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Abstract
Researchers have developed a large variety of semantic models of
object-oriented computations. These include object calculi as well
as denotational, small-step operational, big-step operational, and
reduction semantics. Some focus on pure object-oriented compu-
tation in small calculi; many others mingle the object-oriented and
the procedural aspects of programming languages.

In this paper, we present a novel, two-level framework of object-
oriented computation. The upper level of the framework borrows
elements from UML’s sequence diagrams to express the message
exchanges among objects. The lower level is a parameter of the
upper level; it represents all those elements of a programming lan-
guage that are not object-oriented. We show that the framework is
a good foundation for both generic theoretical results and practical
tools, such as object-oriented tracing debuggers.

1. Models of Execution
Some 30 years ago, Hewitt [22, 23] introduced the ACTOR model
of computation, which is arguably the first model of object-oriented
computation. Since then, people have explored a range of mathe-
matical models of object-oriented program execution: denotational
semantics of objects and classes [7, 8, 25, 33], object calculi [1],
small step and big step operational semantics [10], reduction se-
mantics [16], formal variants of ACTOR [2], and others [4, 20].

While all of these semantic models have made significant con-
tributions to the community’s understanding of object-oriented lan-
guages, they share two flaws. First, consider theoretical results such
as type soundness. For ClassicJava, the type soundness proof uses
Wright and Felleisen’s standard technique of ensuring that type in-
formation is preserved while the computation makes progress. If
someone extends ClassicJava with constructs such as while loops
or switch statements, it is necessary to re-prove everything even
though the extension did not affect the object-oriented aspects of
the model. Second, none of these models are good starting points
for creating practical tools. Some models focus on pure core object-
oriented languages; others are models of real-world languages but
mingle the semantics of object-oriented constructs (e.g., method
invocations) with those of procedural or applicative nature (inter-
nal blocks or while loops). If a programmer wishes to debug the
object-oriented actions in a Java program, a tracer based on any of
these semantics would display too much procedural information.
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Figure 1. Graphical sequence trace.

In short, a typical realistic model is to object-oriented debugging as
a bit-level representation is to symbolic data structure exploration.

In this paper, we introduce a two-level [32] semantic framework
for modeling object-oriented programming languages that over-
comes these shortcomings. The upper level represents all object-
oriented actions of a program execution. It tracks six kinds of ac-
tions via a rewriting system on object-configurations [26]: object
creation, class inspection, field inspection, field mutation, method
calls, and method return; we do not consider any other action an
object-oriented computation. The computations at this upper level
have a graphical equivalent that roughly corresponds to UML se-
quence diagrams [17]. Indeed, each configuration in the semantics
corresponds to a diagram, and each transition between two config-
urations is an extension of the diagram for the first configuration.

The upper level of the framework is parameterized over the in-
ternal semantics of method bodies, dubbed the lower level. To in-
stantiate the framework for a specific language, a semanticist must
map the object-oriented part of a language to the object-oriented
level of the framework and must express the remaining actions as
the lower level. The sets and functions defining the lower level may
be represented many ways, including state machines, mathemati-
cal functions, or whatever else a semanticist finds appropriate. We
demonstrate how to instantiate the framework with a Java subset.

In addition to developing a precise mathematical meaning for
the framework, we have also implemented a prototype of the frame-
work. The prototype traces a program’s object-oriented actions and
allows programmers to inspect the state of objects. It is a compo-
nent of the DrScheme programming environment [13] and covers
the kernel of PLT Scheme’s class system [15].

The next section presents a high-level overview. Section 3 intro-
duces the framework and establishes a generalized soundness the-
orem. Section 4 demonstrates how to instantiate the framework for
a subset of Java and extends the soundness theorem to that instan-
tiation. Section 5 presents our tool prototype. The last two sections
are about related and future work.



−→t Any number of elements of the form t.
c[e] Expression e in evaluation context c.

e[x := v] Substitution of v for free variable x in expression e.
d

p−→ r The set of partial functions of domain d and range r.
d

f−→ r The set of finite mappings of domain d and range r.
[
−−−→
a #→ b] The finite mapping of each a to the corresponding b.

f [
−−−→
a #→ b] Extension of finite mapping f by each mapping of a

to b (overriding any existing mappings).

Figure 2. Notational conventions.

2. Sequence Traces
Sequence traces borrow visual elements from UML sequence di-
agrams, but they represent concrete execution traces rather than
specifications. A sequence trace depicts vertical object lifelines and
horizontal message arrows with class and method labels, just as in
sequence diagrams. The pool of objects extends horizontally; exe-
cution of message passing over time extends vertically downward.
There are six kinds of messages in sequence traces: new messages
construct objects, get and set messages access fields, call and re-
turn messages mark flow control into and out of methods, and in-
spect messages extract an object’s tag.

Figure 1 shows a sample sequence trace. This trace shows the
execution of the method normalize on an object representing the
cartesian point (1, 1). The method constructs and returns a new ob-
ject representing (

√
2

2 ,
√

2
2 ). The first object is labeled Obj1 and be-

longs to class point%. Its lifeline spans the entire trace and gains
control when an external agent calls Obj1.normalize(). The first
two actions access its x and y fields (self-directed messages, rep-
resented by lone arrowheads). Obj1 constructs the second point%
object, Obj2, and passes control to its constructor method. Obj2
initializes its x and y fields and returns control to Obj1. Finally,
Obj1 returns a reference to Obj2 and yields control.

Sequence traces suggest a model of computation as communi-
cation similar to π-calculus models [35]. In this model, an exe-
cution for an object-oriented program is represented as a collec-
tion of object lifelines and the messages passed between them. The
model “hides” computations that take place inside of methods and
that don’t require any externally visible communication. This is the
core of any object-oriented programming language and deserves a
formal exploration.

3. The Framework
Our framework assigns semantics to object-oriented languages at
two levels. The upper level describes objects, their creation, their
lifelines, and their exchanges of messages. The lower level con-
cerns all those aspects of a language’s semantics that are unrelated
to its object-oriented nature, e.g., static methods, blocks, decision
constructs, looping constructs, etc. In this section we provide syn-
tax, semantics, a type system, and a soundness theorem for the up-
per level.

3.1 The Upper Level
For the remainder of the paper we use the notational conventions
shown in Figure 2. Figure 3 gives the full syntax of the upper level
using this notation and specifies the language-specific sets over
which it is parameterized. A sequence trace is a series of states each
containing a pool of objects, a stack of active methods, a reference
to a controlling object, and a current action. Objects consist of a
static record (their unchanging properties, such as their class) and
a dynamic record (their mutable fields). Actions may be one of
six message types (new, inspect, get, set, call, or return) or an
execution error.

Syntax:
T =

−→
S Sequence trace

S = 〈P, K, r, A〉 Execution state
P : r

f−→ O Object pool
K = ε | 〈r, k〉K Method stack
O = 〈s, D〉 Object record
D : f

f−→ V Dynamic record
V = v | r | s Value
A = M | ERR Action
M = new O; k | inspect r; k Message

| get r.f ; k | set r.f := V ; k
| call r.m(

−→
V ); k | return V

R = 〈P, ε, r, return V 〉 Result
| 〈P, K, r,ERR〉

ERR = err | error:ref | error:field Execution error
Where:

p lower-level parameter Program
k lower-level parameter Method-local continuation
s lower-level parameter Static record
f lower-level parameter Field name
m lower-level parameter Method name
v lower-level parameter Primitive value

err lower-level parameter Language-specific error
r countable set Object reference

Figure 3. Sequence trace syntax.

Figure 4 gives the upper-level operational semantics of se-
quence traces along with descriptions and signatures for its lower-
level parameters. The parameter init is a function mapping a pro-
gram to its initial state. A trace is the result of rewriting the initial
state, step by step, into a final state. Each subsequent state depends
on the previous state and action, as follows:

object creation A new action adds a reference and an object to the
pool. The initiating object retains control.

object inspection An inspect action retrieves the static record of
an object.

field lookup A get action retrieves the value of a field from an
object.

field update A set action changes the value of a field in an object.
method call A call action invokes a method in an object, supplies

a number of arguments, and transfers control.
method return A return action completes the current method call.

All of these transitions have a natural graphical equivalent (see
Section 2).

At each step, the rewriting system uses either the (partial) func-
tion invoke or resume to compute the next action. These func-
tions, like the step relation → and several others described below,
are indexed by the source program p. Both functions are parame-
ters of the rewriting system. The former begins executing a method;
the latter continues one in progress using a method-local continu-
ation. Both functions are partial, admitting the possibility of non-
termination at the method-internal level. Also, both functions may
map their inputs to a language-specific error.

3.2 Soundness
Our two-level semantic framework comes with a two-level type
system. The purpose of this type system is to eliminate all upper-
level type errors (reference error, field error) and to allow only
those language-specific errors on which the lower-level insists. For



Evaluation:
〈P, K, r, new O; k〉 →p 〈P [r′ #→ O], K, r, resumep(k, r′)〉 where r′ &∈ dom(P )
〈P, K, r, inspect r′; k〉 →p 〈P, K, r, resumep(k, s)〉 where P (r′) = 〈s, D〉
〈P, K, r, get r′.f ; k〉 →p 〈P, K, r, resumep(k, V )〉 where P (r′) = 〈s, D〉 and D(f) = V
〈P, K, r, set r′.f := V ; k〉 →p 〈P [r′ #→ 〈s, D[f #→ V ]〉], K, r, resumep(k, V )〉 where P (r′) = 〈s, D〉 and f ∈ dom(D)
〈P, K, r, call r′.m(

−→
V ); k〉 →p 〈P, 〈r, k〉K, r′, invokep(r

′, P (r′), m,
−→
V )〉 where r′ ∈ dom(P )

〈P, 〈r′, k〉K, r, return V 〉 →p 〈P, K, r′, resumep(k, V )〉
〈P, K, r, inspect r′; k〉
〈P, K, r, get r′.f ; k〉
〈P, K, r, set r′.f := V ; k〉
〈P, K, r, call r′.m(

−→
V ); k〉

9
>>=

>>;
→p 〈P, K, r, error:ref〉 where r′ &∈ dom(P )

〈P, K, r, get r′.f ; k〉
〈P, K, r, set r′.f := V ; k〉

ff
→p 〈P, K, r, error:field〉 where P (r′) = 〈s, D〉 and f &∈ dom(D)

Where:
init : p −→ S Constructs the initial program state.

invokep : 〈r, O, m,
−→
V 〉 p−→ A Invokes a method.

resumep : 〈k, V 〉 p−→ A Resumes a suspended computation.

Figure 4. Sequence trace semantics.

Upper level:
p (u S : t State S has type t.
p (u P Object pool P is well-formed.
p, P (u K : t1

s−→ t2 Stack K produces type t2 if the current
method produces type t1.

p, P (u r : o Reference r has type o.
p, P (u s : t Static record s has type t as a value.
p, P (u O OK in o Object record O is an object of type o.
p, P (u D OK in o Dynamic record D stores fields for an

object of type o.
p, P (u A : t Action A’s method returns type t.

Lower level:
(! p : t Program p has type t.
p, P (! k : t1

c−→ t2 Continuation k produces an action of
type t2 when given input of type t1.

p, P (! s OK in o Static record s is well-formed in an ob-
ject of type o.

p, P (! v : t Primitive value v has type t.

Figure 5. Type judgments.

t any set Value types
o ⊆ t Object types

exn ⊆ err Allowable exceptions
*p partial order on t Subtype relation

fieldsp : o −→ (f
f−→ t)

)Produce an object’s
field, method, or static
record types.

methodsp : o −→ (m
f−→ 〈−→t , t〉)

metatypep : o −→ t

Figure 6. Sets, functions, and relations used by the type system.

example, in the case of Java, the lower level cannot rule out null
pointer errors and must therefore raise the relevant exceptions.

Type judgments in this system are split between those defined
at the upper level and those defined at the lower level, as shown
in Figure 5. The upper level relies on the lower-level judgments
and possibly vice versa. The lower-level type system must pro-
vide type judgments for programs, continuations, the static records
of objects, and primitive values. The upper-level type system de-

INIT
(! p : t

p (u init(p) : t

RESUME

p, P (u! V : t1
p, P (! k : t2

c−→ t3
t1 *p t2 t4 *p t3

p, P (u resumep(k, V ) : t4

INVOKE

p, P (u r : o
−−−−−−−−−−→
p, P (u! V : t1

methodsp(o)(m) = 〈−→t2 , t3〉−−−−−→
t1 *p t2 t4 *p t3

p, P (u invoke(r, P (r), m,
−→
V ) : t4

Figure 7. Constraints on the lower-level type system.

fines type judgments for everything else: program states, object
pools, stacks, references, static records when used as values, ob-
ject records, dynamic records, and actions of both the message and
error variety.

The lower level must also define several sets, functions, and
type judgments, shown in Figure 6. The set t defines types for the
language’s values; o defines the subset of t representing the types of
objects. The subset exn of err distinguishes the runtime exceptions
that well-typed programs may throw.

The subtype relation * induces a partial order on types. The
total functions fields and methods define the field and method
signatures of object types. The total function metatype determines
the type of a static record from the type of its container object; it is
needed to type inspect messages.

The INIT, RESUME, and INVOKE typing rules, shown in Fig-
ure 7, constrain the lower-level framework functions of the same
names. The INIT rule states that a program must have the same type
as its initial state. The RESUME rule states that a continuation’s
argument object and result action must match its input type and
output type, respectively. The INVOKE rule states that when an ob-
ject’s method is invoked and given appropriately-typed arguments,
it must produce an appropriately-typed action. In addition, a sound
system requires all three to be total functions, whereas the untyped
operational semantics allows resume and invoke to be partial. The



Syntax:
p =

−→
∆

s = c
f = 〈c, fcj〉
m = mcj | 〈c, mcj〉
v = null

err = error:method | error:null
| error:typecast | error:var

k = { τ x=k; −−−→τ x=e; e }
| (τ)k | (k * τ)r | k :c.fcj

| k :c.fcj=e | V :c.fcj=k
| k.mcj(−→e ) | V .mcj(

−→
V k −→e )

| super≡r :c.mcj(
−→
V k −→e ) | []

Where:
i countable set Interface name
c countable set Class name

mcj countable set Method label
fcj countable set Field label
∆ = interface i extends

−→
i { −→σ } Definition

| class c extends c implements
−→
i { −→φ −→

δ }
σ = τ mcj(−→τ ); Method signature
δ = τ mcj(−→τ x) { e } Method definition
φ = τ fcj=e; Field definition
e = V | x | this | { −−−→τ x=e; e } | new c Expression

| (τ)e | (c * τ)e | e :c.fcj | e :c.fcj=e
| e.mcj(−→e ) | super≡e :c.mcj(−→e )

Figure 8. Java core syntax.

fieldp : 〈c, fcj〉 −→ φ Looks up field definitions.
methodp : 〈c, mcj〉 −→ δ Looks up method definitions.
objectp : c −→ O Constructs new objects.

callp : 〈r, c, mcj,
−→
V 〉 −→ A Picks a method’s first action.

evalp : e −→ A Chooses the next action.
→cj

p : e
p−→ e Computes a single step.

Figure 9. Java core relations and functions.

lower level type system must guarantee these rules, while the upper
level relies on them for a parametric soundness proof.

THEOREM 1 (Soundness). If the functions init , resume, and
invoke are total and satisfy constraints INIT, RESUME, and IN-
VOKE respectively, then if (! p : t, then either p diverges or
init(p) !p R and p (u R : t.

The type system satisfies a conventional type soundness theorem.
Its statement assumes that lower-level exceptions are typed; how-
ever, they can only appear in the final state of a trace. Due to space
limitations, the remaining details of the type system and soundness
proof have been relegated to our technical report [12].

4. Framework Instantiations
The framework is only useful if we can instantiate its lower level for
a useful object-oriented language. In this section we model a subset
of Java in our framework, establishes its soundness, and consider
an alternate interpretation of Java that strikes at the heart of the
question of which language features are truly object-oriented. We
also discuss a few other framework instantiations.

4.1 Java via Sequence Traces
Our framework can accomodate the sequential core of Java, based
on ClassicJava [16], including classes, subclasses, interfaces,
method overriding, and typecasts. Figure 8 shows the syntax of
the Java core. Our set of expressions includes lexically scoped
blocks, object creation, typecasts, field access, method calls, and
superclass method calls. Field access and superclass method calls
have class annotations on their receiver to aid the type soundness
lemma in Section 4.3. Typecast expressions have an intermediate
form used in our evaluation semantics. We leave out many other
Java constructs such as conditionals, loops, etc.

Programs in this language are a sequence of class and interface
definitions. An object’s static record is the name of its class. Field
names include a field label and a class name. Method names in-
clude a label and optionally a class name. The sole primitive value
is null. We define errors for method invocation, null dereference,

failed typecasts, and free variables. Last but not least, local contin-
uations are evaluation contexts over expressions.

Figure 10 defines the semantics of our Java core using the rela-
tions and functions described in Figure 9. We omit the definitions
of *, field , and method , which simply inspect the sequence of
class and interface definitions. The init function constructs an ob-
ject of class Program and invokes its main method. The resume
function constructs a new expression from the given value and the
local continuation (a context), then passes it to eval ; invoke simply
uses call .

Method invocation uses call for dispatch. This function looks
up the appropriate method in the program’s class definitions. It
substitutes the method’s receiver and parameters, then calls eval
to evaluate the expression.

The eval function is defined via a reduction relation →cj. That
is, its results are determined by the canonical forms of expression
with respect to !cj, the reflexive transitive closure. Object cre-
ation, field lookup, field mutation, method calls, and method returns
all generate corresponding framework actions. Unelaborated type-
cast expressions produce inspection actions, adding an elaborated
typecast context to their continuation. The eval function signals an
error for all null dereferences and typecast failures.

Calls to an object’s superclass generate method call actions; that
is, an externally visible message. The method name includes the
superclass name for method dispatch, which distinguishes it from
the current definition of the method.

The step relation (→cj) performs all purely object-internal com-
putations. It reduces block expressions by substitution and com-
pletes successful typecasts by replacing the elaborated expression
with its argument.

LEMMA 1. For any expression e, there is some e′ such that e !cj
p

e′ and e′ is of canonical form.

Together, the sets of canonical expressions and of expressions on
which →cj is defined are exhaustive. Furthermore, each step of
→cj strictly reduces the size of the expression. The expression must
reduce in a finite number of steps to a canonical form for which
eval produces an action. Therefore eval is total.

COROLLARY 1. The functions invoke and resume are total.

Because these functions are total, evaluation in the sequential core
of Java cannot get stuck; each state must either have a successor or
be a final result.

4.2 Alternate Interpretation of the Java Core
Our parameterization of the sequence trace framework for Java
answers the question: “what parts of the Java core are object-



init(p) = 〈[r0 #→ objectp(Program)], ε, r0, call r0.main(); []〉
resumep(k, V ) = evalp(k[V ])
invokep(r, 〈c, D〉, mcj,

−→
V ) = callp(r, c, m

cj,
−→
V )

invokep(r, 〈c, D〉, 〈c′, mcj〉,−→V ) = callp(r, c
′, mcj,

−→
V )

object(c) = 〈c, [
−−−−−−−−−−−→
〈c′, fcj〉 #→ null]〉

where
−−−−−−−−−−−−−−−−−→
fieldp(c, f

cj) = τ fcj=c′;

callp(r, c, m
cj,
−→
V ) =8

<

:

evalp(e[this := r]
−−−−−→
[x := V ])

if methodp(c, m
cj) = τ mcj(−→τ x) { e }

error:method otherwise

evalp(e) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

return V if e !cj
p V

new object(c); k if e !cj
p k[new c]

get r.〈c, f〉; k if e !cj
p k[r :c.f ]

set r.〈c, f〉 := V ; k if e !cj
p k[r :c.f=V ]

call r.m(
−→
V ); k if e !cj

p k[r.m(
−→
V )]

call r.〈c, m〉(−→V ); k if e !cj
p k[super≡r :c.mcj(

−→
V )]

inspect r; k[([] * τ)r] if e !cj
p k[(τ)r]

error:typecast if e !cj
p k[(τ)null] or e !cj

p k[(c * τ)V ] and c &*p τ
error:null if e !cj

p k[null :c.f ] or e !cj
p k[null :c.f=V ] or e !cj

p k[null.m(
−→
V )]

error:var if e !cj
p k[x] or e !cj

p k[this]

k[{ τ ′ x′=V ′; −−−→τ x=e; e′ }] →cj
p k[{

−−−−−−−−−−−→
τ x=e[x′ := V ′]; e′[x′ := V ′] }]

k[{ e }] →cj
p k[e]

k[(c * τ)V ] →cj
p k[V ] if c *p τ

Figure 10. Java core semantics and auxiliary definitions.

oriented?” In the semantics above, the answer is clear: object cre-
ation, field lookup and mutation, method calls, method returns, su-
perclass method calls, and typecasts.

Let us reconsider this interpretation. The most debatable aspect
of our model concerns superclass method calls. They take place en-
tirely inside one object and cannot be invoked by outside objects,
yet we have formalized them as messages. An alternate perspective
might formulate superclass method calls as object-internal compu-
tation for comparison.

Our framework is flexible enough to allow this reinterpretation
of Java. In our semantics above, as in other models of Java [3,
10, 16, 24], super expressions evaluate to method calls. Method
calls use invoke which uses call . We can change eval to use call
directly in the super rule, i.e. no object-oriented action is created.
The extra clauses for method names and call that were used for
superclass calls can be removed. These modifications are shown in
Figure 11.1

Now that we have two different semantics for Java, it is possible
to compare them and to study the tradeoffs; implementors and
semanticists can use either interpretation as appropriate.

4.3 Soundness of the Java Core
We have interpreted the type system for the Java core in our frame-
work and established its soundness. Again, the details of the type
system and soundness proof can be found in our technical report.

LEMMA 2. The functions init , resume, and invoke are total and
satisfy constraints INIT, RESUME, and INVOKE.

According to Corollary 1, these functions are total. Since INIT,
RESUME, and INVOKE hold, type soundness is just a corollary of
Theorem 1.

COROLLARY 2 (Java Core Soundness). In the Java core, if (! p :
t, then either p diverges or init(p) !p R and p (u R : t.

1 Note that invoke and resume are no longer total for cyclic class graphs.
A soundness proof for this formulation must account for this exception, or
call must be further refined to reject looping super calls.

m = mcj | 〈c, mcj〉

invokep(r, 〈c, D〉, mcj,
−→
V ) = callp(r, c, m

cj,
−→
V )

invokep(r, 〈c, D〉, 〈c′, mcj〉,−→V ) = callp(r, c
′, mcj,

−→
V )

evalp(e) =8
<

:

. . .
call r.〈c, m〉(−→V ); k if e !cj

p k[super≡r :c.mcj(
−→
V )]

callp(r, c, m
cj,
−→
V ) if e !cj

p k[super≡r :c.mcj(
−→
V )]

Figure 11. Changes for an alternate interpretation of Java.

4.4 Other Languages
The expressiveness of formal sequence traces is not limited to just
one model. In addition to ClassicJava, we have modeled Abadi
and Cardelli’s object calculus [1], the λ-calculus, and the λ&-
calculus [5] in our framework. The λ-calculus is the canonical
model of functional computation, and the λ&-calculus is a model of
dispatch on multiple arguments. These instantiations demonstrate
that sequence traces can model diverse (even non-object-oriented)
languages and complex runtime behavior. Our technical report con-
tains the full embeddings.

5. Practical Experience
To demonstrate the practicality of our semantics, we have im-
plemented a Sequence Trace tool for the PLT Scheme class sys-
tem [15]. As a program runs, the tool displays messages passed be-
tween objects. Users can inspect data associated with objects and
messages at each step of execution. Method-internal function calls
or other applicative computations remain hidden.

PLT Scheme classes are implemented via macros [9, 14] in a
library, but are indistinguishable from a built-in construct. Traced
programs link to an instrumented version of the library. The in-
strumentation records object creation and inspection, method entry
and exit, and field access, exactly like the framework. Both instru-



(define point%
(class object%
...
(define (translate dx dy) ...)))

(define polygon%
(class object%
...
(define (add-vertex v) ...)
(define (translate dx dy) ...)))

(send* (new polygon%)
(add-vertex ...)
(add-vertex ...)
(add-vertex ...)
(translate 5 5))

Figure 12. Excerpt of an object-oriented PLT Scheme program.

mented and non-instrumented versions of the library use the same
implementation of objects, so traced objects may interact with un-
traced objects; however, untraced objects do not pay for the instru-
mentation overhead.

Figure 13 shows a sample sequence trace generated by our
tool. This trace represents a program fragment, shown in Fig-
ure 12, using a class-based geometry library. The primary object
is a polygon% containing three point% objects. The trace begins
with a call to the polygon’s translate method. The polygon must
in turn translate each point, so it iterates over its vertices invoking
their translate methods. Each original point constructs, initial-
izes, and returns a new translated point.

The graphical layout allows easy inspection and navigation of a
program. The left edge of the display allows access to the sender
and receiver objects of each message. Each object lifeline provides
access to field values and their history. Each message exposes the
data and objects passed as its parameters. Highlighted sections of
lifelines and message arrows emphasize flow control. Structured
algorithms form recognizable patterns, such as the three iterations
of the method translate on class point% shown in Figure 13,
aiding in navigating the diagram, tracking down logic errors, and
comparing executions to specifications.

6. Related Work
Our work has two inspirational sources. Calculi for communicating
processes often model just those actions that relate to process
creation, communication, etc. This corresponds to our isolation of
object-oriented actions in the upper level of the framework. Of
course, our framework also specifies a precise interface between
the two levels and, with the specification of a lower level, has
the potential to model entire languages. Starting from this insight,
Graunke et al. [18, 19, 27] have recently created a trace calculus for
a sequential client-server setting. This calculus models a web client
(browser) and web server with the goal of understanding systemic
flaws in interactive web programs. Roughly speaking, our paper
generalizes Graunke et al.’s research to an arbitrarily large and
growing pool of objects with a general set of actions and a well-
defined interface to the object-internal computational language.

Other tools for inspecting and debugging program traces exist,
tackling the problem from many different perspectives. Lewis [28]
presents a so-called omniscient debugger, which records every
change in program state and reconstructs the execution after the
fact. Intermediate steps in the program’s execution can thus be de-
bugged even after program completion. This approach is similar to
our own, but with emphasis on the pragmatics of debugging rather

Figure 13. Sample output of the PLT Scheme Sequence Trace tool.

than presenting an intuitive model of computation. Lewis does not
present a theoretical framework and does not abstract his work
from Java.

Execution traces are used in many tools for program analy-
sis. Walker et al.’s tool [36] allows users to group program ele-
ments into abstract categories, then coalesces program traces ac-
cordingly and presents the resulting abstract trace. Richner and
Ducasse [34] demonstrate automated recovery of class collabo-
rations from traces. Ducasse et al. [11] provide a regression test
framework in which successful logical queries over existing exe-
cution traces become specifications for future versions. Our tool is
similar to these in that it uses execution traces; however, we do not
generate abstract specifications. Instead we allow detailed inspec-
tion of the original trace itself.

Even though our work does not attempt to assign semantics
to UML’s sequence diagrams, many pieces of research in this di-
rection exist and share some similarities with our own work. We
therefore describe the most relevant work here. Many semantics
for UML provide a definition for sequence diagrams as program
specifications. Xia and Kane [37] and Li et al. [29] both develop
paired static and dynamic semantics for sequence diagrams. The
static semantics validate classes, objects, and operations referenced
by methods; the dynamic semantics validate the execution of in-
dividual operations. Nantajeewarawat and Sombatsrisomboon [31]
define a model-theoretic framework that can infer class diagrams
from sequence diagrams. Cho et al. [6] provide a semantics in a
new temporal logic called HDTL. These semantics are all con-
cerned with specifications; unlike our work, they do not address
object-oriented computation itself.



Lund and Stølen [30] and Hausmann et al. [21] both provide
an operational semantics for UML itself, making specifications
executable. Their work is dual to ours: we give a graphical, UML-
inspired semantics to traditional object-oriented languages, while
they give traditional operational semantics to UML diagrams.

7. Conclusions and Future Work
This paper presents a two-level semantics framework for object-
oriented programming. The framework carefully distinguishes ac-
tions on objects from internal computations of objects. The two
levels are separated via a collection of sets and partial functions. At
this point the framework can easily handle models such as the core
features of Java, as demonstrated in section 4, and languages such
as PLT Scheme, as demonstrated in section 5.

Sequence traces still present several opportunities for elabo-
ration at the object-oriented level. Most importantly, the object-
oriented level currently assumes a functional creation mechanism
for objects. While we can simulate the complex object construction
of Java or PLT Scheme with method calls, we cannot model them
directly. Conversely, the framework does not support a destroy ac-
tion. This feature would require the extension of sequence traces
with an explicit memory model, possibly parameterized over lower
level details.
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