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Abstract
ACL2, a Common Lisp-based language for programming and theo-
rem proving, has enjoyed industrial success despite lacking modern
language features such as a module system. In previous work, we
equipped ACL2 with modules, interfaces, and explicit linking and
measured our system with a series of experiments. One experiment
revealed a serious lack of expressivity; the interfaces cannot de-
scribe the induction schemes necessary to reason about exported
functions with nontrivial patterns of recursion.
In this paper we revise our language, Modular ACL2, to overcome
this weakness. The first novelty is the inclusion of manifest func-
tion definitions in interfaces from which ACL2 can infer induction
schemes. The second novelty consists of the first proofs of sound-
ness and expressivity for Modular ACL2; we also reaffirm the use-
fulness of our system with updated benchmarks.

Categories and Subject Descriptors D [2]: 2—Modules and in-
terfaces; D [2]: 4—Formal methods; D [3]: 3—Modules, pack-
ages; F [3]: 1—Mechanical verification

General Terms Languages, Verification.

1. Programs and Proofs
Over the past two decades, a number of industrial labs have adopted
ACL2 as a primary tool. The ACL2 system combines a purely func-
tional, first-order subset of Common Lisp with the latest incarna-
tion of the Boyer-Moore theorem prover [12, 13]. Roughly speak-
ing, it extends first-order logic with axioms based on the function
definitions in a program. Industrial programmers use ACL2 primar-
ily as a modeling language for hardware and low-level software
components. A typical usage pattern is to model the component as
an ACL2 program, to validate the model with the (very large) pre-
existing test suite for the component, and then to prove the desired
theorems about the component via the model.

Four years ago, we started supporting Rex Page’s educational
project of training software engineering students in high-assurance
methods with ACL2 [21]. Page’s year-long course sequence in-
troduces students to unit testing, integration testing, random test-
ing, and theorem proving—all available in Dracula, our dialect of
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ACL2 [22, 26]. While Page’s first course focuses on small, single-
programmer projects, the second course applies these techniques in
a team-programming context.

The problem for both industrial and educational uses of ACL2
is that its programming language lacks a modern module system,
and the theorem prover doesn’t support modular reasoning. Mod-
ules and interfaces provide scope, abstraction, and specification
boundaries, as well as reusable components. These principles are
especially important for ACL2. Without abstraction boundaries, the
theorem prover’s search space grows as each new rule is admitted.
Without specifications, it is hard to predict the effect of adding a
new component; the lack of lexical scope causes unnecessary name
clashes between components.

Currently, ACL2 relies on the package constructs it inherits
from Common Lisp [24] and methods for proof encapsulation and
functional instantiation, which provide abstraction and reusability.
Packages are cumbersome and not lexically scoped; encapsulation
comes at the cost of executability. As a result, researchers as well
as students have to learn usage patterns to manually mimic modular
organizations of programs and proofs.

Since manually maintaining these patterns is a laborious and
error-prone process, we have added a module system to Drac-
ula [5]. The module system takes its inspiration from ML’s functor
system [10, 16]; it separates modules from interfaces and intro-
duces an external linking language. Naturally we impose enough
restrictions to ensure the soundness of the ACL2 theorem prover,
which assumes a first-order, terminating programming language.
Our initial report also includes a number of benchmarks, i.e., at-
tempts to turn modular systems into “monolithic” programs and to
measure the effect on theorem-proving time.

The benchmarks show remarkable performance improvements
introduced by our module system, in some cases by several orders
of magnitude. Sadly, they also prove that it can only successfully
reason about list-processing functions. For other algorithms, ACL2
fails to extract the proper induction scheme, rendering the module
system useless. Furthermore, our original module system comes
without a soundness proof; users must simply trust our reasoning.

In this paper, we enhance the module system with manifest func-
tions, allowing the specification of induction schemes in interfaces
exactly as in ACL2 programs. We also supply a formal soundness
proof, establishing the correctness of our verification process. This
is followed by a proof of expressivity, showing that with the addi-
tion of manifest functions we can modularize existing ACL2 proofs
by splitting them at arbitrary boundaries. Finally, we complete our
benchmarks for the previously problematic tasks, confirming the
benefits of Modular ACL2.

The rest of the paper starts with a discussion of related work
in section 2. We follow this with a brief introduction to ACL2 in
section 3. Next we present Modular ACL2 and illustrate the prob-
lem with our first formulation in section 4. Section 5 presents our
updated module system, with a formal semantics for verification



and execution, followed by a proof of soundness in section 6. We
describe our implementation and show updated benchmarks in sec-
tion 7 and finally present our conclusions in section 8.

2. Related Work
The design space of modules with explicit specifications and ex-
ternal linking has been well-explored. The literature begins with
Modula-2 [27], and includes more recent developments such as
the ML module system [10, 16], PLT Scheme units [9, 19], and
mixin modules [4]. These systems introduce a variety of features,
including higher-order and first-class modules, recursive linking,
and opaque, translucent, and transparent specifications.

It is well-known that theorem provers impose somewhat dif-
ferent requirements on module systems than regular programming
languages. The simplest modular constructs for theorem provers
include Isabelle’s locales [11], Coq’s sections [25], and the “little
theories” of IMPS [6]. These are little more than lightweight scope
and abstraction mechanisms; they can be used to separate parts of
a proof, and their abstract local definitions can be instantiated to
extract variations on their exports. So long as the underlying logic
can express higher order abstractions, these systems do not extend
its expressivity, but instead provide syntactic convenience.

Extended ML (EML) [23] equips SML [18] with logical proper-
ties and a verification semantics. The language is designed around a
methodology of beginning with an abstract specification and refin-
ing it step-by-step to a concrete implementation. EML allows the
user to supply the term “?” for any type, value, or structure (mod-
ule), representing a component whose implementation is deferred
but assumed correct. This allows a top-down development style in
which there may be no executable implementation until the very
end, but individual proof fragments can be checked along the way.

Coq [2, 1] inherits aspects of the ML module system and en-
riches it with a language of logical specifications. These are ex-
pressive enough to describe the specific implementation of a term
(value or type), much like the manifest type specifications of ML.
In turn, manifest type specifications allow the client of a specifica-
tion to reason about the precise definition of an imported term.

Our module system for ACL2 inherits many aspects of these
prior systems and builds on them. We use modules with external,
hierarchical linking specifications much like units in PLT Scheme,
implicit merging of abstract and concrete definitions when linking
from mixin modules, and external, translucent interfaces combin-
ing opaque and transparent (manifest) specifications in the manner
of ML. Modular ACL2 also supports a top-down development pro-
cess for ACL2, similar to Extended ML. The introduction of pa-
rameterized components allows low-level details to be left as an
abstract import while high-level parts of the proof are developed.

Furthermore, our system provides higher-order, instantiable ab-
stractions much like locales, sections, “little theories”, and the
functors of ML-like systems. Unlike other theorem provers, ACL2
does not express higher-order abstractions natively. We have to syn-
thesize a method for expressing, verifying, and instantiating ab-
stract proofs within a first-order logic.

Our new version of Modular ACL2 shares with Coq the power
to provide concrete specifications to express induction schemes at
module boundaries. These specifications play a greater pragmatic
role in ACL2 than in Coq; in our system, they are the only way to
express induction schemes, while in Coq induction schemes can be
constructed manually in explicit proofs.

Modular ACL2 does not permit recursive linking as in PLT
Scheme units; introducing new recursion in compound modules
might invalidate termination proofs. Our language also does not
support nested modules as in ML structures, tagged imports and
exports as in units, or a host of other possible operations on in-
terfaces and modules. These limit the possibilities for compound

(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))

(defun add-all (xs ys)
(cond ((endp xs) ys)

((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(defthm add-preserves-setp
(implies (setp xs)

(setp (add x xs))))

(defthm add-all-preserves-setp
(implies (and (true-listp xs) (setp ys))

(setp (add-all xs ys))))

(add-all (list 1 2 3) (list 2 3 4))

Figure 1. A finite set representation in ACL2.

modules; for instance, a module may not include two implementa-
tions of a single interface. These features represent future directions
for improvement.

3. Theorem Proving with ACL2
As far as this paper is concerned, an ACL2 program consists of
a sequence of function definitions, conjecture statements, and ex-
pressions. Function definitions may be recursive, but may not have
forward references. A conjecture is a named expression with free
variables. Lastly, an expression applies primitive operations and
previously-defined functions to atomic and compound values.

In its default “logic mode”, the ACL2 theorem prover attempts
to admit each term, verifying its soundness before adding it to the
database of logical rules and proceeding to the next term. Func-
tions must be proved terminating for all possible inputs; conjec-
tures must be established as theorems. Expressions have no logical
obligations; they are simply run.

ACL2 also has a more efficient “program mode” that ignores
proof obligations and runs terms unconditionally.

Figure 1 shows a short ACL2 program defining a finite set
representation (setp) and functions to add one or more elements
to a set (add and add-all). The program also states conjectures that
add and add-all preserve the set representation.

To admit this program, ACL2 first verifies that setp, add, and
add-all terminate for all possible inputs. The proofs for the non-
recursive functions setp and add are trivial. For add-all, ACL2 uses
its recursive structure to construct an induction scheme, which it
then proves well-founded. The theorem prover records this scheme
with the definition of add-all.

ACL2 finishes the proof by checking that add-preserves-setp
and add-all-preserves-setp are true for all value assignments to
their free variables. It verifies add-preserves-setp based on the
rules for the two built-ins: add-to-set-eql and no-duplicatesp-
equal. The proof of add-all-preserves-setp demands inductive rea-
soning about add-all. To this end, ACL2 applies the induction
scheme stored with add-all.

Finally, ACL2 runs add-all on the inputs (list 1 2 3) and (list 2
3 4). Based on the admitted theorems, we can trust the result not to
duplicate 2 or 3.

Now the programmer has a working implementation of sets that
may be integrated into larger programs. ACL2 provides several
different tools toward this end: books, packages, encapsulation,
and functional instantiation [15]. Each has its benefits, but also
drawbacks:



• Books provide reusable components containing verified func-
tions and theorems. Unfortunately, they also cause namespace
clashes: all definitions are exported unless explicitly declared
local. These conflicts are known to cause incompatibilities
among books distributed with ACL2.

• The Common Lisp package system provides namespaces, but
no scoping or abstraction mechanism [20]. Multiple books may
still clash by using the same package. Packages also do not in-
troduce a logical abstraction boundary; functions and theorems
in one package are fully “visible” in another.

• Encapsulation allows “local” definitions whose names and log-
ical rules are hidden from outside proofs. This provides scope
and abstraction; however, there is no mechanism to write down
an explicit specification of the exported definitions. Further-
more, local definitions cannot be run; one must sacrifice exe-
cutability to gain abstraction. Finally, these abstractions cannot
be built top-down; there must always be a “witness” instantia-
tion to begin the proof.

• The “functional instantiation” mechanism can be used to con-
nect proofs based on an encapsulation to executable code.
Martı́n-Mateos et al. [17] demonstrate how to easily apply
functional instantations to generic libraries; however, neither
the instantiated theory nor its generated consequences have an
explicit specification.

• The “top-down” proof style presented by Kaufmann [12] sim-
ulates specifications for abstract proofs via programming pat-
terns. These specifications limit the rules and names exported
from part of a proof. They are not reusable: multiple compo-
nents with the same interface need separate specifications.

4. Modular Reasoning in ACL2
In a recent report [5], we presented a module system for ACL2,
providing a consolidated system for specification, abstraction, and
the management of namespaces and components.

Our new language, dubbed Modular ACL2, introduces inter-
faces and modules. Interfaces provide abstract specifications of
functions, dubbed signatures, and theorems, dubbed contracts.
Atomic modules supply implementations for one or more inter-
faces, possibly based on other interfaces. Compound modules link
together multiple modules, using the implementations of one to
satisfy the assumptions of another. Modules with no further as-
sumptions may be invoked; their exported functions may be called
by external expressions.

The finite-set example can be rewritten as a Modular ACL2
program in which add and add-all are specified and implemented
separately; see figure 2. The program starts with two interfaces.
The first, IOne, specifies setp and add with signatures describing
their name and arity. It states add-preserves-setp as a contract
constraining the signatures above. The second interface, IMany,
is an extension of IOne; equivalently, IOne is a dependency of
IMany. This allows contracts in IMany to refer to signatures from
IOne, and obligates implementations of IMany to include some
implementation of IOne. The extension declaration is followed
by a signature for add-all and the contract add-all-preserves-setp,
which constrains setp (from IOne) and add-all.

Two atomic modules follow the interfaces. The module Many
imports the interface IOne; subsequent definitions may refer to setp
and add. In turn, Many defines add-all and exports IMany.

The module One exports the interface IOne. This supplies the
functions setp and add as implementations of IOne’s signatures,
and obligates them to satsify the contract add-preserves-setp.

Next, the program constructs OneOrMany by linking together
One and Many. This yields a module with One’s implementations

(interface IOne
(sig setp (xs))
(sig add (x xs))
(con add-preserves-setp

(implies (setp xs)
(setp (add x xs)))))

(interface IMany
(extend IOne)
(sig add-all (xs ys))
(con add-all-preserves-setp

(implies (and (true-listp xs) (setp ys))
(setp (add-all xs ys)))))

(module Many
(import IOne)
(defun add-all (xs ys)

(cond ((endp xs) ys)
((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(export IMany))

(module One
(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))
(export IOne))

(link OneOrMany (One Many))
(invoke OneOrMany)
(add-all (list 1 2 3) (list 2 3 4))

Figure 2. A finite set representation in Modular ACL2.

of setp and add and Many’s implementation of add-all. The new
module does not rely on any imports.

Finally, the program invokes OneOrMany, which makes setp,
add, and add-all available globally. Hence, the final expression has
the same meaning as in the monolithic program of figure 1.

Our model of Modular ACL2 comes with a two-pronged seman-
tics: one side produces proof obligations for each atomic module,
and the other produces an executable program from the modules
invoked at the top level. A program is considered to be verified if
the obligations of each atomic module can be proved in separate
ACL2 sessions. The theorem prover must be restarted after each
module to erase the assumptions based on its imports. The exe-
cutable program comprises the definitions from all linked and in-
voked modules; these are run in ACL2’s program mode to avoid
redundant proof efforts. Soundness follows from an argument that
if ACL2 verifies the atomic modules’ obligations, they hold for the
executable form of the program (even though ACL2 might not find
their proofs in logic mode).

A few experiments with verification in Modular ACL2 demon-
strate its ability to provide abstraction and reusability. In a vari-
ant of Moore’s graph search case study [12], we specify the graph
representation and search algorithm separately, and verify two im-
plementations of each. In another, we verify properties of a simple
video game called “Worm”.

The third experiment reveals a significant drawback of the lan-
guage. The experiment specifies the equivalence of two interpreters
via four interfaces, shown partially in figure 3. The problem is that
our interfaces can express functions (as signatures) and theorems
(as contracts), but they cannot specify induction schemes.

The ILanguage interface provides a representation for expres-
sions, recognized by the predicate expr-p. An expression may be



(interface ILanguage
(sig expr-p (x))
. . . more predicates, constructors, and selectors . . .
(con expr/calc

(iff (and (op-p o) (expr-p l) (expr-p r))
(expr-p (calc o l r))))

(con expr/integer
(iff (and (expr-p e) (not (calc-p e)))

(integerp e)))
. . . more contracts about expr-p, calc-p, and op-p. . . )

(interface ISmallStep
(extend ILanguage)
(sig single-step (e))
(con single-step-plus

(implies (and (integerp l) (integerp r))
(equal (single-step (calc ’+ l r)) (+ l r))))

. . . more contracts about single-step. . .
(sig step-all (e))
(con step-all-calc

(implies (calc-p e)
(equal (step-all e) (step-all (single-step e)))))

. . . more contracts about step-all. . . )

(interface IBigStep
(extend ILanguage)
(sig evaluate (e))
(con evaluate-plus

(equal (evaluate (calc ’+ l r))
(+ (evaluate l) (evaluate r))))

. . . more contracts about evaluate. . . )

(interface IEquivalence
(extend ILanguage ISmallStep IBigStep)
(con step-all=evaluate

(implies (expr-p e)
(equal (step-all e) (evaluate e)))))

Figure 3. Excerpts from interfaces in the interpreter experiment.

an integer or a “calculation” recognized by calc-p. A calculation
applies an operator (recognized by op-p) to left and right operands.

A reduction semantics for the language is specified by ISmall-
Step. It describes a single-step function on expressions that re-
duces one calculation on integers at a time and a step-all function
that performs single-step until no calculations remain.

We describe recursive evaluation in IBigStep, extending ILan-
guage with a function that yields an integer for each expression.

In IEquivalence, we extend ILanguage, ISmallStep, and IBig-
Step. Then we state the claim that step-all and evaluate produce
the same result when given an expression satisfying expr-p. The
module system guarantees that the implementation of an interface
shares the implementation of its (transitive) dependencies, so we
may rely on step-all, evaluate, and the step-all=evaluate contract
to use the same definition of expr-p.

These interfaces implicitly introduce two patterns of recursion:
traversing an expression and reducing an expression to a value. The
proof of step-all=evaluate must reason inductively about both.
ACL2 allows various annotations on conjectures that choose from
or combine known induction schemes; however, a new scheme can
only be introduced by a complete function definition. Because the
relevant function definitions are in other modules, we found it nec-
essary to duplicate the expr-p and step-all functions in the module

implementing IEquivalence, prove them equal to the imported ver-
sion, and reason from the duplicates.

In general, this problem arises whenever a program introduces
a pattern of recursion, whether it is a data structure (as with expr-p)
or an algorithm (as with step-all), and the function definition lies in
a different module from a proof that uses it. Our other experiments
use lists and list traversal for all their inductive definitions. ACL2
can therefore use its built-in induction schemes regardless of mod-
ule boundaries. Proofs using other data structures or non-structural
recursion (e.g., quicksort) must introduce new induction schemes
to support reasoning across module boundaries.

5. Manifest Functions:
Induction Across Boundaries

This section presents our revision of Modular ACL2. It starts with a
description of the design space for manifest functions, followed by
two separate semantics: one for verification and one for execution.

5.1 Language Design
To express induction schemes for abstraction boundaries, we intro-
duce manifest functions into interfaces. In addition to signatures,
contracts, and dependencies, interfaces may now express functions
with a name, argument list, and body expression that may refer
to other manifest functions and opaque function signatures. These
specifications supply an exporting module with a function defini-
tion that must be proved terminating, and allow an importing mod-
ule to use the resulting logical rules: the body of the function and its
attending induction scheme, if any. Any opaque signatures to which
the manifest function refers remain abstract. Thus, interfaces as a
whole are translucent, analogous to the ML signatures of Harper
and Lillibridge [10].

The design of manifest functions is motivated by ACL2’s
method of inferring induction schemes from functions. A manifest
function provides exactly the definition ACL2 needs for inference.
An alternate design might allow users to specify induction schemes
abstractly. The verification process for Modular ACL2 would still
have to synthesize a function definition to communicate the scheme
to the theorem prover. Manifest functions avoid this extra step, thus
simplifying the correlation between Modular ACL2 code and ver-
ified ACL2 code. Users wishing to separate induction schemes
from program behavior can export “dummy” manifest functions
with appropriate recursive structure but trivial output, e.g., return-
ing nil in all clauses. The resulting induction scheme can be used in
other modules to reason about other functions, even abstract ones
introduced by signatures.

The new grammar of Modular ACL2 is shown in figure 5. It
extends the core grammar of ACL2 in figure 4. Keywords are set in
bold and nonterminals in italics . We write−→X to denote a sequence
of terms of the form X or a set when order is insignificant. A
sequence of length n is written −→X n

.

prog = −−→term
term = defn | expr
defn = dfun | dthm | dstub | dskip
dfun = (defun f (−→x ) expr )
dthm = (defthm f expr )
dstub = (defstub f (−→x ) t)
dskip = (skip-proofs defn)

Figure 4. The core grammar of ACL2.

ACL2 programs consist of a sequence of definitions and expres-
sions. Definitions may be functions, conjectures, or stubs, which



provide a function name and arity but no implementation. Defini-
tions may be wrapped in skip-proofs, which informs the theorem
prover to admit them without proof.1 ACL2 includes two variable
namespaces: one for functions and conjectures (f ) and another for
function parameters and local variables (x ).

mprog = −−−→comp
comp = ifc | mod | link | inv | expr
ifc = (interface n −−→spec)
mod = (module n

−−→
body)

link = (link n (n n))
inv = (invoke n)
spec = fun | sig | con | ext
fun = (fun f (−→x ) expr )
sig = (sig f (−→x ))
con = (con f expr )
ext = (extend n)
body = im | ex | defn
im = (import n −→re )
ex = (export n −→re )
re = (f f )

Figure 5. The grammar of Modular ACL2.

Modular ACL2 programs (mprog) consist of a sequence of
components. A component may be an interface, atomic module,
compound module, module invocation, or top level expression.
Interfaces and modules come with names; an interface contains a
sequence of specifications; an atomic module contains a sequence
of body terms; and a compound module is constructed based on the
names of two constituent modules.

An interface may specify manifest functions, opaque signatures,
contracts, or dependencies. A manifest function exposes the actual
implementation of a function, including a name, argument list,
and body expression. An opaque signature provides only a name
and argument list. A contract has a name and a logical claim.
Other interfaces may be extended by name, thus introducing a
dependency.

The body of a module may include definitions, imports, and
exports. Imports and exports name an interface and provide a se-
quence of renamings that map function names in the interface to
function names inside the module. Imports provide a set of spec-
ifications that the module may rely on; exports describe a set of
specifications that the module satisfies. Since manifest functions
are defined in interfaces, an exporting module need not define them
internally; the export clause implicitly defines the function, and
subsequent definitions in the module may refer to it.

Compound modules are linked nominally in Modular ACL2.
Any names joined between two modules by linking must be im-
ported and exported via the same interface. This ensures the “con-
sumer” module assumes precisely those contracts about its imports
that the “producer” module ensures.

For the purposes of this paper, we put further syntactic restric-
tions on Modular ACL2 programs. An interface must explicitly ex-
tend all its transitive dependencies. A module must explicitly im-
port or export all transitive dependencies of its imports and exports.
Each import and export must provide explicit internal names for
all functions and theorems from the relevant interface. These re-
strictions simplify verification and compilation, but complicate pro-
gramming. We therefore assume a surface syntax without these re-
strictions and an elaboration process which synthesizes the implicit

1 The skip-proofs form may admit unsound conjectures, and is usually
reserved for intermediate stages of proof development. See section 5.2.

(interface ILanguage
. . . signatures except for expr-p. . .
(fun expr-p (v)

(cond ((integerp v) t)
((calc-p v) (and (op-p (calc-op v))

(expr-p (calc-left v))
(expr-p (calc-right v))))))

. . . contracts about calc-p and op-p. . . )

(interface ISmallStep
(extend ILanguage)
(sig single-step (e))
(con single-step-plus

(implies (and (integerp l) (integerp r))
(equal (single-step (calc ’+ l r)) (+ l r))))

. . . more contracts about single-step. . .
(fun step-all (e)

(cond ((integerp e) e)
((calc-p e) (step-all (single-step e))))) )

Figure 6. Excerpts from modified interpreter interfaces.

dependencies, imports, exports, and names, though for brevity’s
sake we do not present them.

In this system, we can reformulate the interpreter example from
the preceding section (see figure 3) with manifest functions. Fig-
ure 6 shows the modified portions of the interfaces. In ILanguage,
the signature and contracts for expr-p are replaced by a manifest
function definition. This definition adds to the previous version an
induction scheme for traversing an expression through the operands
of a calculation. A module exporting this new interface must ensure
that the calc-left and calc-right of a calculation are smaller than the
original expression, and a module importing it may reason with the
new induction scheme.

Similarly, we replace the step-all signature and related contracts
in ISmallStep with a manifest function definition. This establishes
an induction scheme for reducing a calculation step-by-step to an
integer. An exporting module must ensure that step-all terminates,
i.e., that single-step brings an expression closer to a final result.
Importing modules may then reason about the (finite) reduction
sequence of an expression.

Now the proof of step-all=evaluate completes immediatly. It
uses the manifest function definitions of step-all and expr-p to
reason inductively about step-all and evaluate, respectively.

5.2 Verifying Modules
Programs in Modular ACL2 are verified by extracting proof obliga-
tions for each atomic module and submitting them to a new session
of the ACL2 theorem prover. If ACL2 admits each set of proof
obligations, the entire modular program is verified, including the
compound modules. We formalize this process in figures 7 and 8.

For the verification semantics, we introduce two kinds of envi-
ronments: interface environments (Γi) and renaming environments
(Γr), represented as sequences whose elements may be looked up
by name, i.e., the first f appearing syntactically. Figure 8 defines
substitution on (Modular) ACL2 terms.

The main judgment in the verification of modular programs is
#p mprog , meaning that the program’s components can be verified
by ACL2. This is defined in terms of Γi #c

−−−→comp, meaning that the
components can be verified in the context of additional interfaces,
and #s prog , meaning that ACL2 verifies the program. We defer
the definition of this judgment until section 6.



PFMPROG
ε #c mprog

#p mprog

PFCOMP0

Γi #c ε

PFCEXPR
Γi #c

−−−→comp

Γi #c expr −−−→comp

PFIFC
Γi ifc #c

−−−→comp

Γi #c ifc −−−→comp

PFMOD
#s obligations(Γi,mod) Γi #c

−−−→comp

Γi #c mod −−−→comp

PFLINK
Γi #c

−−−→comp

Γi #c link −−−→comp

PFINV
Γi #c

−−−→comp

Γi #c inv −−−→comp

Figure 7. Inference rules for Modular ACL2 verification.

obligations : Γi,mod → prog
obligations(Γi, (module n

−−→
body))

=
−−−−−−−−−−→
verify(Γi, body)

verify : Γi, body →
−−→
defn

verify(Γi, defn) = defn

verify(Γi, (import n
−−−→(f1 f2))) =

−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f1 = f2] where Γi(n) = (interface n −−→spec)

verify(Γi, (export n
−−−→(f1 f2))) =

−−−−−−−−−−−−−→
assert(spec)[

−−−→
f1 = f2] where Γi(n) = (interface n −−→spec)

assume : spec → −−→term
assume((fun f (−→x ) expr )) = (skip-proofs (defun f (−→x ) expr ))
assume((sig f (−→x ))) = (defstub f (−→x ) t)
assume((con f expr )) = (skip-proofs (defthm f expr ))
assume((extend n)) = ε

assert : spec → −−→term
assert((fun f (−→x ) expr )) = (defun f (−→x ) expr )
assert((sig f (−→x ))) = ε
assert((con f expr )) = (defthm f expr )
assert((extend n)) = ε

·[·= ·] : body , f , f → body
(defun f (−→x ) expr )[f1 = f2] = (defun f [f1 = f2] (−→x ) expr [f1 = f2]) (skip-proofs defn)[f1 = f2] = (skip-proofs defn[f1 = f2])
(defthm f expr )[f1 = f2] = (defthm f [f1 = f2] expr [f1 = f2]) (import n

−−−→(f3 f4))[f1 = f2] = (import n
−−−−−−−−−→
(f3 f4[f1 = f2]))

(defstub f (−→x ) t)[f1 = f2] = (defstub f [f1 = f2] (−→x ) t) (export n
−−−→(f3 f4))[f1 = f2] = (export n

−−−−−−−−−→
(f3 f4[f1 = f2]))

Figure 8. Metafunctions for Modular ACL2 verification.

Atomic modules entail proof obligations that must be verified
by ACL2, constructed by the obligations metafunction. Compound
modules entail the proof obligations of their combined exports,
given the assumption of their combined imports except those re-
solved by linking. These obligations are fulfilled by their compo-
nents when verified separately. Each constituent module entails a
proof of its own exports; nominal interface linking ensures that
the “producer” module’s obligations include precisely those as-
sumptions of the “consumer” module that are discharged by link-
ing. Thus, compound modules do not contribute proof obligations
beyond those of their constituents. Interfaces only generate proof
obligations insofar as they contribute to atomic modules that im-
port or export them; module invocations and top-level expressions
are for execution only and do not generate proof obligations at all.

Each term in a module’s body is translated to ACL2 definitions
representing its logical meaning by the verify metafunction. An im-
port becomes an assumption of a correct implementation of the
named interface, constructed by the assume metafunction. Signa-
tures are represented as stubs; manifest functions and contracts are
represented as function and conjecture definitions wrapped in skip-
proofs. An export becomes a claim to be verified, constructed by
the assert metafunction. Manifest functions and contracts map to
function and conjecture definitions. In both imports and exports, an
extend clause requires the enclosing module to import or export
the extended interface as well. The extend clause inserts no defini-
tions itself; the extended interface is instead translated separately.

5.3 Verification Example
To illustrate the verification process, we construct proof obligations
for the set representation from figure 2. To verify this program, we
must establish the correctness of two modules: Many and One. We
ignore for this example the syntactic restriction that all imports and
exports require explicit renaming.

First we verify Many. The assume metafunction converts the
specifications of IOne into stubs for the imported signatures and an
assumption that they satisfy add-preserves-setp. Then we include
add-all and finally use assert to construct a conjecture that the
definitions satisfy add-all-preserves-setp.

(defstub setp (xs) t)
(defstub add (x xs) t)
(skip-proofs
(defthm add-preserves-setp

(implies (setp xs)
(setp (add x xs)))))

(defun add-all (xs ys)
(cond ((endp xs) ys)

((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(defthm add-all-preserves-setp
(implies (and (true-listp xs) (setp ys))

(setp (add-all xs ys))))

The last two definitions are directly from figure 1, while the first
three are translations of the imported interface. This permits ab-
stract reasoning about IOne within Many, as the theorem prover
doesn’t have implementations for setp or add.

Next we construct proof obligations for One. By the definitions
of obligations and verify, we concatenate its internal definitions of
setp and add with an assertion that add-all-preserves-setp holds.
We apply the assert metafunction to construct the final definitions:

(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))

(defthm add-preserves-setp
(implies (setp xs)

(setp (add x xs))))



execute : mprog → prog
execute(mprog) = compile(ε, ε, ε,mprog)

compile : Γi, Γm, Γr,−−−→comp → −−→term
compile(Γi, Γm, Γr, ifc −−−→comp) = compile(Γi ifc, Γm, Γr,−−−→comp)
compile(Γi, Γm, Γr,mod −−−→comp) = compile(Γi, Γm mod , Γr,−−−→comp)
compile(Γi, Γm, Γr, (link n (n1 n2)) −−−→comp) = compile(Γi, Γm link(Γi,n, Γm(n1), Γm(n2)), Γr,−−−→comp)

compile(Γi, Γm, Γr, (invoke n) −−−→comp) =
−−−−−−−−−−−→
verify(Γi, body2) compile(Γi, Γm, Γr

−→re ,−−−→comp)
where Γm(n) = (module n

−−−→
body1)

and rename(
−−−→
body1) =

−−−→
body2

and {−→re0 | (import n −→re0) ∈ −−−→body2 or (export n −→re0) ∈ −−−→body2} = −→re
compile(Γi, Γm,

−−−→(f1 f2), expr −−−→comp) = expr [
−−−→
f1 = f2] compile(Γi, Γm,

−−−→(f1 f2),−−−→comp)
compile(Γi, Γm, Γr, ε) = ε

link : Γi,n,mod ,mod → mod

link(Γi,n,(module n1
−−−→
body1),

(module n2
−−−→
body2))

= (module n
−−−→
body3

−−−→
body4)

where rename(
−−−→
body1) =

−−−→
body3

and resolve(
−−−→
body3, rename(

−−−→
body2)) =

−−−→
body4

resolve :
−−→
body ,

−−→
body → −−→

body
resolve(

−−−→
body1, ε) = ε

resolve(
−−−→
body1, (import n

−−−→(f f1)) −−−→body2) = resolve(
−−−→
body1,

−−−−−−−−−→
body2[

−−−→
f1 = f2]) if (import n

−−−→(f f2)) ∈ −−−→body1

resolve(
−−−→
body1, (import n

−−−→(f f1)) −−−→body2) = resolve(
−−−→
body1,

−−−−−−−−−→
body2[

−−−→
f1 = f2]) if (export n

−−−→(f f2)) ∈ −−−→body1

resolve(
−−−→
body1, (import n −→re ) −−−→body2) = (import n −→re ) resolve(

−−−→
body1,

−−−→
body2) if n %∈ −−−→body1

resolve(
−−−→
body1, defn

−−−→
body2) = defn resolve(

−−−→
body1,

−−−→
body2)

resolve(
−−−→
body1, ex

−−−→
body2) = ex resolve(

−−−→
body1,

−−−→
body2)

rename :
−−→
body → −−→

body

rename(
−−→
body) =

−−−−−−−−→
body [

−−−→
f1 = f2] where

−−−−−−−−−−−−→
introduced(body) =

−→
f1

n
and −→f2

n
fresh

introduced : body → −→
f

introduced((import n
−−−→(f1 f2))) =

−→
f2 introduced((defstub f (−→x ) t)) = f

introduced(ex ) = ε introduced((defthm f expr )) = f
introduced((defun f (−→x ) expr )) = f introduced((skip-proofs defn)) = introduced(defn)

Figure 9. Translation from a Modular ACL2 program to an executable ACL2 program.

These definitions are all present in the original set representation of
figure 1; modules without imports represent concrete reasoning.

The compound module OneOrMany links Many to One. It
shares both their exports; since both are verified, so are the exports
of OneOrMany. Note that One provides implementations of setp
and add and a proof of add-all-preserves-setp. The verification
of OneOrMany relies on these verified definitions in place of
the unverified defstub and skip-proofs forms from Many’s proof
obligation. This substitution of verified definitions for assumptions
is the basis of our soundness theorem; it roughly corresponds to the
discharge of an implication.

5.4 Executing Modules
The execution of Modular ACL2 programs is defined by the meta-
function execute, shown in figure 9, which transforms a Modular
ACL2 program to an ACL2 program. We introduce sequences of
modules as environments (Γm) for use in compilation. During com-
pilation, we maintain environments of interfaces, modules, and re-
namings, which map top level function names to implementations
provided by invoked modules. The compilation process adds inter-
faces, atomic modules, and compound modules to the appropriate

environments. The constituents of compound modules are extracted
from the environment and linked first.

Turning compound modules into atomic modules is the key
step in compilation. The metafunction link applies rename to the
body of both constituent modules, giving their definitions fresh
names to prevent name clashes. It then links imports of the sec-
ond module (“consumer”) to exports of the first (“producer”) via
the resolve metafunction. The same process coalesces shared im-
ports. Linking is one-directional—exports flow from the producer
to the consumer—to prevent introducing new recursion that might
invalidate termination proofs. The resulting module contains the
definitions, exports, and unresolved imports of both constituents.

The resolve metafunction consumes terms from the body of
producer and consumer modules and processes each term from the
consumer in order. If it reaches an import that coincides with an
import or export of the producer, it substitutes the internal names
from the producer, drops the import, and continues. Otherwise,
terms from the consumer module are left unchanged.

We extract executable definitions from invoked modules in the
same way we extract proof obligations during verification (verify).
This produces each module’s internal definitions, along with the
contracts and manifest functions of their exported interfaces (as



PFPROG
Γ0

e #t prog

#s prog

PFTERM0

Γe #t ε

PFTEXPR
Γe #t

−−→term

Γe #t expr −−→term

PFTDEFN
Γe #d defn Γe theory(defn) #t

−−→term

Γe #t defn −−→term

PFFUN
Γe #e measure(f ,−→x , expr)

Γe #d (defun f (−→x ) expr )

PFTHM
Γe #e expr

Γe #d (defthm f expr )

PFSTUB

Γe #d dstub

PFSKIP

Γe #d dskip

Figure 10. Inference rules for ACL2 verification.

theory : defn → −−→expr
theory((defun f (−→x ) expr )) = (equal (f −→x ) expr ) induction(f ,−→x , expr)
theory((defthm f expr )) = expr
theory((defstub f (−→x ) t)) = ε
theory((skip-proofs defn)) = theory(defn)

measure : f ,−→x , expr → expr
termination conditions (omitted)

induction : f ,−→x , expr → expr
induction schemes (omitted)

Figure 11. Metafunctions for ACL2 verification.

defthm and defun forms). Modules with unresolved imports may
not be invoked, so the process does not generate any abstract defini-
tions (defstub or skip-proofs). The extracted definitions are given
fresh names to prevent clashes, and the renaming environment is
updated.

Top level expressions are linked to invoked modules by appro-
priate renaming. They are then added to the executable program.

5.5 Execution Example
Once again, consider the finite set representation from figure 2.
To construct executable code for this program, we must first link
together the atomic modules One and Many into OneOrMany.

The linked, atomic form of OneOrMany constructed by link
and resolve contains the definitions and exports of One and Many:

(module OneOrMany
(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))
(export IOne)
(defun add-all (xs ys)

(cond ((endp xs) ys)
((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(export IMany))

It no longer contains the import of IOne from Many; add-all and
add-all-preserves-setp now refer to the concrete definitions of setp
and add from One.

Compilation completes by invoking OneOrMany, exposing its
definitions and the assertions of its exported contracts and allowing
top-level expressions to refer to them:

(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))

(defthm add-preserves-setp
(implies (setp xs)

(setp (add x xs))))

(defun add-all (xs ys)
(cond ((endp xs) ys)

((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(defthm add-all-preserves-setp
(implies (and (true-listp xs) (setp ys))

(setp (add-all xs ys))))

(add-all (list 1 2 3) (list 2 3 4))

Aside from the reordering of add-preserves-setp and add-all, this
program is the same as the original monolithic program from fig-
ure 1. Modular ACL2’s compilation process has produced a pro-
gram that contains assertions of all contracts exported by the in-
voked module OneOrMany, and whose soundness follows from
the verification of the atomic modules One and Many. Due to the
verification step, this program can be safely run in ACL2’s program
mode, bypassing logical verification for efficient execution.

6. Soundness and Expressivity
Adding linguistic machinery to the programming language of a
theorem prover demands a rigorous soundness proof. Our previ-
ous report [5] skipped this step in favor of experiments concerning
the pragmatics of our modules. In this section we supply a com-
plete soundness theorem. We establish that the translation to exe-
cutable code preserves verified contracts. Therefore, once a pro-
gram’s atomic modules have been verified, its fully-linked exe-
cutable form is verified as well. The proof not only demonstrates
the correctness of our approach, but guarantees modular reasoning;
conclusions drawn about a module once can be applied anywhere
it may be linked.

We also establish the expressivity of our system. As our initial
experiments demonstrated, Modular ACL2 without manifest func-
tions could not express all possible decompositions of a proof into
modules. We present a proof that our new system can, thus confirm-
ing the completeness of our specification language with respect to
the theorem prover’s logical rules.

The section starts with a formal model of the ACL2 logic. This
is followed by our soundness proof. It finishes with a proof of the
expressivity of Modular ACL2 by inspection of the language.

6.1 The Logical Meaning of ACL2
Before we can establish the soundness of Modular ACL2, we
must describe what it means for an ACL2 program to be prov-
able. Our formalization, shown in figure 10, is based on Kaufmann
and Moore’s work [14, 15]. Supporting definitions are in figure 11.

The primary judgment, #s prog , defines the provability of
whole programs. It is built up by iteration over terms. Analogously,
the judgment Γe #t

−−→term describes the provability of terms in a
“theory environment” Γe of expressions representing proved theo-
rems. The environment Γ0

e represents the initial theory of ACL2.
Top level expressions add nothing to the environment. Defini-

tions are verified according to the judgment Γe #d defn . Then
their conclusions are added to the environment. The judgment
Γe #e expr means that expr is provably valid and is used to check



Γe #t verify(Γi, (import n
−−−→(f f1)) −−→body) ≡ [def. verify]

Γe #t

−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f1] verify(Γi,

−−→
body) ⇒ [lemma 7]

Γe #t

−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f2]verify(Γi,

−−→
body)[

−−−→
f1 = f2] ⇒ [lemma 8]

Γe theory(
−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f2]) #t verify(Γi,

−−→
body)[

−−−→
f1 = f2] ≡ [lemma 5]

Γe theory(
−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f2]) #t verify(Γi,

−−→
body [

−−−→
f1 = f2]) ≡ [lemma 9]

Γe theory(
−−−−−−−−−−−−−→
assert(spec)[

−−−→
f = f2]) #t verify(Γi,

−−→
body [

−−−→
f1 = f2]) ⇒ [ind. hyp.]

Γe theory(
−−−−−−−−−−−−−→
assert(spec)[

−−−→
f = f2]) theory(verify(Γi,

−−−→
body1)) #t verify(Γi, resolve(

−−−→
body1,

−−→
body [

−−−→
f1 = f2])) ≡ [def. verify]

Γe theory(verify(Γi,
−−−→
body1)) #t verify(Γi, resolve(

−−−→
body1,

−−→
body [

−−−→
f1 = f2])) ≡ [def. resolve]

Γe theory(verify(Γi,
−−−→
body1)) #t verify(Γi, resolve(

−−−→
body1, (import n

−−−→(f f1)) −−→body))

Figure 12. Equational reasoning used in lemma 3.

both explicit conjectures and the measure conjectures (termination
arguments) of functions.

Function definitions require a termination argument to be ver-
ified. Termination conditions are computed by the measure meta-
function (not shown here; see Kaufmann and Moore [14] for the
details of ACL2 measure conjectures). Each admitted function con-
tributes two expressions to the program’s theory: its definition (ex-
pressed with the equal function) and its implicit induction scheme,
if any (computed by the induction metafunction, also omitted).

Conjecture definitions require their body expression to be ver-
ified. Then the theorems are added to the theory. Logically this is
unnecessary, as the theory already entails the conclusion; however,
the addition is sound and models the rules added by the ACL2 the-
orem prover to aid its proof search algorithm.

Stubs have neither proof obligations nor new introduced theo-
rems; they only introduce a name. Definitions inside skip-proofs
are considered “provable” without verification, but introduce ex-
pressions to the theory regardless. We omit the definition of ex-
pression provability, relying instead on the prior formalization [14]
and the well-known properties of first-order logic.

6.2 Proof of Soundness
The soundness of the compilation process follows from the modu-
lar verification and syntactic well-formedness of the input program.
We present a sketch of the proof, with key theorems describing the
verification of individual components, the soundness of compound
module linking, and the logical properties of substitution.

It makes no sense to consider the provability of a syntactically
ill-formed program. For instance, introducing two different defini-
tions for the same function name results in unsoundness. All of the
provability judgments in figures 10 (for ACL2) and 7 (for Mod-
ular ACL2) are implicitly predicated on their constituents being
well-formed. ACL2 requires that all stub, function, and theorem
names be distinct and have no forward references. Modular ACL2
requires the same of interface and module names. Atomic modules
must import or export each external name by at most one inter-
face (not counting extensions). Compound modules must obey the
same rule, which in turn requires nominal linking, i.e. definitions
resolved by linking must be imported and exported via the same
interface. Soundness requires all of these properties to hold true at
all stages of verification and linking; however, for space reasons we
do not present a formal treatment of them here.

For our proof, we introduce the abbreviation Γi #m Γm, which
means

−−−−−−−−−−−−−−−−→#s obligations(Γi,mod) when Γm =
−−→
mod .

Main Theorem. If #p mprog , then #s execute(mprog).

Here we state the soundness of Modular ACL2 with respect to
ACL2: if the theorem prover verifies the proof obligations of each

module in a syntactically well-formed program, then the linked
executable code is provable as well.

Proof. The main theorem generalizes to lemma 1, which reasons
component-wise about the body of mprog .

Lemma 1. If Γi #m Γm and Γi #c
−−−→comp, then

Γe #t compile(Γi, Γm, Γr,−−−→comp).

Note that Γr affects only top-level expressions, and thus plays
no role in logical soundness, just well-formedness.

Proof. By induction over −−−→comp, and by cases on its components.

Case ε: Trivial.
Case ifc −−−→comp: In this case, ifc is simply moved from the se-

quence of components to the interface environment (in both
verification and compilation). We show that adding ifc to Γi

entails Γi ifc #m Γm: the proof obligations of each module
are unchanged, as they make no reference to ifc. By PFIFC, we
reduce the proof to the inductive hypothesis.

Case mod −−−→comp: In this case, mod is a verified atomic module.
We record its verification by storing it in the module environ-
ment. Adding mod to Γm trivially entails Γi #m Γm mod .
Using PFMOD, the proof reduces to the inductive hypothesis.

Case (link n (n1 n2)) −−−→comp: Here we must prove that linking two
verified constituents produces a verified module. In lemma 2 be-
low, we show that link(Γi,n, Γm(n1), Γm(n2)) is provable in
Γe and Γi. We finish with PFLINK and the inductive hypothesis.

Case inv −−−→comp: Invocation renames module bodies. We show in
lemma 4 that this is logically equivalent to renaming the result-
ing definitions. In lemma 6, we also show that the definitions’
provability is preserved. By rule PFINV the proof reduces to the
inductive hypothesis.

Case expr −−−→comp: By PFCEXPR and the inductive hypothesis.

Lemma 2. #s obligations(Γi, link(Γi,n,mod1,mod2)) holds if
#s obligations(Γi,mod1) and #s obligations(Γi,mod2).

The crux of our proof is to establish the soundness of linking.

Proof. Let mod1 be (module n1
−−−→
body1) and mod2 be (module

n2
−−−→
body2). By definition, link(Γi,n,mod1,mod2) is (module

n
−−−→
body3

−−−→
body4) where −−−→body3 = rename(

−−−→
body1) and −−−→body4 =

resolve(
−−−→
body3, rename(

−−−→
body2)). By rule PFPROG and the definition

of obligations, we must prove:

Γ0
e #t

−−−−−−−−−−−→
verify(Γi, body3)

−−−−−−−−−−−→
verify(Γi, body4)



Figure 13. Verification of the interpreter experiment in Dracula.

We apply lemma 6 to show that−−−→body1’s provability entails−−−→body3’s.
Then by lemma 8, we can focus on the second set of obligations and
it suffices to prove:

Γ0
e
−−−−−−−−−−−−−−−−−→
theory(verify(Γi, body3)) #t

−−−−−−−−−−−→
verify(Γi, body4)

Lemma 6, applied to−−−→body2, shows that rename(
−−−→
body2) is provable.

Now we must demonstrate that resolve correctly discharges the
assumptions of the second module. We call this lemma 3.

Lemma 3. If Γe #t
−−−−−−−−−−−→
verify(Γi, body2) and−−−→

body3 = resolve(
−−−→
body1,

−−−→
body2), then

Γe
−−−−−−−−−−−−−−−−−→
theory(verify(Γi, body1)) #t verify(Γi,

−−−→
body3).

Proof. By induction on the length of −−−→body2 and by cases on its
first element. Only the case for imports is nontrivial; we omit
the rest. Assume −−−→body2 = (import n

−−−→(f f1)) −−→body . Let Γi(n) =
(interface n −−→spec). We proceed by cases on −−−→body1.

Case (export n
−−−→(f f2))∈−−−→body1: In this case, resolve removes the

import from−−−→body2 and renames the remainder based on the ex-
port from −−−→

body1. We show that this transformation is sound:
after renaming, the logical obligations of the export fill in pre-
cisely the logical assumptions of the removed import. We rely
on lemma 9 to equate assumptions with obligations. The proof
proceeds by equational reasoning in figure 12.

Case (import n
−−−→(f f2))∈−−−→body1: This case proceeds as above, but

without the appeal to lemma 9.
Case n %∈−−−→body1: Trivial.

Lemma 4. If Γe #t obligations(Γi, ε, rename(
−−→
body)), then

Γe #t rename(obligations(Γi, ε,
−−→
body)).

Lemma 5. verify(Γi,
−−→
body)[

−−−→
f1 = f2] = verify(Γi,

−−→
body [

−−−→
f1 = f2]).

Proof. By the definitions of verify and substitution. Lemma 4 fol-
lows as a corollary.

Lemma 6. If Γe #t
−−→
defn , then Γe #t rename(

−−→
defn).

Lemma 7. If Γe #t
−−→term and

−−−−−→
f %∈−−→term , then Γe #t

−−→term[
−−−→
f0 = f ].

Proof. This follows from the proof of soundness of simple func-
tional instantiations [15]. Lemma 6 follows as a corollary.

Lemma 8. Γe #t
−−−→
defn1

−−−→
defn2 if and only if both Γe #t

−−−→
defn1

and Γe
−−−−−−−−−→
theory(defn1) #t

−−−→
defn2

Proof. Both directions follow by induction over −−−→defn1.

Lemma 9. theory(assume(spec)) = theory(assert(spec)).

Proof. By definitions of theory, assume, and assert.

6.3 Expressivity Proof
Expressivity means that any decomposition of a proof in the core
grammar of ACL2 into contiguous blocks of definitions can be
represented as a set of modules in Modular ACL2, and the theorem
prover can verify the modular program if it can verify the original.

The translation from a proof to modules is straightforward. Each
section of the proof corresponds to one atomic module and one in-
terface. The interface contains a manifest function for every func-
tion and a contract for every conjecture. Essentially, the interface
exactly reconstructs the sequence of definitions. Each interface ex-
tends those before it. The corresponding atomic module imports the
previous interfaces and exports the matching interface. The module
need not contain any definitions, as all components of the specifi-
cations are concrete (assuming no stubs in the source proof). The
modular program concludes by progressively linking the modules
together in order; the final compound module consisting of all the
proof sections can be invoked to run the original ACL2 program.

This translation relies on the one-to-one mapping between core
ACL2 definitions and Modular ACL2 specifications (other than
extend). Each interface expresses precisely the definitions of one
section of the proof. The proof obligation of each atomic modules
starts with an import that recreates the logical environment of the
proof section as it was in the ACL2 version, and it concludes with
an export that entails the same logical verification as well.

The formal proof of correctness of this translation follows by
induction over the sequence of modules. The proof obligations
of the modules can be shown to be a partitioning of the proof
obligations of the original ACL2 program by the argument above.



Optimizations
Lemmas Mono 20 40 80 Mod
modulo/range 0.04 0.04 0.04 0.04 0.04
random-nat/range 0.05 0.05 0.05 0.05 0.05
worm-turn/uncrossed 0.19 0.19 0.19 0.19 0.04
game-tick/gamep 142.88 19.08 6.35 2.00 0.01
game-key/gamep 22.73 2.92 2.93 1.85 0.01
game-tick/in-bounds 136.67 19.51 6.13 2.28 0.01
game-key/in-bounds 22.63 2.87 2.88 1.22 0.01
game-tick/uncrossed 320.84 16.19 6.23 2.29 0.02
game-key/uncrossed 51.86 5.93 5.96 2.14 0.02
connected-gamep/gamep 60.94 0.00 0.00 0.00 0.01
Improvements – 9 21 52 –

Figure 14. Benchmarks of Worm game proof.

Lemmas Mono Mod
single-step-expr †0.01 0.01
single-step-calc †0.03 0.01
single-step/evaluate/+ 0.96 0.06
single-step/evaluate/- 0.92 0.06
single-step/evaluate/∗ 0.94 0.06
single-step/evaluate 3.08 0.02
step-all=evaluate †0.00 0.00

†failed without additional hints

Figure 15. Benchmarks of interpreter proof.

7. Implementation and Benchmarks
In our previous report [5], we describe a prototype implementa-
tion of Modular ACL2 and present experiments comparing modular
proofs to the same proof in monolithic form. Since that writing, the
implementation of Modular ACL2 has been updated with translu-
cent interfaces and released for public download as part of Dracula.

Dracula [26], the dialect of ACL2 for the DrScheme program-
ming environment [7], includes a simulation of Modular ACL2’s
runtime behavior and an interface to the theorem prover for logical
verification. Dracula links and runs modules in its own simulation
based on figure 9. Each module is compiled [3, 8] to a closure that
extends a table of imports with a set of exports; compound modules
are constructed by function composition. Module invocation calls a
closure with an empty mapping and exposes the resulting exports.

The implementation also generates proof obligations for each
module based on figures 7 and 8. The compiled syntax of each
module is annotated with the proof obligation; Dracula extracts
the annotations and sends them to ACL2 as directed by the user.
Dracula automatically resets the theorem prover upon starting each
module.

Figure 13 shows the final fragment of the interpreter experiment
from section 5 in Dracula. On the left, the definitions window (top)
contains the program and the interactions window (bottom) shows
the result of the top level calls to evaluate and step-all. On the right,
there are a proof summary (top), proof controls (middle), and a
transcript of the theorem prover’s output (bottom). The proof sum-
mary, transcript, and definitions window highlighting all indicate
that the IEquivalence module is successfully verified.

7.1 Proof Experiments
In support of our claim concerning modular theorem proving, we
present benchmarks for our three experiments, comparing their
modular proofs to monolothic versions. The latter were produced

DFS Lemmas NLG ELG Mod
subsetp-equal-prefix 0.01 0.01 0.02
neighbors/nodes ‡0.00 0.00 0.00
choose-route/pathp 0.20 0.18 0.17
find-route/pathp 0.02 0.01 0.04

BFS Lemmas NLG ELG Mod
choose-route/pathp 0.01 0.01 0.01
search-routes/pathp 0.02 0.02 0.02
find-route/pathp 0.00 0.00 0.01

‡failed without additional hints

Figure 16. Benchmarks of graph search proofs.

Mono Mod
Worm 134.77 135.40
Interpreters 115.67 116.37
DFS/NLG 9.03 9.00
DFS/ELG 13.82 13.88
BFS/NLG 158.19 158.11
BFS/ELG 444.28 445.15

Figure 17. Benchmarks of monolithic vs. modular execution.

by concatenating all the proof obligations together in one file. For
each program, we compare both verification and execution times.2

As shown in our prior work, the video game experiment demon-
strates the search space explosion common to monolithic proof at-
tempts. As the theorem prover accrues logical rules, the time to
prove lemmas increases. The modular version, however, starts with
a “clean slate” after each module boundary. By the end of the proof,
the monolithic takes several orders of magnitude longer for key
lemmas than the worst times of the modular version. Figure 14
shows this discrepancy in the “Mono” and “Mod” columns, listing
the slowest lemmas for both proof attempts.

Professional ACL2 programmers are able to tune the perfor-
mance of monolithic ACL2 proofs by giving “hints” that disable
appropriate logical rules. To compare the benefits of modularity to
these hints, we optimized the monolithic proof of the “Worm” game
by the following process. At each step, we identified the slowest
lemma and used ACL2’s accumulated-persistence profiling tool
to identify which rules the theorem prover was spending the most
time on during the proof attempt. We added a hint to the lemma
instructing the theorem prover to disable the most time-consuming
rule during future proof attempts, then tried it again and measured
the difference. We kept the hints that improved the verification
speed and discarded those that made it take longer (or fail). The
middle columns of figure 14 show the results of the first 20, 40, and
80 attempts to disable rules in the 83-lemma proof. Nine successes
out of the first 20 attempts dramatically improve the prover’s run-
ning time, improving some of the slowest lemmas by a factor of ten.
The next 60 attempts have less of an impact; most of the slow lem-
mas remain at a few seconds of theorem proving time, compared to
the modular proof in which all lemmas run in 0.05 seconds or less.

Benchmarks of the graph and interpreter experiments show sim-
ilar results; see figure 15 and 16. Though the proof times do not
show as great a difference, monolithic proofs in both experiments
fail to complete when converted to monolithic form. In the inter-
preter experiment, three lemmas in the components for single-step

2 All times are measured in seconds based on the average of five trials. All
benchmarks were performed on a 2 GHz dual-core MacBook with 4GB
RAM running Mac OS X 10.5.6. We used ACL2 3.5 built on Clozure
Common Lisp 1.3 and Dracula 8.2 in DrScheme 4.2.



and equivalence require hints disabling calc-p and related func-
tions to escape apparent infinite loops during verification. For the
graph experiment, we constructed four monolithic proofs: one for
each combination of depth-first search (DFS) or breadth-first search
(BFS) with edge list graphs (ELG) or neighbor list graphs (ELG).
We timed the graph search portions of these against the modu-
lar proofs of breadth-first and depth-first search. The monolithic
proof of depth-first search using neighbor lists failed until an extra
hint was given to the neighbor/nodes lemma. These experiments
demonstrates the robustness of modular proofs, as they do not fail
when combined with other components, nor do they need to be du-
plicated for multiple instantiations.

Finally, in order to demonstrate that modularization does not
add any appreciable overhead to the running time of ACL2 pro-
grams, we benchmarked all three experiments on problems taking
from a few seconds to a few minutes: an exploration of all “Worm”
game states reachable in 20 steps, evaluation of an expression tree
13 nodes deep, and traversal of a graph containing a 7-clique. Fig-
ure 17 shows the results of the trials; the execution times were com-
parable in all cases.

8. Conclusions
Our prior work extended ACL2 with a module system that provides
abstraction, reusability, and lexical scope beyond that available in
ACL2, but it had a serious shortcoming. Specifically, the language
could not communicate induction schemes between components.

Modular ACL2 now incorporates manifest functions, which
express induction schemes as recursive functions in the manner
ACL2 is tailored to expect. Furthermore, the module system is
accompanied by a formal proof of soundness, guaranteeing that
the verified properties of each component individually remain true
when components are linked and executed collectively, and an
expressivity proof showing that all core ACL2 constructs can be
communicated across abstraction boundaries.

Our experiments show that the module system expresses pro-
grams and properties of moderate complexity, that it reduces the
programmer’s burden of theorem proving and proof optimization,
and that it increases the expressivity of the proof language to in-
clude new degrees of abstraction.
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