Graph Search

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
C3S188 UC Berkeley, AIMA

What is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

What is graph search?

2 4 1 2

6 > 3 - 5

3 1 6 7 8
Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

What is graph search?

Start state

Goal state

I

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Start state

What is graph search?

Dobreta [

Eforie

Graph search: find a path from start to goal

— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Goal state

What is a graph?

Graph: G = (V7 E)

Vertices: |/

Edges: [/

O
/ \ Directed graph
V ={A,B,C}
’ : @ E=1(B,4),(4,0),(B,0),(C, B);

What is a graph?

Graph: G = (V, F)

Vertices: |/

Edges: [/

Undirected graph
V ={AB,C,D}

@ @ E = {{A,C},{4,B},{C,D},{B, D},{C, B}}

What is a graph?

Graph: G = (V, F)

Vertices: |/ - Also called states

Edges: F « Also called transitions

Defining a graph: example

Defining a graph: example

* How many states?

Defining a graph: example

Defining a graph: example

4 Pairs of states that are “connected”
by one turn of the cube.

Example: Romania

« On holiday in Romania;
currently in Arad. Flight leaves
tomorrow from Bucharest

. Formulate goal: Be in
Bucharest

. Formulate problem:
. States: various cities

. actions: drive between cities
o Find solution:

« Sequence of cities, e.g., Arad,

Sibiu, Fagaras, Bucharest

WE 26°F ol SR
Co om0 30%
UKRAINE A \
SLOVAKIA %t/ | y 4§
& \ Putna Monastery | _* L .
- \ =N » A
e ~ \ L i Merry Cemetery = 80509’“ U
Lo . i o) \ X \ '
’ oA e <7t Suceava® .\ = : ;
/ e] P25 s, \ MOLDOVA ..,
Satu Mare ¢ A vel
S oY Agapia Monastery Falﬂceni A
48N = BalaMare - A< %, N/ Lagi®)
o7 ¥) P:eyrosa o,) Con)
i 2305m o
OAcas | 4’
¥ o 6 Piatra Neams Roman 3
L 7 Bistrita o Q) % \ o
[} o \ FoRo < \ Vaslui 3 X N
{ Zalau©) 7 TorlitaC 2] 9 Bacau { N
3\ - \ Reghln, -~ '} /
Oradea | Alexandru Borza Botanical Garden { o 4 \
704) - ond (yBarlad -~
HUNGARY _ &P ClupNapoca | Targu Mures S ne i 0
(osalonta: gejyg w el \ \ Y
Beius . Adjud \ £% A
b/ i\ S:ansoava Cave A Sighisoara ! Adj \ \ U KRAINE
o~ \ e & Sfahtu_ i
A BT o N >~ 4 M¥dla5 F {hhmmﬂe ~ Focsani’
A x‘; IA > ‘7: e /Alba l‘""{ ~ Biserica Neagra ‘- J g
ra rsenal Park Transilvania - 7
Py L ‘ ol Varkl, Moldoveanu OB'““" Ramnicu Sarat |
P ¥ - ;
Lo ome “Lipgva- mA et 7) Babele o Lake '\
| . satchinez" Corvin Castle O ¥ Buzau | Razim
P 3 Lugoj v g n Ha n Alp:® Peles Castle [Hé
N5 5 £, Harsova
ﬂmlsoara s 7 & BranCastle 5
7 Plolesti”
mmcu Valcea O oiest D
o) 5 ¢ Targu Jiu (i 7
* Anina® Resita ainadt e 2 | Pitesti g (onstan}aoj o
fe} HO) _
20 3 L 7 Mogosoaia Palace Q 0 cfalarasi
\ < Drobeta Turnu \ \ -
X . *Palace of the Parliament 5
Seveln Ora=gFllasl | ((‘SI 7 Videle * Dimitrie Gusti National Village Museum | 4 Black
LEGEND s ": Strehaia =t | *Museum of the Romanian Peasant Sea
< Craiova © o ,G‘"lg_\w’/ *Mogosoaia Palace
\ = R Y | o Rt
2 A
Statue of Decebalus | * "3 Gipcal £ (? / *National Museum of Romanian History
SERBIA! 5 & 4 " Curtea de Arges Cathedral
Ry P < National Museum of Art of Romania
Dz I~ =
Major City 5 o~ lnube o *Herastrau Park
Other City 0 100 Km - = *Bucharest Botanical Garden
1 -
Country Capial \ - ~ADIA CEC Palace
Major Airport (})7 50 Miles 'S BULGARIA *"Howard Johnson Hotel Bucharest
Copyright © 2013 www.mapsofworld.com ke S Palacg
(Created on 3rd December, 2013) "= _ 26°F

Graph search

] Oradea
Neamt
= 87
75 .
] lasi
Arad]
. 92
Sibiu o, Fagaras
118 .
Vaslui
20 M Vaslu
Timisoara Rimnicu Vilcea
|l
142
Mg Lugoj Pitesti \?!1
70 = 08 .
] 85 Hirsova
[JMehadia 101 —y Urziceni
() 86
= 138 Bucharest
Dobreta [] 120 90
—Craiova o Eforie
[]Giurgiu

Given: a graph, G
Problem: find a path from Ato B
— A start state

— B: goal state

Graph search

(] Oradea

& Neamt

O —
Zerind 87
75 151

d Iasi

Arad L 140
. 92
Sibiu 99 Fagaras
118 ‘ o

— A: start state

— B: goal state

Problem formulation

A problem is defined by four items:

. initial state e.qg., “at Arad”

. successor function S(x) = set of action—state pairs
e.g., S(Arad) = {(Arad — Zerind, Zerind), . . .}

goal test, can be explicit, e.g., x = “at Bucharest” implicit, e.g.,
NoDirt(x)

path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(x, a, y) is
the step cost, assumed to be = 0

A solution is a sequence of actions leading from the initial state to
a goal state

A search tree

@)

Bucharest

Dobreta []

<; Start at A

A search tree

@)

Bucharest

Dobreta []

@ / @ <:: Successors of A

A search tree

@)

Bucharest

Dobreta []

@ / @ <:: Successors of A

parent children

A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

Eforie

@ ¢ Let's expand S

next

A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

0
/ Successors
D<@ %% -
@

A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

A was already
visited!

A search tree

[]Vaslui

[JHirsova

(| 86
J: ucharest
Dobreta []

Eforie

/ So, prune it!

A search tree

/
O
@/@

TG

— here, we expanded S, but we could also have expanded Zor T

In what order should we expand states?

— different search algorithms expand in different orders

Breadth first search (BFS)

Breadth first search

Arad L]

118

(] Timisoara

L] Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

BFS

Breadth first search (BFS

Arad L]

118

(] Timisoara

L] Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

Start node

Breadth first search

TN

[] Oradea

Arad L]

118

(] Timisoara

L] Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

BFS

Breadth first search

TN

O\

[] Oradea

Arad L]

118

(] Timisoara

L] Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

BFS

Breadth first search

TN

/\@ @/

[] Oradea

Arad L]

118

(] Timisoara

L] Hirsova

[] Mehadia

Urziceni

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

BFS

Breadth first search (BFS)

Fringe We're going to maintain a queue called the fringe

— initialize the fringe as an empty queue

Fringe

Breadth first search (BFS)

llllllllllllllll

@

*
lllllllllllllll

— add A to the fringe

Breadth first search (BFS)

-

-- remove A from the fringe

-- add successors of A to the fringe

Fringe

mo o

Breadth first search (BFS)

L]
g
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

-- remove B from the fringe

-- add successors of B to the fringe

Breadth first search (BFS)

/@\

@/\@@/\@ .

ll

-- remove C from the fringe

-- add successors of C to the fringe

e

olululeliy
=}

Breadth first search (BFS)

/@\

@/\@@/\@ .

ll

Which state gets removed next from the fringe?

Breadth first search (BFS)

/@\

@/\@@/\@ .

ll

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

/@\

@/\@@/\@ .

ll

Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)

Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «+— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element
explored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node «+— POP(frontier) [* chooses the shallowest node in frontier */
add node.STATE to ezxplored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem , node, action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element

if EMPTY?(frontier) then return failure
node < POP(frontier) /[* chooses the shallowest node in frontier */

A"EEEEEEEEEEEEEEE R EEEEEEE RS R R R EENEY

- add node.STATE to ezplored :

--------------------------------- v

for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE(problem, node, action)

= if child STATE is not in ezplored or frontier then *

frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a sol'n”?
— b: branching factor
— d: depth of shallowest solution
— complexity = ?77?

BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

What is the space complexity of BFS?
— how much memory is required?
— complexity = ?7?7?

BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bd)

BFS Properties

Is BFS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?

— how many states are expanded before finding a solution?
— b: branching factor
— d: depth of shallowest solution

— complexity = O(bd)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bd)

Is BFS optimal?
— is it guaranteed to find the best solution (shortest path)?

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
. 92
Sibiu o, Fagaras
118 JVaslui
80
Timisoara Rimnicu Vilcea
1
142
111 q Lugoj Pitesti \2!1
70 = 08 .
. 35 — Hirsova
IMehadia 101 - Urziceni
2 86
75 138 Bucharest
Dobreta [] 120 %
—Craiova o Eforie
(] Giurgiu

Notice the distances between cities

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
. 92
Sibiu o, Fagaras
118 .
Vaslui
20] Vaslu
Timisoara Rimnicu Vilcea
1
142
111 = LUgOi Pitesti 211
70 = 08 .
. 35 — Hirsova
IMehadia 101 - Urziceni
() 86
75 138 Bucharest
Dobreta [] 120 %
—Craiova o Eforie
[]Giurgiu

Notice the distances between cities
— does BFS take these distances into account?

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[]
. 92
Sibiu o, Fagaras
118 .
Vaslui
20]Vaslu
Timisoara Rimnicu Vilcea
1
142
70 = 08 .
. 35 — Hirsova
JMehadia 101 - Urziceni
\2) 86
75 138 Bucharest
Dobreta [] 120 %
—Craiova o Eforie
(] Giurgiu

Notice the distances between cities
— does BFS take these distances into account?
— does BFS find the path w/ shortest milage?

Uniform Cost Search (UCS)

] Oradea
Neamt
- 87
75 _
] lasi
Arad[}
. 92
Sibiu o, Fagaras
118 .
Vaslui
20]Vaslu
Timisoara Rimnicu Vilcea
1
142
70 = 08 .
. 35 — Hirsova
[JMehadia 101 —y Urziceni
=) 86
75 138 Bucharest
Dobreta [] 120 %
—Craiova o Eforie
(] Giurgiu

Notice the distances between cities

— does BFS take these distances into account?

— does BFS find the path w/ shortest milage?

— compare S-F-B with S-R-P-B. Which costs less?

118

Uniform Cost Search (UCS)

] Oradea
Neamt
— 87
] lasi
Sibi 92
- Iblu- oy Fagaras
L -
20 Vaslui
Timisoara lemcu Vilcea
142
. . 211
111 - LUQOi Pitesti
|
70 85 o 28 Hirsova
JMehadia =2 Urziceni
((m)) 86
8 ~Bucharest
Dobreta [120
Eforie
Notic
—do nt?
- do ?
circoo less?

118

Uniform Cost Search (UCS)

] Oradea
Neamt
— 87
] lasi
Sibi 92
- Iblu- oy Fagaras
L -
20 Vaslui
Timisoara lemcu Vilcea
142
. . 211
111 Lugoj Pitesti
|
70 85 o 28 Hirsova
JMehadia =2 Urziceni
) 86
8 ~Bucharest
Dobreta [120
Eforie
Notic
—do nt?
- do ?
circoo less?

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A7 B)

Minimum cost of path going from start state to B: g(B)

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A7 B)

Minimum cost of path going from start state to B: g(B)

BFS: expands states in order of hops from start

UCS: expands states in order of g(S)

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

/

Length of path

Cost of going from state A to B: C(A7 B)

Minimum cost of path going from start state to B: Q(B)

BFS: ex

UCS: e

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
— the priority of each element in the queue is its path cost.

Uniform Cost Search (UCS)

"] Oradea
Neamt
= 87
75 _
] lasi
Arad[]
. 92
Sibiu o, Fagaras
118 JVaslui
80
Timisoara Rimnicu Vilcea
[
142
70 - 08 .
. 35 — Hirsova
[JMehadia 101 S\ Urziceni
\2) 86
& 138 Bucharest
Dobreta [] 120 %
—ICraiova Eforie

[1Giurgiu

UCS

Fringe Path Cost
A 0

Explored set:

UCS

Fringe Path Cost @ -
A———0——

S 140 1M 118

T 118

Z 75

Explored set: A

UCS

Fringe Path Cost @ -
A———0606—
S 140 1M 11\

T 118
Z— 15—
T 146

146

Explored set: A, Z

UCS

Fringe Path Cost @

A 140 75

S 140 118

8

e) ©
T 146

L 229 229 146

Explored set: A, Z, T

UCS

Fringe Path Cost @ -
A——6—

S— 40" 1M 118

T8

75 () (2)
T 146

L 229 23 220 299 146
F 239

e ® ®

Explored set: A, Z, T, S

UCS

Fringe Path Cost @ -
A——6—

1M 118
S—H0-
T8
= O)
—+ 46—

L 229 23 220 999 146
F 239

Explored set: A, Z, T, S

UCS

Fringe Path Cost @

A———— 75

~S— 440 1M 118
18—

= O @)
I+ 46—

F 239

R—220"

e () (B)

P

336 317

© @

Explored set: A, Z, T, S, R

Fringe Path Cost @

T8
— ® @
—+— 146
F 239
R—220—
C 336
P 317
M

299 | 299
336 317

Explored set: A, Z, T, S, R, L

UCS

Explored set: A, Z, T, S, R, L

UCS

Explored set: A, Z, T, S, R, L

UCS

Explored set: A, Z, T, S, R, L

UCS

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «+— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier « a priority queue ordered by PATH-COST, with node as the only element
explored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem,node, action)
if child .STATE is not in ezplored or frontier then
frontier < INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities
of a priority queue and a hash table.

UCS Properties

Is UCS complete?
— is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
— how many states are expanded before finding a solution?
— b: branching factor
— C*: cost of optimal solution
— €. min one-step cost
~ complexity = O (" /¢)

What is the space complexity of BFS?
— how much memory is required?

— complexity = O(bc*/e)

Is BFS optimal?
— is it guaranteed to find the best solution (shortest path)?

Strategy: expand
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

UCS vs BFS

S0

© 9 (o 1
< |
W17 ()11 (@) 16
AN

q f

N

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Search
Tiers

UCS vs BFS

UCS vs BFS

Remember: UCS explores increasing
cost contours

The good: UCS is complete and
optimal!

The bad:

Explores options in every “direction”
No information about goal location

We'll fix that soon!

Depth First Search (DFS)

Fringe

llllllllll

lllllllllll

*
lll

*
ll

DFS

Fringe @

B \
- . :
—G—
H
|

*
ll

Which state gets removed next from the fringe?

DFS

@

Fringe

B : :
= : :
G
H
I

*
ll

Which state gets removed next from the fringe?

What kind of a queue is this?

Fringe

chnied

* L 4
lll

Which state gets removed next from the fringe?

What kind of a queue is this?

Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

DFS Properties: Graph search version

This is the “graph search”
version of the algorithm

Is DFS complete? /
— only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
— how many states are expanded before finding a solution?
— complexity = number of states in the graph

What is the space complexity of DFS (graph version)?

— how much memory is required?
— complexity = number of states in the graph

Is DFS optimal?
— is it guaranteed to find the best solution (shortest path)?

DFS Properties: Graph search version

This is the “graph search”
version of the algorithm

Is DFS complete? /
— only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
— how many states are expanded before finding a solution?
— complexity = number of states in the graph

What is the space complexity of DFS (graph version)?

— how much memory is required?
— complexity = number of states in the graph

Is DFS optimal?
— is it guaranteed to find the best solution (shortest path)?

So why would we ever use this algorithm?

DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

DFS: Tree search version

This is the “tree search
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity =:O(bm <&==m This is why we might
P Y () want to use DFS

DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

Is it complete?

DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

Is it complete? NO!

DFS: Tree search version

This is the “tree search”
version of the algorithm

/

Suppose you don't track the explored set.
— why wouldn't you want to do that?

What is the space complexity of DFS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?

— complexity = O (b™)

Is it complete? NO!
What do we do???

IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum
depth at each stage

IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum

depth at each stage

What is depth limited search?
— any guesses?

IDS: Iterative deepening search

What is IDS?
— do depth-limited DFS in stages, increasing the maximum

depth at each stage

What is depth limited search?
— do DFS up to a certain pre-specified depth

IDS: Iterative deepening search

= |dea: get DFS’s space advantage with BFS’s

time / shallow-solution advantages .
*= Run a DFS with depth limit 1. If no

solution... /

= Run a DFS with depth limit 2. If no

/
solution...
= Run a DFS with depth limit 3.

= |sn’t that wastefully redundant?

= Generally most work happens in the
lowest level searched, so not so bad!

Limit=0 >®

Limit = 1 >®

Limit = 2 >®

Limit = 3 >®

L W

@

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

IDS

What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?
— complexity = O(b"™)

Is it complete?

IDS

What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?
— complexity = O(b"™)

Is it complete? YES!!!

Is it optimal?

IDS

What is the space complexity of IDS (tree version)?
— how much memory is required?

— b: branching factor

— m: maximum depth of any node

— complexity = O (bm)

What is the time complexity of DFS (tree version)?
— how many states are expanded before finding a solution?
— complexity = O(b"™)

Is it complete? YES!!!

Is it optimal? YES!!

The One Queue

= All these search algorithms are the
same except for fringe strategies

= Conceptually, all fringes are
priority queues (i.e. collections of
nodes with attached priorities)

" Practically, for DFS and BFS, you
can avoid the log(n) overhead

from an actual priority queue, by
using stacks and queues

= Can even code one
implementation that takes a
variable queuing object

Search and Models

Search operates over models
of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planningis all “in
simulation”

= Your search is only as
good as your models...

Search Gone Wrong?

WHGARY i
__.{ ROMAHIA

el W [@].. .
.~ ~Bucharest’
3 i N

1000

g = — Legend
200 400 600

Start: Haugesund, Rogaland, Norway
End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

