine.
Our update method adds a defined variable to the environment
when traversing into thebody of a definition, signified by the use
of the field class. Once all sub-expressions have been compiled, the
body code is wrapped inDefine/Undef and appended to the code
for the binding evaluating.

c l a s s Defs ex tends A r i t h {
L i s t<i d e n t> upda te (Def d , Def . body f , L i s t<i d e n t> s)
{ re turn s . push (d . i d) ; }
L i s t<Op> combine (Var v , i d e n t id , L i s t<i d e n t> s)
{ re turn one (new Load (s . i ndex (i d))) ; }

L i s t<Op> combine (Def d , i d e n t id , L i s t<Op> e ,
L i s t<Op> bdy){

re turn e . append (new Def ine ()) . append (bdy)
. append (new Undef ()) ;

}
}

Figure 32. Compile for Variables

The final class,Cond shown in Figure 33 deals with conditional
expressions. We use a local variable to create uniqueLabels within
the generated code, asfresh(·) creates an newident. TheIfNZ
opcode is used to branch to theelseportion when the condition is
not zero, otherwise thethen will be executed and weJmp to the
donelabel.

8.5 Performance

To demonstrate the performance of DemeterF inlined traversals, we
give timing results for three equivalent implementations of each
of the functions,MaxEnv, Simplify, and Compile. Figure 34
contains the average results of 10 runs of each on a very largeExp
instance. DemeterF inlined traversals perform very competitively,

c l a s s Cond ex tends Defs{
i n t lnum = 0 ;
i d e n t f r e s h (S t r i n g s)
{ re turn new i d e n t (s+” ”+lnum ++) ; }

L i s t<Op> combine (I f z f , L i s t<Op> c , L i s t<Op> t ,
L i s t<Op> e){

i d e n t l e = f r e s h (” e l s e ”) ,
l d = f r e s h (” done ”) ;

re turn c . append (new IfNZ (l e)) . append (t)
. append (new Jmp (l d))
. append (new Labe l (l e)) . append (e)
. append (new Labe l (l d)) ;

}
}

Figure 33. Compile for Conditionals

beating both the hand-written and visitor implementations in the
Compile test.

Type MaxEnv Simplify Compile

INLINE 26 ms 25 ms 1130 ms
HAND 9 ms 21 ms 1160 ms

V ISITOR 34 ms 80 ms 1187 ms

Figure 34. Performance results for compile related functions

9. Related Work
The traversal-based approach of DemeterF is similar to other
generic and generative programming projects. In OO programming
much work has been centered around the visitor pattern (14) and
related tools, while work in functional languages focus more on
new forms of polymorphism and polytypic programming.

9.1 Demeter Tools and Generators

Adaptive OO Programming (23) combines datatype descriptions
with a domain specific language that selects a portion of an object
instance, over which a visitor is executed. The two major imple-
mentations of adaptive programming, DJ (27) and DemeterJ (30),
are similar to DemeterF’s reflective and static traversals, respec-
tively. DemeterJ uses a similar class dictionary syntax to describe
datatypes and generate Java classes, a parser, and various default
visitors. Ideas from both DemeterJ and DJ have flowed into the
design of DemeterF, with a purely functional flavor. DemeterF im-
proves on those tools with type-safe traversals, support for generics,
and customizable data-generic function generation. Similar to the
Law of Demeter slogan, “talk only to your friends”, the program-
ming style of DemeterF can be described as “listen only to your
friends”.

Other generational tools like JAXB (2) and XMLBeans (5)
are used to generate verbose Java classes and parsers from XML
Schemas. Thought the design of the created classes enforce good
programming practices, the tools seem to have little support for
other generic features, and no notion of parametrized classes.
Parser generators like JavaCC (4) and ANTLR (1) have built in
support for generating code for tree based traversals. JavaCC in-
cludes a tool JJTree that includes support for automatic visitor
methods; ANTLR provides similar functionality withtree parsers.

9.2 Visitors and Multi-methods

The visitor pattern is most commonly used in OO languages to im-
plement functions over datatypes without requiring instance checks
or casts. Typical implementations use a double dispatch technique,
though reflection is also used (28; 27). The visitor pattern has a

9 2009/10/6

sound type-theoretic background (6; 31), and has been central in
OO discussions of extensible functions (20). There is an opinion
that multi-methods (12; 10) eliminate the need for the visitor pat-
tern, but visitors can still be used to abstract traversals similar to the
Walkabout (28) visitor. In DemeterF we use multiple dispatch to
support both abstraction and specialization within function classes.
Type checking of DemeterF function classes over traversals is sim-
ilar to that employed in multi-method systems (11).

9.3 Generic Programming

Gibbons (15) gives a comprehensive review of datatype generic
programming. Higher-order functions such asfold (25) can be
generalized (29; 16) to other datatype shapes, similar to Deme-
terF’s traversals, which adapt to the shape of a data structures. The
data generic features of DemeterF are modeled after functional lan-
guages that support forms of shape polymorphism. PolyP (17) has
similarities to Generic Haskell (24), both of which support the defi-
nitions of functions that work over datatypes with different shapes.
More light-weight approaches such as Scrap Your Boilerplate (21)
have been developed, making use of modular extension provided by
Haskell’s typeclasses, and a later paper in the series (22) presents
a solution to extensible generic functions. The type checking and
extensibility of DemeterF function classes sets it apart from other
functional approaches, though our checks are in addition to those
of the underlying language.

10. Conclusion and Future Work
We have introduced a new form of traversal-based generic pro-
gramming that uses function classes to define both generic and spe-
cific functions over data structures. We use traversals that employ
multiple-dispatch to allow function classes to be both flexible and
extensible. Together with a generic traversal, they provide OO pro-
grammers with a special form of shape polymorphism. Our tool is
able to generate classes and functions from structural descriptions
of data types. Using the structures and types from the function class
we can inline functions to achieve performance that is competitive
with hand written instance methods. The traversal based approach
of DemeterF supports a programming style that promotes functions
that are flexible, extensible, and efficient.

In the future we plan to use our tool to implement parallel traver-
sals without the performance issues that result from reflection. Now
that traversal inlining and method residue have been solved, we
hope to see even better performance when re-targeting traversals
on multi-core architectures.

References
[1] ANother Tool for Language Recognition. Website, 2009.http:

//www.antlr.org/.

[2] JAXB reference implementation. Website, 2009.https://jaxb.
dev.java.net/.

[3] Ruby Programming Language. Website, 2009.http://www.
ruby-lang.org/en/.

[4] The Java Compiler Compiler™. Website, 2009.https://javacc.
dev.java.net/.

[5] XML Beans overview. Website, 2009.http://xmlbeans.apache.
org/overview.html.

[6] Peter Buchlovsky and Hayo Thielecke. A type-theoretic reconstruc-
tion of the visitor pattern.Electr. Notes Theor. Comput. Sci., 155:309–
329, 2006.

[7] Bryan Chadwick. Algorithms in DemeterF.http://www.ccs.neu.
edu/home/chadwick/algo.pdf, May 2009.

[8] Bryan Chadwick. Gpce-09 submission example code. Website, 2009.
http://www.ccs.neu.edu/home/chadwick/gpce09/.

[9] Bryan Chadwick and Karl Lieberherr. A Type System for Functional
Traversal-Based Aspects. InAOSD 2009, FOAL Workshop, ACM
International Conference Proceeding Series. ACM, 2009.

[10] Craig Chambers. Object-oriented multi-methods in cecil.In ECOOP
’92, pages 33–56. Springer-Verlag, 1992.

[11] Craig Chambers and Gary T. Leavens. Typechecking and modules for
multimethods.TOPLAS ’95, 17(6):805–843, November 1995.

[12] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd D. Mill-
stein. Multijava: modular open classes and symmetric multiple dis-
patch for java. InOOPSLA, pages 130–145, 2000.

[13] Bruno C. d. S. Oliveira, Meng Wang, and Jeremy Gibbons. The
visitor pattern as a reusable, generic, type-safe component. In Gregor
Kiczales, editor,OOPSLA ’08, October 2008.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[15] Jeremy Gibbons. Datatype-generic programming. In RolandBack-
house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors,Spring
School on Datatype-Generic Programming, volume 4719 ofLecture
Notes in Computer Science. Springer-Verlag, 2007.

[16] Ralf Hinze. Efficient generalized folds. Technical Report IAI-TR-99-
8, Institut f̈ur Informatik III, Universiẗat Bonn, jun 1999.

[17] P. Jansson and J. Jeuring. PolyP - a polytypic programminglanguage
extension. InPOPL ’97, pages 470–482. ACM Press, 1997.

[18] Simon P. Jones.Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, May 2003.

[19] Richard Kelsey, William Clinger, and Jonathan Rees (Editors).
Revised5 report on the algorithmic language Scheme.ACM SIGPLAN
Notices, 33(9):26–76, 1998.

[20] Shriram Krishnamurthi, Matthias Felleisen, and DanielP. Friedman.
Synthesizing object-oriented and functional design to promote re-use.
In ECOOP ’98, pages 91–113, London, UK, 1998. Springer-Verlag.

[21] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. volume 38, pages
26–37. ACM Press, March 2003.

[22] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with
class: extensible generic functions. InICFP ’05, pages 204–215. ACM
Press, September 2005.

[23] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Deme-
ter Method with Propagation Patterns. PWS Publishing Company,
Boston, 1996. 616 pages, ISBN 0-534-94602-X.

[24] Andres Loeh, Johan Jeuring (editors); Dave Clarke, Ralf Hinze,
Alexey Rodriguez, and Jan de Wit. Generic haskell user’s guide –
version 1.42 (coral). Technical Report UU-CS-2005-004, Department
of Information and Computing Sciences, Utrecht University, 2005.

[25] Erik Meijer and Johan Jeuring. Merging monads and folds for func-
tional programming. In J. Jeuring and E. Meijer, editors,Tutorial Text
1st Int. Spring School on Advanced Functional Programming Tech-
niques, B̊astad, Sweden, 24–30 May 1995, volume 925, pages 228–
266. Springer-Verlag, Berlin, 1995.

[26] Robin Milner, Mads Tofte, and David Macqueen.The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1997.

[27] Doug Orleans and Karl J. Lieberherr. DJ: Dynamic Adaptive Pro-
gramming in Java. InReflection 2001: Meta-level Architectures and
Separation of Crosscutting Concerns, Kyoto, Japan, September 2001.
Springer Verlag. 8 pages.

[28] Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In
COMPSAC ’98, Washington, DC, USA, 1998.

[29] Tim Sheard and Leonidas Fegaras. A fold for all seasons.In Proceed-
ings 6th ACM SIGPLAN/SIGARCH, FPCA’93, Copenhagen, Den-
mark, 9–11 June 1993, pages 233–242. ACM Press, New York, 1993.

[30] The Demeter Group. The DemeterJ website.
http://www.ccs.neu.edu/research/demeter, 2007.

[31] Thomas VanDrunen and Jens Palsberg. Visitor-oriented programming.
FOOL ’04, January 2004.

10 2009/10/6

