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What is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?
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Start state

What is graph search?

Dobreta [

Eforie

Graph search: find a path from start to goal

— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Goal state



What is a graph?

Graph: G = (V7 E)

Vertices: |/

Edges: [/

O
/ \ Directed graph
V ={A,B,C}
’ : @ E=1(B,4),(4,0),(B,0),(C, B);




What is a graph?

Graph: G = (V, F)

Vertices: |/

Edges: [/

Undirected graph
V ={AB,C,D}

@ @ E = {{A,C},{4,B},{C,D},{B, D},{C, B}}




What is a graph?

Graph: G = (V, F)

Vertices: |/ - Also called states

Edges: F « Also called transitions




Defining a graph: example




Defining a graph: example

* How many states?



Defining a graph: example




Defining a graph: example

4 Pairs of states that are “connected”
by one turn of the cube.




Example: Romania

« On holiday in Romania;
currently in Arad. Flight leaves
tomorrow from Bucharest

. Formulate goal: Be in
Bucharest

. Formulate problem:
. States: various cities

. actions: drive between cities
o Find solution:

« Sequence of cities, e.g., Arad,

Sibiu, Fagaras, Bucharest
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Graph search
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Given: a graph, G
Problem: find a path from Ato B
— A start state

— B: goal state



Graph search

(] Oradea

& Neamt

O —
Zerind 87
75 151

d Iasi

Arad L 140
. 92
Sibiu 99 Fagaras
118 ‘ o

— A: start state

— B: goal state



Problem formulation

A problem is defined by four items:

. initial state e.qg., “at Arad”

. successor function S(x) = set of action—state pairs
e.g., S(Arad) = {(Arad — Zerind, Zerind), . . .}

goal test, can be explicit, e.g., x = “at Bucharest” implicit, e.g.,
NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(x, a, y) is
the step cost, assumed to be = 0

A solution is a sequence of actions leading from the initial state to
a goal state



A search tree

@)

Bucharest

Dobreta []

<; Start at A



A search tree

@)

Bucharest

Dobreta []

@ / @ <:: Successors of A



A search tree

@)

Bucharest

Dobreta []

@ / @ <:: Successors of A

parent children



A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

Eforie

@ ¢ Let's expand S

next



A search tree

[]Vaslui
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(| 86
J: ucharest
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A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

A was already
visited!




A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

Eforie

/ So, prune it!




A search tree

/
O
@/@

TG

— here, we expanded S, but we could also have expanded Zor T

In what order should we expand states?

— different search algorithms expand in different orders



Breadth first search (BFS)




Breadth first search
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Breadth first search (BFS
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Start node



Breadth first search
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Breadth first search (BFS)

Fringe We're going to maintain a queue called the fringe

— initialize the fringe as an empty queue



Fringe

Breadth first search (BFS)
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— add A to the fringe



Breadth first search (BFS)

-
-------------------------------------------------------

-- remove A from the fringe

-- add successors of A to the fringe



Fringe
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Breadth first search (BFS)
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-- remove B from the fringe

-- add successors of B to the fringe



Breadth first search (BFS)

/@\

@/\@@/\@ .

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

-- remove C from the fringe

-- add successors of C to the fringe
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Breadth first search (BFS)
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Which state gets removed next from the fringe?
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Which state gets removed next from the fringe?

What kind of a queue is this?



Breadth first search (BFS)

/@\

@/\@@/\@ .
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Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)




Breadth first search (BFS)

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node «+— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element
explored +— an empty set
loop do
if EMPTY?( frontier) then return failure
node «+— POP( frontier) [* chooses the shallowest node in frontier */
add node.STATE to ezxplored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE( problem , node, action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.




Breadth first search (BFS)

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element

if EMPTY?( frontier) then return failure
node < POP( frontier) /[* chooses the shallowest node in frontier */

A"EEEEEEEEEEEEEEE R EEEEEEE RS R R R EENEY

- add node.STATE to ezplored :

--------------------------------- v

for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE( problem, node, action)

= if child STATE is not in ezplored or frontier then *

frontier «— INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.

What is the purpose of the explored set?




BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?




BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n”?
— b: branching factor
— d: depth of shallowest solution
— complexity = ?77?
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BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

What is the space complexity of BFS?
— how much memory is required?
— complexity = ?7?7?




BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bd)




BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bd)

Is BFS optimal?
— is it guaranteed to find the best solution (shortest path)?




Uniform Cost Search (UCS)
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Notice the distances between cities
— does BFS take these distances into account?
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Notice the distances between cities
— does BFS take these distances into account?
— does BFS find the path w/ shortest milage?



Uniform Cost Search (UCS)
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Notice the distances between cities

— does BFS take these distances into account?

— does BFS find the path w/ shortest milage?

— compare S-F-B with S-R-P-B. Which costs less?
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Uniform Cost Search (UCS)
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Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path
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Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A7 B)

Minimum cost of path going from start state to B: g(B)



Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A7 B)

Minimum cost of path going from start state to B: g(B)

BFS: expands states in order of hops from start

UCS: expands states in order of g(S)



Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A7 B)

Minimum cost of path going from start state to B: Q(B )

BFS: ex

UCS: e




Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
— the priority of each element in the queue is its path cost.



Uniform Cost Search (UCS)
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UCS

Fringe Path Cost
A 0

Explored set:
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UCS
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UCS
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Explored set: A, Z, T, S
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Explored set: A, Z, T, S, R, L



UCS

Explored set: A, Z, T, S, R, L



UCS

Explored set: A, Z, T, S, R, L



UCS

function UNIFORM-COST-SEARCH( problem) returns a solution, or failure

node «+— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier « a priority queue ordered by PATH-COST, with node as the only element
explored +— an empty set
loop do
if EMPTY?( frontier) then return failure
node < POP( frontier) [* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE( problem,node, action)
if child .STATE is not in ezplored or frontier then
frontier < INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14  Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities
of a priority queue and a hash table.




UCS Properties

Is UCS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
— how many states are expanded before finding a solution?
— b: branching factor
— C*: cost of optimal solution
— €. min one-step cost
~ complexity = O (" /¢)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bc*/e)

Is BFS optimal?
— is it guaranteed to find the best solution (shortest path)?



Strategy: expand
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

UCS vs BFS
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Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Search
Tiers

UCS vs BFS




UCS vs BFS

Remember: UCS explores increasing
cost contours

The good: UCS is complete and
optimal!

The bad:

Explores options in every “direction”
No information about goal location

We'll fix that soon!




Depth First Search (DFS)
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Which state gets removed next from the fringe?
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Which state gets removed next from the fringe?

What kind of a queue is this?
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Which state gets removed next from the fringe?

What kind of a queue is this?




Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)




Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)




Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)




DFS Properties: Graph search version

This is the “graph search”
version of the algorithm

Is DFS complete? /
— only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
— how many states are expanded before finding a solution?
— complexity = number of states in the graph

What is the space complexity of DFS (graph version)?

— how much memory is required?
— complexity = number of states in the graph

Is DFS optimal?
— is it guaranteed to find the best solution (shortest path)?



DFS Properties: Graph search version

This is the “graph search”
version of the algorithm

Is DFS complete? /
— only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
— how many states are expanded before finding a solution?
— complexity = number of states in the graph

What is the space complexity of DFS (graph version)?

— how much memory is required?
— complexity = number of states in the graph

Is DFS optimal?
— is it guaranteed to find the best solution (shortest path)?

So why would we ever use this algorithm?




DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?



DFS: Tree search version

This is the “tree search
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)




DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity =:O(bm <&==m This is why we might
P Y ( ) want to use DFS
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/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)
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/
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— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

Is it complete?
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— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

Is it complete? NO!




DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

Is it complete? NO!
What do we do???




IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum
depth at each stage



IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum

depth at each stage

What is depth limited search?
— any guesses?



IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum

depth at each stage

What is depth limited search?
— do DFS up to a certain pre-specified depth



IDS: Iterative deepening search

= |dea: get DFS’s space advantage with BFS’s

time / shallow-solution advantages .
*= Run a DFS with depth limit 1. If no

solution... /

= Run a DFS with depth limit 2. If no

/
solution...
= Run a DFS with depth limit 3. .....

= |sn’t that wastefully redundant?

= Generally most work happens in the
lowest level searched, so not so bad!
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Figure 3.19  Four iterations of iterative deepening search on a binary tree.
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What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?
— complexity = O(b"™)

Is it complete? YES!!!

Is it optimal? YES!!



The One Queue

= All these search algorithms are the
same except for fringe strategies

= Conceptually, all fringes are
priority queues (i.e. collections of
nodes with attached priorities)

" Practically, for DFS and BFS, you
can avoid the log(n) overhead

from an actual priority queue, by
using stacks and queues

= Can even code one
implementation that takes a
variable queuing object




Search and Models

Search operates over models
of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planningis all “in
simulation”

= Your search is only as
good as your models...




Search Gone Wrong?
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