(require "apf.scm") (require (lib "list.ss")) ;; Test using BSTs... Tests the path based "update", traversal control, and ;; general "combine"s ;; Produces a list of strings representing the paths to each ;; "data" element in the tree (define (bst-paths t) (traverse-ba t (union-id [(number string) (n p) (string-append (number->string n) ":" p)] [(leaf) (l) '()] [(node string list list) (n d l r) (cons d (append l r))]) (union-idA [(bst node.left string) (t f p) (string-append p ".left")] [(bst node.right string) (t f p) (string-append p ".right")]) "root")) ;; Produces a string representation of the tree (define (bst->string t) (traverse-b t (union-id [(number) (n) (number->string n)] [(bst string string string) (n d l r) (string-append "(" d " " l " " r ")")] [(bst) (l) ""]))) ;; Increments each data element and rebuilds the resulting tree (define (bst-incr t) (traverse-b t (union-Bc [(number) (n) (add1 n)]))) ;; Find the minimum data element in the BST... keep going left (define (bst-min t) (traverse-bc t (union-id [(leaf) (l) l] [(node number leaf) (n d l) d] [(node number number) (n d mn) mn]) (make-bypass (node right)))) ;; Main function (define (Main) (let ((tree (list->bst '(4 6 2 3 1 7 5)))) (println " Tree: " (bst->string tree)) (println " Paths:\n" (pretty (bst-paths tree))) (println " Incr: " (bst->string (bst-incr tree))) (println " Min: " (bst-min tree)))) ;; The usual functional BSTs, defined with apf-lib... (abstract bst [node leaf]) (concrete node ["(" (data number) (left bst) (right bst) ")"]) (concrete leaf ["*"]) ;; Insert a single element into the given BST (define (bst-insert t i) (traverse-bc t (union-id [(leaf) (l) (node i l l)] [(node number bst bst) (n d l r) (if (< i d) (node d (bst-insert l i) r) (node d l (bst-insert r i)))]) one-step)) ;; Convert a list-of-numbers into a BST (define (list->bst l) (traverse-b (reverse l) (union-id [(empty) (e) (leaf)] [(cons number bst) (c n t) (bst-insert t n)]))) ;; Print a line from a list of strings (define (println . los) (map display los) (newline)) ;; Pretty-ify a list of strings (Paths) (define (pretty lop) (foldr (lambda (s r) (string-append " " s "\n" r)) "" lop)) ;; Finally, call the Main function ;; ******************************* (Main)