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Summary

We present details of a Navier-Stokes solver to address fluid flows through a
circular tube with elastic walls. This class of problems, fluid flow through
collapsible tubes, is very important to the study of biological systems (respiratory
system, circulatory system, etc.) and physical systems (fluid dynamics, engineering,
etc.). In contrast to other models, we focus on integrating wall elasticity and time
dependence. We successfully model the flow of blood through the jugular vein of
a giraffe over time by numerically evaluating a series of hyperbolic PDEs using Lax-
Wendroff. We examined the role that elasticity plays at various length scales and
determined that it has an impact on the flow velocity over large length scales (i.e. a
giraffe) whereas it is negligible over small length scales (i.e. a human) as it is likely
overwhelmed by factors such as lateral flow and viscosity. This work presents a
strong framework for future CFD studies regarding various human blood flow
physiologies including the abdominal aorta.

Background
We were motivated to study the effects of elastic walls relating to blood flow due
to our work on the “Multiscale Hemodyanmics Project”. We wanted to address
whether it would be important to add elasticity into our 3D Lattice-Boltzmann
model (MUPHY). The specific approximation addressed in this research is
observed in some real life systems including the case of blood flow through the
jugular vein in the neck of a giraffe. This problem has been one of interest over
the past few decades due to the giraffe’s unique anatomy. Due to the giraffe’s
exceptional height, its circulatory system must cope. A giraffe’s heart, for
instance, is ~2.5% of its total body mass compared to other mammals (including
humans) where the heart is only ~0.5% (Goetz et al., 1960). It is also the case that
the blood pressure in the giraffe’s head is higher than at the base of its neck
(Hargens et al. 1987), which is counter intuitive to the case of standing fluid in a
tall glass. This implies that there is a viscous resistance to downward flow in the
vein thus the vein must be significantly collapsed (Pedley, 1987). In one classic
paper, Pedley et al. (1996), neither elastic walls nor time dependence were taken
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Right: Schematic drawing of
the system addressed in the
paper with the “stiff” case on
the right (large K), and the
“elastic” case on the left
(small K). L is the tube
length, u is the fluid velocity,
a is the cross sectional area, ——
and A, is the undistorted

cross sectional area.
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Mathematical Model & Numerics

Our mathematical model is an approximation of the full time-
dependent Navier-Stokes fluid dynamics equations in which we
assume the length of the tube is much larger than the radius (L >>
r) and there are no abrupt changes in the tube’s diameter. This
allows us to neglect velocity of the fluid perpendicular to the
direction of flow. Based on Brook et al. (1999), our non-
dimensionalized (i.e. scaled so 1 represents the equilibrium (steady)
value) governing equations in our system are:
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where T is time, X is distance along the tube with X = 0
representing the top, o(X,T) is the cross sectional area of the tube,
U(X,T) is the downstream velocity averaged across the cross
sectional area, p, is the external pressure, p is the fluid density, U,
is the critical velocity when the viscous resistance to laminar flow
balances the gravitational force, P(X,T) is the pressure, g is
gravitational acceleration, L is the tube length, and D is the
diffusion constant (discussed below).  The first equation,
commonly called the “continuity equation”, represents
conservation of mass and the second equation represents the
conservation of momentum in the system. The pressure is defined

as:
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where K represents the elasticity (bending stiffness) of the tube,
and ny;, is chosen to match the biological properties of real blood
vessels. We also pre-define the initial geometry of the tube to
include one period of a sine wave over the length of the tube:

o(X,T =1) = 1+ 0.1sin (QWTI)

This serves to give an initial perturbation to the system, and can be
thought of as small initial pulse of blood through the vein. The
initial pressure, based on the above equation for the cross
sectional, becomes:
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where the pressure of the cross sectional area at T = 1 is scaled by
the pressure of a tube with constant cross sectional area A,.

To solve our system of equations we applied the finite
difference methods Lax-Wenderoff which consists of doing
forward difference in time and central difference in space. We
chose to use this method due to its simplicity and it is not prone
to over-damping at long time scales. In order to ensure
conditional stability we needed to both adhere to the Courant-
Friedrichs-Lewy condition (CFL condition) and introduce an
artificial diffusion constant (D). To illustrate a perpetual wave, we
chose to use periodic boundary conditions.

http://hemo.seas.harvard.edu

Results

A Numerical Model for Time-Dependent Gravity-Driven Flow in a Collapsible Tube

When looking at the model of the blood flow through a giraffe’s jugular vein with elasticity taken into account,
the significant area of focus was to look at its effect on the flow rate through the tube. We found that:

* Fluctuations in the diameter of the tube will cause the fluid to speed and slow accordingly as it moves
through the length of the tube.
* By varying the elasticity of the walls, waves would quickly stop being propagated through the walls of the
tube when they were stiff (vs. waves would continue to propagate with elastic walls).

* The wall elasticity determines the change in cross sectional area thus affecting the flow rate.

To determine the length scale at which the elasticity would have a significant impact on the flow rate, we
investigated the percent change in flow rate created by elastic walls:

« For the giraffe, there is a 31% difference in the height of the peaks of the velocity for stiff vs. elastic walls

(elasticity plays a significant role at the giraffe length scale).

* For the human model, the velocity in the elastic wall case is only 2% higher than the velocity calculated
with a stiff wall (elasticity less important since other factors begin to overwhelm the velocity calculation
when looking at human length scales).

It would also be enlightening to extend this model to higher dimensions to create a more realistic model. We
plan to incorporate this knowledge into the Multiscale Hemodyanmics’ large-scale 3D blood flow simulations.
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Above: Movie frames from blood flow animations of elastic walls. Top: Giraffe jugular vein. Time step 10 shows beginning of
elastic walls influencing the velocity, and by time step 50 the elastic walls are semi-collapsing thus slowing down the blood flow (a
real anatomically observed effect). Bottom: Human jugular vein. Time step 10 shows velocity smoothing out, and by time step 50 the
walls and velocity equilibrated.
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