Classification

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA

Supervised learning

Given: Training set {(x;, y)) i =1 ...N}, given a labeled set of input-output pairs D =

1(xi, i) Ji
Find: A good approximation to f: X — Y Function approximation

Examples: what are X and Y ?

Spam Detection — Map email to {Spam, Not Spam} Binary Classification
Digit recognition — Map pixels to {0,1,2,3,4,5,6,7,8,9} Multiclass Classification

Stock Prediction — Map new, historic prices, etc. to (the real numbers) Regression

Supervised learning

Goal: make predictions on novel inputs, meaning ones that
we have not seen before (this is called generalization)

Formalize this problem as approximating a function: f(x)=y

The leaning problem is then to use function approximation
to discover: f(x)=y

Spam example

Input: email
Output: spam/ham
Setup:

Get a large collection of example emails, each labele
“‘spam” or “ham”

Note: someone has to hand label all this data!
Want to learn to predict labels of new, future emails

Features: attributes used to make the ham/spam
decision

Words: FREE!
Text Patterns: $dd, CAPS
Non-text: SenderlinContacts

X

X

\

Dear Sir.

First, | must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Digit recognition

Input: images / pixel grids
Output: a digit 0-9

Setup:
= Get a large collection of example images, each labeled with a digit
= Note: someone has to hand label all this data!
= Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision
= Pixels: (6,8)=ON
= Shape Patterns: NumComponents, AspectRatio, NumLoops

2?

Some applications

Document classification and email spam filtering
Image classification and handwriting recognition
Face detection and recognition

Fraud detection

Medical diagnosis

true class = true class = true class = 1

true class =0 true class = true class = 1

true class =4 true class = true class =5

Dear Sir.

First, | must solicit your confidence in this
x transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm

beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was

working pre being stuck in the corner, but

when | plugged it in, hit the power nothing
happened.

Probabilistic Classification

Want a probability distribution over possible labels, given the input
vector x and training set D by P(ylx,D)

In general, this represents a vector of length C
Calculate a “best guess”: §= f(x)=argmax’ P(y=clx,D)

This corresponds to the most probable class label (the mode of the
distribution)

Model-Based Classification

" Model-based approach
= Build a model (e.g. Bayes’ net) where both the
label and features are random variables
" |nstantiate any observed features

= Query for the distribution of the label
conditioned on the features

= Challenges
= \What structure should the BN have?

= How should we learn its parameters?

Naive Bayes for Digits

= Naive Bayes: Assume all features are independent effects of the label
= Simple digit recognition version:

" One feature (variable) F; for each grid position <i,j>

= Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
= Each input maps to a feature vector, e.g.

’l — (Fp,0 =0 Fp1 =0 Fpp=1 Fg3=1 Fpa=0 ...F1515=0)

= Here: lots of features, each is binary valued

= Naive Bayes model: P(Y|FO,O . F15,15) x P(Y) H P(Fi7ij)
= \What do we need to learn? 5]

Note: Discriminative vs Generative

Can calculate P(ylx) directly, but we could also use Bayes rule to
calculate P(ylx)=aP(xly)P(y)

Calculating P(ylx) directly is called discriminative

Calculating P(xly)P(y) is called generative (since it represents a way to
generate the data)

Generative models

Use Bayes rule to switch classification into a generative problem

Determine the right parameters for your model

Unknown parameters

P(y=clx,0)

Class conditional density ~ Prior

General Naive Bayes

= A general Naive Bayes model:

|Y| parameters

—
P(Y,F1...Fp) = P[] P(FY)
N - / \i)
-
Y] x |F|" values nx |F| x |Y]
parameters

= We only have to specify how each feature depends on the class
= Total number of parameters is linear in n
= Model is very simplistic, but often works anyway

Inference for Naive Bayes

" Goal: compute posterior distribution over label variable Y
= Step 1: get joint probability of label and evidence for each label

[P(y1,f1---fn)
P(Y, f1... fn) = P(QQaf:l .o fn)
| P(yk, f1--- fn) |

= Step 2: sum to get probability of evidence

= Step 3: normalize by dividing Step 1 by Step 2

-

- P(y1) I[1; P(fily1) |
P(y2) Hz-_P(filyz)

- P(Yk) Hz"P(fﬂyk) |

P(flfn)

4

P(Y’flfn)

General Naive Bayes

= What do we need in order to use Naive Bayes?

= |Inference method (we just saw this part)
= Start with a bunch of probabilities: P(Y) and the P(F,|Y) tables
= Use standard inference to compute P(Y|F,...F,)
= Nothing new here

= Estimates of local conditional probability tables
= P(Y), the prior over labels
= P(F.]Y) for each feature (evidence variable)

= These probabilities are collectively called the parameters of the model and denoted
by 0

= Up until now, we assumed these appeared by magic, but...

= _.they typically come from training data counts: we’ll look at this soon

Example: Conditional Probabilities

P(Y) P(F31 =on|Y) P(Fs5s5=onlY)
T 101 / 1| 0.01 110.05
2 101 2 |0.05 2 | 0.01
3 101 3 |0.05 3 |0.90
4 |01 | 4 |0.30 4 |0.80
5 101 5 | 0.80 5 | 0.90
6 |01 6 | 0.90 6 | 0.90
7 |01 7 10.05 7 10.25
8 |01 8 | 0.60 8 | 0.85
9 |01 9 | 0.50 9 | 0.60
0 101 0 | 0.80 0 | 0.80

Naive Bayes for Text

= Bag-of-words Naive Bayes:
= Features: W, is the word at positon i
= As before: predict label conditioned on feature variables (spam vs. ham)
= As before: assume features are conditionally independent given label

= New: each Wi, is identically distributed Word at position
i, not ith word in
the dictionary!

= Generative model: P(Y,W1...Wn) =PX)][P(W;]Y)
i — J

= “Tied” distributions and bag-of-words
= Usually, each variable gets its own conditional probability distribution P(F|Y)

" |n a bag-of-words model
= Each position is identically distributed
= All positions share the same conditional probs P(W|Y)

= Why make this assumption?
= Called “bag-of-words” because model is insensitive to word order or reordering

* Model: P(Y,Wi...Wp)=P(Y) H P(W;|Y)

Example: Spam Filtering

What are the parameters?

P(Y) P(W|spam)
ham : 0.66 the : 0.0156
spam: 0.33 to 0.0153

and : 0.0115
of 0.0095
you : 0.0093
a : 0.00860
with: 0.0080
from: 0.0075

Where do these tables come from?

P(W|ham)
the : 0.0210
to 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a 0.0100

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4
Gary 0.00002 0.00021 -11.8 -8.9
would 0.00069 0.00084 -19.1 -16.0
you 0.00881 0.00304 -23.8 -21.8
like 0.00086 0.00083 -30.9 -28.9
to 0.01517 0.01339 -35.1 -33.2
lose 0.00008 0.00002 -44.5 -44.0
weight 0.00016 0.00002 -53.3 -55.0
while 0.00027 0.00027 -61.5 -63.2
you 0.00881 0.00304 -66.2 -69.0
sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9

Important Concepts

Data: labeled instances, e.g. emails marked spam/ham
= Training set
= Held out set
= Test set

Features: attribute-value pairs which characterize each x

Experimentation cycle
= Learn parameters (e.g. model probabilities) on training set
* (Tune hyperparameters on held-out set)
= Compute accuracy of test set
= Veryimportant: never “peek” at the test set!

Evaluation
= Accuracy: fraction of instances predicted correctly

Overfitting and generalization
= Want a classifier which does well on test data
= OQverfitting: fitting the training data very closely, but not generalizing well

Training
Data

Held-Out
Data

Test
Data

B

Ractice

Exam —{

Overfitting

....._ .
[} _._u.
|
-
../....
m /..../.. ®

m ..,._.....

O A

n ..
= |

O,..

Q. /
5 .
P . @

Q

Q

.

Qo &

e /l/
- D

- una-u------.--:----...
| | | | | _ | _ |
L

20

18

16

14

12

10

P(features,C = 2)
P(C=2)=0.1
P(on|C =2)=0.8
P(on|C=2)=0.1
P(off|C =2) =0.1

Example:

Overfitting

P(features,C = 3)

P(on|C=3)=0.8

P(on|C=3)=0.9

2 wins!!

P(off|C =3) =0.7

P(on|C=3) =0.0

Example: Overfitting

= Posteriors determined by relative probabilities (odds ratios):

P(W]ham) P(W|spam)
P(W|spam) P(W|ham)
south-west : inf screens : inf
nation : inf minute : inf
morally : inf guaranteed : 1inf
nicely : inf $205.00 : inf
extent : inf delivery : inf
seriously : inf signature : inf

What went wrong here?

Generalization and Overfitting

Relative frequency parameters will overfit the training data!
= Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
= Unlikely that every occurrence of “minute” is 100% spam
= Unlikely that every occurrence of “seriously” is 100% ham
= What about all the words that don’t occur in the training set at all?
= |n general, we can’t go around giving unseen events zero probability

As an extreme case, imagine using the entire email as the only feature

= Would get the training data perfect (if deterministic labeling)
= Wouldn’t generalize at all

= Just making the bag-of-words assumption gives us some generalization, but isn’t enough

To generalize better: we need to smooth or regularize the estimates

Parameter Estimation

= Estimating the distribution of a random variable

» Flicitation: ask a human (why is this hard?)

= Empirically: use training data (learning!)
= E.g.: for each outcome x, look at the empirical rate of that value:

count(x) @ @ @

P —
mL () total samples P (1) = 2/3

= This is the estimate that maximizes the likelihood of the data

L(z,0) = [] Po(=,)

Maximum Likelihood?

= Relative frequencies are the maximum likelihood estimates

Onrrr, = arg max P(X]0) count(z)

total samples

Pur(z) =
= arg max || Py(X;)
0 i

= Another option is to consider the most likely parameter value given the data

Oprap = arg maxP(9|X)
0

= arg gnax P(X|0)P(6)/P(X) :> 7?7

= arg max P(X|0)P(60)
0

Maximum Likelihood Estimation

What should the parameter values be?
Calculate the maximum-likelihood estimate (MLE) (or really the log-likelihood)
62 argmax, log P(D 10)

Assume the training examples are independent and identically distributed (iid), can
calculate the log-likelihood

N
[(0)=1og P(D160)= Y logP(y, | x,,0)
=1

We can either maximize log-likelihood or minimize negative log likelihood (NLL)
N
NLL(0)=-) logP(y, | x,,0)

i=1

MLE vs. MAP

MAP: 3" =argmax’_ P(y=c|D)=argmax_ P(D|y=c)P(y=c)
(or in our case)

6"*F = argmax ,P(6| D) = argmax

MLE:
Likelihood Prior

OMLE — argmax

MLE and MAP (can) converge as the dataset grows

Unseen Events: Laplace Smoothing

" Laplace’s estimate:

= Pretend you saw every outcome
once more than you actually did

Prap(x) = (o) 1

>ozle(x) + 1]

_c(xr)+1
- N+ X]

Can derive this estimate with
Dirichlet priors

0 ®)

= (33

Ppap(X) = <§, §>

Unseen Events: Laplace Smoothing

= Laplace’s estimate (extended): @ @ @
= Pretend you saw every outcome k extra times

c(x) + k
p _ 21
LAPk(®) N + k| X]| Prapo(X) = <§,§>
= What’s Laplace with k = 0? /32
= kis the strength of the prior PLAP’I(X) o <§’ §>
102 101
= Laplace for conditionals: Pr.ap100(X) = <203’ 203>

= Smooth each condition independently:
c(z,y) + k
c(y) + k| X]|

Prapr(zly) =

Estimation: Linear Interpolation™

" |n practice, Laplace often performs poorly for P(X|Y):
= When |X]| is very large
= When |Y]| is very large

= Another option: linear interpolation
= Also get the empirical P(X) from the data
= Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

Prin(zly) = aP(z|y) + (1.0 — a) P(z)

= Whatif @is0? 1?

Real NB: Smoothing

= For real classification problems, smoothing is critical
= New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 : 26.9
areas : 8.3 money : 26.5

Do these make more sense?

Tuning on Held-Out Data

= Now we’ve got two kinds of unknowns
= Parameters: the probabilities P(X|Y), P(Y) training

= Hyperparameters: e.g. the amount / type of >,
smoothing to do, k, a §
§ held-out
= What should we learn where? o test
" |Learn parameters from training data
= Tune hyperparameters on different data o k

= Why?
= For each value of the hyperparameters, train and
test on the held-out data

= Choose the best value and do a final test on the test
data

What to Do About Errors

" Problem: there’s still spam in your inbox

= Need more features — words aren’t enough! © Made of Metal
* Have you emailed the sender before? o 100,000-la
= Have 1M other people just gotten the same email? drivetrain warmoy
» |s the sending information consistent?
" |s the email in ALL CAPS?
= Do inline URLs point where they say they point?
= Does the email address you by (your) name?

= Naive Bayes models can incorporate a variety of features, but tend to do
best in homogeneous cases (e.g. all features are word occurrences)

Baselines

" First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

= For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

" The confidence of a probabilistic classifier: 5
= Posterior over the top label 5
- d sl
confidence(x) = max P(y|x) I=1M]El]=
P(yl|x)
= Represents how sure the classifier is of the classification o]
= Any probabilistic model will have confidences &
= No guarantee confidence is correct §
“:DDD_

P(y|z)

accuracy

P(y|z)

Summary

Bayes rule lets us do diagnostic queries with causal probabilities

The naive Bayes assumption takes all features to be independent given the class label
We can build classifiers out of a naive Bayes model using training data
Smoothing estimates is important in real systems

Classifier confidences are useful, when you can get them

Feature Vectors

e N
Hello, # free 2
. YOUR NAME 0 SPAM
Do you want free printr MISSPELLED : 2
cartriges? Why pay more FROM FRIEND 0 or
when you can get them L
ABSOLUTELY FREE! Just +
- J
e N
PIXEL-7,12 1
PIXEL-7,13 : O “27
NUM LOOPS : 1

_ J

McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:

a; <= gin;) =g (Zjoai&;/)

| Bias Weight
do=— a;= g(in;
WO,i i= 8 (z)
a]- - -
Input Input Activation Output
Links Function Function Output Links

A gross oversimplification of real neurons, helps to develop
understanding of what networks of simple units can do

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

If the activation is:
= Positive, output +1
= Negative, output -1

Linear Classifiers

)X

Weights

= Binary case: compare features to a weight vector
= Learning: figure out the weight vector from examples

free : 4
YOUR NAME -1
MISSPELLED 1 # free : 2
FROM_FRIEND :-3 qq) YOUR_NAME : 0
MISSPELLED : 2
f(ﬂj]_) FROM FRIEND : 0

free
f (332) YOUR NAME
i MISSPELLED :
Dot product w - f positive rROM FRIEND -

means the positive class

Binary Decision Rule

" |n the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane
= Decision boundary:

" One side corresponds to Y=+1

>
v 2
" Other corresponds to Y=-1 S
£ +1 = SPAM
w
1
BIAS : -3
free 4
money : 2 1 = HAM 00 y f
ree

Activation function

g(iny) A g(in;)
z; m>
(a) (b)

(a) is a step function or threshold function (a perceptron)
(b) is a sigmoid function 1/(1 + e™*) (a sigmoid perceptron)

Changing the bias weight wo moves the threshold location

Implementing logical functions

W()Zl.s WO: 05 WO:—O.S
W1>* W1}~
/ /
W2 — 1 W2 — 1
AND OR NOT

McCulloch and Pitts: every Boolean function can be
implemented (sort of)

Learning: Binary Perceptron

= Start with weights =0
= For each training instance:

= Classify with current weights

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights =0
= For each training instance: "
= Classify with current weights Y f

1L i we f(x) >0
YT i w fle) <0

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w-+vy - f

Examples: Perceptron

= Separable Case

45}

4 + +
35}

3 + O
25}

2 + O O
15+ o)

0.5

Examples: Perceptron

= Separable Case

45+

4 + +
35+

3 -+ O
25

2 + O ol
1.5F 0

0.5

Examples: Perceptron

= Separable Case

Examples: Perceptron

= Separable Case

45t
4 +
35}
3 + e
25}
2 + O O
1 8 ®)
L o) o
05}

= Separable Case

45}

35 F

25t

1.5}

0.5}

Examples: Perceptron

Examples: Perceptron

= Separable Case

Examples: Perceptron

= Separable Case

45}
35 F

25|

15} 0O

Examples: Perceptron

= Separable Case

Multiclass Decision Rule

= |f we have multiple classes: S o 003
= A weight vector for each class: + + t ’:'_ + QO oo O ©
wy + A 4 + o O
= Score (activation) of a class y: _
w1y - f biggest
wy - f(x) w1
= Prediction highest score wins
W 3
y = argmax wy, - f(x) 2
Yy wo - f w3 - f
biggest biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)
If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)

Example: Multiclass Perceptron

“win the vote”

“win the election”

“win the game”

WSPORTS WpOLITICS WTECH
BIAS 1 BIAS 0 BIAS 0
win 0 win 0 win 0
game 0 game 0 game 0
vote 0 vote 0 vote 0
the 0 the 0 the 0

Properties of Perceptrons

. : . Separable
= Separability: true if some parameters get the training set
perfectly correct +
- 'y,
= Convergence: if the training is separable, perceptron will - .
eventually converge (binary case) - _

= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

stak k
mlsaes<5—2 -\ &

k is the number of features -
J is the size of the margin £

Expressiveness of Perceptron

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:
ZJ'M/J'ZCJ' >0 or W-x>0

X1y X1
1 O ® 1 @)
?
0 O0—————O— 0
0 1 X 0 1 X
(a) x; and x, (b) x; of Xy (¢) xq xor x,

Minsky & Papert (1969) pricked the neural network balloon

Examples: Perceptron

" Non-Separable Case

5 -
45
4l
35+
3k
25
2k
1.5+
1k

0.5}

U 1

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash -[
= Averaging weight vectors over time can) _ "
help (averaged perceptron)

Mediocre generalization: finds a -
“barely” separating solution -

Overtraining: test / held-out accuracy
usually rises, then falls
= Qvertraining is a kind of overfitting

training

test
held-out

iterations

accuracy

Fixing the Perceptron

Idea: adjust the weight update to mitigate these effects

MIRA*: choose an update size that fixes the current

mistake...
... but, minimizes the change tow

.1 /112
min 5%:||wy_wy||

wye - f(2) = wy - f(2) + 1

The +1 helps to generalize

* Margin Infused Relaxed Algorithm

’wy*

w,,/

Y

Guessed y instead of y* on
example z with features f(x)

Wy = wly — 7f(x)
Wy = w;* + 7f(x)

Minimum Correcting Update

. 1 /112
i 52wy — wi

: 2
min |||

(wys +7f) - f = (wy —7)- f+1
2f - f

Wy = wly — 7f(x)
W = w;* + 7f(x)
fwy*-f
>
/ wy - [+ 1
T=20

min not | ?]=0, or would not
have made an error, so min will
be where equality holds

Maximum Step Size

In practice, it’s also bad to make updates that are too large

Example may be labeled incorrectly
You may not have enough features

Solution: cap the maximum possible value of [?] with some
constant C

7 = min (wy—wy*)-f-|-170
2f - f

Corresponds to an optimization that assumes non-separable data
Usually converges faster than perceptron
Usually better, especially on noisy data

Linear Separators

= Which of these linear separators is optimal?

Support Vector Machines

Maximizing the margin: good according to intuition, theory, practice
Only support vectors matter; other training examples are ignorable
Support vector machines (SVMs) find the separator with max margin
Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

1
2
wy - f(x) > wy - f(z;) + 1

min =||jw — w'||?
w

SVM

1
2
Vi, y wyr - f(x;) > wy - f(x;) + 1

min =||w||?
w

Classification: Comparison

= Nalve Bayes
" Builds a model training data
= Gives prediction probabilities
= Strong assumptions about feature independence
" One pass through data (counting)

= Perceptrons / MIRA:
= Makes less assumptions about data
= Mistake-driven learning
= Multiple passes through data (prediction)
= Often more accurate

