
Arrow Laws and Efficiency in Yampa

Benjamin Lerner

December 11, 2003

Abstract

Yampa is a functional reactive language developed for the specific domain of robotic control.
By combining both discrete events and time-varying signals, it incorporates the main types
of actions and stimuli a robot likely encounters. To accomplish this, signals and events are
represented by a signal function class, which is defined and implemented to be an instance of
the Arrow class, which defines the operators associated with that abstraction.

The choice of an arrow as the underlying representation yields two benefits at the program-
mer’s level. First, because of how the operators are defined, arrows do not suffer from the
same space-leaks that prior implementations of Yampa did. Second, the patterns in which the
operators combine arrows are intuitively similar to those found in circuit diagrams, and hence
the correspondence between circuit programming of robots and arrow programming in Yampa
is easier to appreciate.

We formally prove that the type SF (the basic signal function class used in Yampa), defined
in [2] and implemented in [3], satisfies the arrow laws as defined in [5], for the purposes of
showing that Yampa, which is built around the properties of this class, in fact is sound. Two
of the nine laws are not satisfied in terms of strict equality; an evaluation function is defined
under which those two laws do hold. As the two expressions involved in each law are not the
same, some discussion is given as to which expression is more efficient, and its potential as an
optimization for Yampa programs.

1 Introduction

The Yampa language has been used to program or model the programming of full- scale robots as
mentioned in [2]. Also described in that paper is a model of a simple mobile robot, and examples
of how to program it with Yampa. The paper also introduces the notion of an arrow, and explains
some of the simple combinators possible using them.

Initial work on Yampa was built on previously developed functional-reactive systems – Fran,
FAL and FRP (as noted in [2]) – which used a similar architechture. However, as also mentioned
in that paper, and explained in more detail elsewhere, many programs written in Yampa developed
space- and time-leaks, degrading the performance of the system to the point where it was no
longer a real-time responsive model. The reasons underlying this were nontrivial, but primarily
stemmed from the availability of signals as first-class values. To address this issue, the underlying
implementation of signals was changed to use an arrow, thus hiding the signals themselves from
computation, and only exposing the manipulations permissible on them. This abstraction is valid
as long as the signal class in fact is an arrow; that is, that it satisfies the axioms an arrow must
uphold.

Arrows were initially defined in [4] as an extension of monads, a standard concept in functional
programming. The extension was motivated by noting that certain parsing constructs could not
be implemented as monads, which was worrisome to the extent that parsers are rather ubiquitous,

1

and if they could not be implemented as such, perhaps the definition was too restrictive. Other
examples were presented later, showing how the arrow interface defined in this paper can be used
with many other common applications. The paper also proves that monads can be simply and
almost trivially embedded in an arrow construction, showing that all the functionality of any given
monad can be expressed by a suitably defined arrow as well.

Manipulations of arrows are achieved by various combinators, which express formally what
is intuitively a “wiring diagram” for the flow of data through a program. For example, the &&&
combinator produces the same effect in Yampa code that a two-output FANOUT operation achieves
in circuits – duplicating the input and routing it to two separate components of the circuit, as
illustrated in [2, 6]. There exist minimal sets of three combinators which together are universal,
that is, can define all other possible combinators for arrows. The selection of which three should
form such a set is a matter of convenience and taste; most often a larger set of combinators is
employed, for ease of use [2]. In Yampa, three non-minimal combinators are defined, namely
second, &&& and ***, which each can be trivially defined from the minimal three combinators (in
fact, they are so defined in the base definition of Arrow, in [3]).

Just as monads satisfy three axiomatic “monad laws”, arrows must satisfy a set of nine axioms.
(The initial definition in [4] stated eleven such laws, but later papers removed two of them, namely
the extensionality laws, which require that if two arrows, when composed with lifted injective or
surjective functions, produce identical output, then the original arrows must be identical.) These
laws describe the associativity and extensionality of arrows, as well as more abstract proprties such
as requiring that various combinators preserve composition of arrows [4]. Satisfying these laws,
together with implementations of a universal set of combinators, defines an arrow.

The implementation of SF in the current version of Yampa [3] does satisfy nearly all of the arrow
laws. Because SF was defined to optimize two special cases – namely that of a constant arrow,
and that of a lifted pure function – and because the various composition operators are defined to
respect that optimization as much as possible, SF does not strictly satisfy two of the arrow laws.
Both laws deal with the interaction of ≫ and first: the problems arise when one tries to take
first constant k, because that cannot be a constant arrow any more, as it depends on its second
input. Since this operation changes the optimizations on the arrow, problems arise, and will be
more explicitly shown in the relevant two proofs.

Since these two laws are not strictly equal, an embedding function was defined under which
the laws could be shown to hold. Intuitively, as long as the arrows on either side of those two
laws produce the same output given the same input, it does not matter how the arrow is internally
represented (i.e. by a constant arrow or by a lifted constant function, as one possibility). The
embedding function formalizes this intuition. This possibility, however, opens the door for a small
class of law-based optimizations available to Yampa programs – one side of the equations could be
more efficient than the other. This possibility is explored after the proofs are presented.

Yampa redefines three basic combinators, as mentioned above, with the reasoning that special-
ized redefinitions, written with full knowledge of the implementation of SF, can maintain more of
the possible optimizations available than can the default implementation, which has no knowledge
and full generality. The proofs presented in this paper do not depend on the redefinitions of the
non-minimal arrow combinators described above (namely second, &&& and ***), and concentrate on
the axioms that an arrow must satisfy. Further, no proofs are presented that the redefinitions are
equivalent to the default ones. This is precisely because, since they are not part of the minimal
set of combinators chosen, if SF satisfies the arrow laws as expressed in terms of arr, ≫ and first,
then SF is an arrow. If the three redefined combinators are not equivalent to the original default
definitions, that does not invalidate SF’s status as an arrow, but rather says that the combinators
define new operations, albeit with rather misleading names. If one wanted to prove that these

2

three definitions are equivalent to the defaults, it would be straightforward to do so. In each of
these three cases, the proof is trivially accomplished by taking the default definitions, which are all
defined in terms of arr, ≫ and first, and partially unfolding them. By keeping careful track of each
case, one can show an equivalence between them and the cases of the new definition. Some care
must be taken, as the new implementation preserves some optimizations which would be lost in the
default definitions – that was the whole point of overriding the defauls in the first place. As such,
the proper goal is to prove that the evalSF’s of each side of the equivalences are in fact equal.

2 Proofs of the Arrow Laws for Yampa

Throughout these proofs, we consistently rename variables to prevent name-clashing, since α-
conversion of function definitions in Haskell does not change their meaning. If a line of code is used
which has had variables renamed, then those variables will both be defined prior to their appearance
in that line of code, and will be consistently used in the rest of the derivation. Whenever a variable
is defined in the code as tf0, we denote that here as tf0.

The symbol def= is used in two related ways in these proofs. When a proof indicates something
similar to

Let SF{sfTF = tff}
def= arr f ′

the implied meaning is to unfold the definition of arr f ′, and bind the resulting value to the variables
on the left side of this definition. In this example, we would have

tff = λa → (sfArr f ′, f ′a)

Alternatively, the following indicates that the operations involved on either side of the equality are
definitionally the same, rather than binding to meta-variables, as above:

If f and g are functions, then f ≫ g
def= f · g

Also common through these proofs is the replacement of definitions in the code of the form

tf0 a0 = X

with the equivalent λ-abstraction
tf0 = λa0 → X

except in some cases where doing so would be impossible, due to recursively defined functions.
Where lazy patterns are used in the code, they will be marked as λ∼ a0. The exposition of these

proofs is influenced both by Haskell’s lazy evaluation order and by its nature as a pure functional
language – if two expressions both contain a subexpression g(x), for the same g and x, then there
is no reason to evaluate that function any further; Haskell won’t evaluate it until necessary, and
we as the user are ensured that g(x) will produce the same results every time when called with the
same arguments.

Finally, as a typographical note, function calls are typeset as arr or cpAuxA1, while datatype
constructors and fields are typeset as SF{} or sfAFun. This distinction is arbitrarily made to help
separate what function or effects are being considered, especially when datatype field names are
being used as projection operators. Variables are typeset as g or sf1, since they are being reasoned
about at the meta-level of the proof, and not merely at the syntactic level of the source code.

Practically every proof follows the same format: it proceeds by a case analysis on the data
constructors, using a lemma and structural induction to complete the proof when a case involves the

3

SFTIVar{} constructor. Each case unfolds function definitions repeatedly, with all the conventions
described above, until it either has two expressions which are equal, or which require an inductively
proven lemma to show equality. Those lemmas have exactly as many cases as have already been
seen, and are very much identical in spirit to the cases which precede them. In some cases, the
details of the proofs of these lemmas will be omitted, as they are clearly inferrable from context
and other examples. Deriving the omitted steps is tedious but quite straightforward.

Theorem 2.1. Let f and g be functions. Then

arr(f ≫ g) = arr f ≫ arr g

Proof. When f and g are functions, f ≫ g
def= g · f .

We have from the definition of arr that

arr f = SF{sfTF = λa → (sfArr f, f a)}

Let SF{sfTF = tff}
def= arr f . We also have

arr g = SF{sfTF = λa → (sfArr g, g a)}

so let SF{sfTF = tfg}
def= arr g. Then

arr f ≫ arr g = compPrim arr f arr g

= compPrim SF{sfTF = tff} SF{sfTF = tfg}
= SF{sfTF = tf0} where

tf0 = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tff a0

= (sfArr f, f a0)
(sf2, c0) = tfg b0

= (sfArr g, g b0)
= (sfArr g, g(f a0))

where that last line is obtained by substituting the value of b0 into the previous line. We now need
to evaluate cpAux sf1 sf2. We know that

sf1 = sfArr f

= sf where
sf = SFArr{sfTF′ = λ a → (sf, f a), sfAFun = f}

or, ignoring for the moment issues regarding evaluation order,

sf1 = SFArr{sfTF′ = λ a → (sfArr f, f a), sfAFun = f}

These two forms are mathematically equivalent, since we explicitly stated that sfArr f = sf . We can
safely perform this substitution for two reasons: first, since Haskell evaluates lazily, this recursive

4

declaration will not immediately be evaluated into the infinitely nested structure it can be. Second,
we will not actually be needing the sfTF′ field for the remainder of this proof. Therefore,

cpAux sf1 sf2 = cpAuxA1(sfAFun sf1) sf2

matching the third case of the definition. Now, from above, we have

sfAFun sf1 = f

and so
cpAuxA1(sfAFun sf1) sf2 = cpAuxA1 f sf2

Since sf2 = sfArr g, we have, by exact analogy with sf1, that it matches the third case of the
definition, and so

cpAuxA1 f sf2 = sfArr(g · f)

Substituting these results back into the prior computations yields

tf0 = λa0 → (cpAux sf1 sf2, c0)
= λa0 → (sfArr(g · f), g(f a0))

and therefore

arr f ≫ arr g = SF{sfTF = λa0 → (sfArr(g · f), g(f a0))}
= SF{sfTF = λa0 → (sfArr(g · f), (g · f)a0))}

But this last result is precisely arr(g · f), and for functions, we know that f ≫ g
def= g · f . So we

have that
arr f ≫ arr g = arr(f ≫ g)

5

Theorem 2.2. Let f be an arrow. Then

first(arr f) = arr(first f)

Proof. We have from the definition of arr that

arr f = SF{sfTF = λa →(sfArr f, f a)}

Let SF{sfTF = tff}
def= arr f . Then

first(arr f) = first(SF{sfTF = tff})
= firstPrim SF{sfTF = tff}
= SF{sfTF = tf0} where

tf0 = λ (a0, c0) → (fpAux sf1, (b0, c0)) where
(sf1, b0) = tff a0

= (sfArrf, f a0)

We now need to evaluate fpAux sf1:

fpAux sf1 = fpAux SFArr{sfTF′ = λb → (sfArr f, f b)}
= sfArr(λ∼(a, c) → (f a, c))

So, substituting these results in,

tf0 = λ∼(a0, c0) → (sfArr(λ (a, c) → (f a, c)), (f a0, c0))

and therefore

first(arr f) = SF{sfTF = λ∼(a0, c0) →
(sfArr(λ∼(a, c) → (f a, c)), (f a0, c0))}

Letting g1
def= λ∼(a0, c0) → (f a0, c0) for brevity, we have

= SF{sfTF = λ∼(a0, c0) → (sfArr g1, (f a0, c0))}
= SF{sfTF = λ∼(a0, c0) → (sfArr g1, g1∼(a0, c0))}

Now we need to evaluate the other side of the expression:

arr(first f) = arr(f *** id)
= arr(λ∼(a, c) → (f a, id c))
= arr(λ∼(a, c) → (f a, c))
= arr(g2)
= SF{sfTF = λd → (sfArr g2, g2 d)}

where id is the identity function id
def= λx → x, and g2

def= λ∼(a, c) → (f a, c).

6

It seems as though this substitution is invalid, as the arguments of g2 in its definition are ∼(a, c),
but in the application are only d and nothing else. However, since g2 is defined on a lazy pair of
values, we can indeed apply g to a single value d, provided d is internally a pair. In fact, according
to [1] and “www.haskell.org/tutorial/patterns.html”, we have that a pattern ∼(a, b) is equivalent
to @(a, b), where the underscore implies that we don’t care about the variable’s name. Therefore,
we have that

arr(first f) = SF{sfTF = λd → (sfArr g2, g2 d)}
= SF{sfTF = λ∼(a, c) → (sfArr g2, g2∼(a, c))}

By examination, it is clear that g1 = g2, since they are identical up to a renaming of a to a0 and c
to c0. Doing so, we have an obvious equality between

first(arr f) = SF{sfTF = λ∼(a0, c0) → (sfArr g1, g1∼(a0, c0))}

and

arr(first f) = SF{sfTF = λ∼(a, c) → (sfArr g2, g2∼(a, c))}

which gives the desired equiality
first(arr f) = arr(first f)

7

Theorem 2.3. Let f be an arrow. Then

arr id≫ f = f

Proof. We proceed by cases on the constructors for SF{}.

1. Case f = constant b:

This case is trivial:

(arr id) ≫ f = g ≫ f for some arrow g

= f

since any arrow passed into a constant arrow yields the constant arrow again.

2. Case f = arr f ′ = SF{sfTF = λa → (sfArr f ′, f ′ a)}:
We have from the definition of arr that

arr id = SF{sfTF = λa → (sfArr id, id a)}
= SF{sfTF = λa → (sfArr id, a)}

Let SF{sfTF = tfid}
def= arr id. Also, let SF{sfTF = tff}

def= f . Then

arr id≫ f = compPrim arr id f

= compPrim SF{sfTF = tfid} SF{sfTF = tff}
= SF{sfTF = tf0} where

tf0 = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tfid a0

= (sfArr id, id a0)
= (sfArr id, a0)

(sf2, c0) = tff b0

= (sfArr f ′, f ′ b0)
= (sfArr f ′, f ′ a0)

where that last line is obtained by substituting the value of b0 into the previous line. We now
need to evaluate cpAux sf1 sf2. We know that

sf1 = sfArr id

= sf where
sf = SFArr{sfTF′ = λ a → (sf, id a), sfAFun = id}

Substituting the value of sf into this expression, and simplifying id a = a,

sf1 = SFArr{sfTF′ = λ a → (sfArr id, a), sfAFun = id}

8

Therefore,
cpAux sf1 sf2 = cpAuxA1(sfAFun sf1) sf2

matching the third case of the definition. Now, from above, we have sfAFun sf1 = id, and so

cpAuxA1(sfAFun sf1) sf2 = cpAuxA1 id sf2

Since sf2 = sfArr f ′, we have, by exact analogy with sf1, that it matches the third case of the
definition, and so

cpAuxA1 id sf2 = sfArr(f ′ · id) = sfArr f ′

Substituting these results back into the prior computations yields

tf0 = λa0 → (cpAux sf1 sf2, c0)
= λa0 → (sfArr f ′, f ′ a0)

and therefore

arr id≫ arr f ′ = SF{sfTF = λa0 → (sfArr f ′, f ′ a0)}
= arr f ′

Which yields the desired result
arr id≫ f = f

3. Case f = SF{sfTF = λa → (SFTIVar{sfTF′ = tf}, f ′ a)} for some initial f ′:

We have from the definition of arr that

arr id = SF{sfTF = λa → (sfArr id, id a)}
= SF{sfTF = λa → (sfArr id, a)}

Again, let SF{sfTF = tfid}
def= arr id and SF{sfTF = tff}

def= f . Then

arr id≫ f = compPrim arr id f

= compPrim SF{sfTF = tfid} SF{sfTF = tff}
= SF{sfTF = tf0} where

tf0 = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tfid a0

= (sfArr id, id a0)
= (sfArr id, a0)

(sf2, c0) = tff b0

= (SFTIVar{sfTF′ = tf}, f ′ b0)
= (SFTIVar{sfTF′ = tf}, f ′ a0)

where that last line is obtained by substituting the value of b0 into the previous line. We now
need to evaluate cpAux sf1 sf2. We know that

sf1 = sfArr id

= sf where
sf = SFArr{sfTF′ = λ a → (sf, id a), sfAFun = id}

9

Substituting the value of sf into this expression, and simplifying id a = a,

sf1 = SFArr{sfTF′ = λ a → (sfArr id, a), sfAFun = id}

Therefore,
cpAux sf1 sf2 = cpAuxA1(sfAFun sf1) sf2

matching the third case of the definition. Now, from above, we have sfAFun sf1 = id, and so

cpAuxA1(sfAFun sf1) sf2 = cpAuxA1 id sf2

= cpAuxA1 id SFTIVar{sfTF′ = tf}
= SFTIVar{sfTF′ = tf ′} where

tf ′ dt a′ = (cpAuxA1 id sf ′
2, c) where

(sf ′
2, c) = tf dt (id a′)

= tf dt a′

We now need a lemma:

Lemma 2.4. cpAuxA1 id s = s

Proof. This proof proceeds by cases, using structural induction on the nesting depth of
SFTIVar{} constructions:

(a) Case s = sfConst c′: Trivially, cpAuxA1 id s = s, by the first case of cpAuxA1.

(b) Case s = sfArr f ′: Using the second case of cpAuxA1,

cpAuxA1 id s = cpAuxA1 id (sfArr f ′) = sfArr(f ′ · id) = sfArr f ′ = s

(c) Case s = SFTIVar{sfTF′ = g}: Using the third case of cpAuxA1, we have

cpAux id s = cpAux id SFTIVar{sfTF′ = g}
= SFTIVar{sfTF′ = g′} where

g′ dt a′
0 = (cpAuxA1 id h, c) where

(h, c) = g dt (id a′
0)

= g dt a′
0

Assume, by the induction hypothesis, that cpAuxA1 id h = h, since h must have a nesting
depth of SFTIVar{} which is one lower than s. Then

g′ dt a′
0 = (cpAuxA1 id h, c)

= (h, c)
= g dt a′

0

where that last equality is obtained from the line defining h. By η-reduction, we have
that g′ = g, and therefore cpAuxA1 id s = s.

10

Using this lemma on our previous statement, we have that

cpAuxA1 id sf ′
2 = sf ′

2

and therefore,

tf ′ dt a′ = (cpAuxA1 id sf ′
2, c)

= (sf ′
2, c) by the lemma

= tf dt a′

By η-reduction, we have that tf ′ = tf , and therefore

cpAuxA1 id SFTIVar{sfTF′ = tf} = SFTIVar{sfTF = tf ′}
= SFTIVar{sfTF′ = tf}

Therefore,

tf0 = λa0 → (cpAux sf1sf2, c0)
= λa0 → (cpAux(sfArr id)(SFTIVar{sfTF′ = tf}), f ′ a0)
= λa0 → (cpAuxA1 id (SFTIVar{sfTF′ = tf}), f ′ a0)
= λa0 → (SFTIVar{sfTF′ = tf}, f ′ a0) by the above η-reduction

By inspection, it is clear that tf0 = tf , as they differ only in renaming a0 to a. Substituting
this result back in to the original expression for the composition yields

arr id≫ f = SF{sfTF = tf0}
= SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf}, f ′ a0)}
= SF{sfTF = tf}
= f

This shows the desired formula, that

arr id≫ f = f

11

Theorem 2.5. Let f be an arrow. Then

f ≫ arr id = f

Proof. We proceed by cases on the constructors for SF{}.

1. Case f = constant b:

We have from the definition of constant that

constant b = SF{sfTF = λ → (sfConst b, b)}

We also have from the definition of arr that

arr id = SF{sfTF = λa → (sfArr id, id a)}
= SF{sfTF = λa → (sfArr id, a)}

Let SF{sfTF = tfid}
def= arr id, and let let SF{sfTF = tff}

def= f . Then

f ≫(arr id) = compPrim f arr id

= compPrim SF{sfTF = tff} SF{sfTF = tfid}
= SF{sfTF = tf0} where

tf0 = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tffa0

= (sfConst b, b)
(sf2, c0) = tfidb0

= (sfArr id, id b)
= (sfArr id, b)

where that last line is obtained by substituting the value of b0 into the previous line. We now
need to evaluate cpAux sf1 sf2. We know that

sf1 = sfConst b

= sf where
sf = SFConst{sfTF′ = λ → (sf, b), sfCVal = b}

Substituting the value of sf into this expression, we have

sf1 = SFConst{sfTF′ = λ → (sfConst b, b), sfCVal = b}

We also know that

sf2 = sfArr id

= sf where
sf = SFArr{sfTF′ = λ a → (sf, id a), sfAFun = id}

12

Substituting the value of sf into this expression, and simplifying the application of id by
id a = a,

sf2 = SFArr{sfTF′ = λ a → (sfArr id, a), sfAFun = id}

Therefore,
cpAux sf1 sf2 = cpAuxC1(sfCVal sf1) sf2

matching the second case of the definition. Now, from above, we have sfCVal sf1 = b, and
so

cpAuxC1(sfCVal sf1) sf2 = cpAuxC1 b sf2

Since sf2 = sfArr id, we have that it matches the second case of the definition, and so

cpAuxC1 b sf2 = sfConst(id b) = sfConst b

Substituting these results back into the prior computations yields

tf0 = λa0 → (cpAux sf1 sf2, c0)
= λa0 → (sfConst b, b)
= tff

and therefore

f ≫ arr id = SF{sfTF = λa0 → (sfConst b, b)}
= SF{sfTF = tf0}
= SF{sfTF = tff}
= f

Which yields the desired result
f ≫ arr id = f

2. Case f = arr f ′ = SF{sfTF = λa → (sfArr f ′, f ′ a)}:

Again, let SF{sfTF = tfid}
def= arr id, and let SF{sfTF = tff}

def= f . Then

f ≫ arr id = compPrim f arr id

= compPrim SF{sfTF = tff} SF{sfTF = tfid}
= SF{sfTF = tf0} where

tf0 = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tff a0

= (sfArr f ′, f ′ a0)
(sf2, c0) = tfid b0

= (sfArr id, id b0)
= (sfArr id, id(f ′ a0))
= (sfArr id, f ′ a0)

13

We now need to evaluate cpAux sf1 sf2. We know that

sf1 = sfArr f ′

= sf where
sf = SFArr{sfTF′ = λ a → (sf, f ′ a), sfAFun = f ′}

Substituting the value of sf into this expression, we obtain

sf1 = SFArr{sfTF′ = λ a → (sf, f ′ a), sfAFun = f ′}

We also know that

sf2 = sfArr id

= sf where
sf = SFArr{sfTF′ = λ a → (sf, id a), sfAFun = id}

Substituting the value of sf into this expression, and again simplifying id a = a,

sf2 = SFArr{sfTF′ = λ a → (sfArr id, a), sfAFun = id}

Therefore,
cpAux sf1 sf2 = cpAuxA1(sfAFun sf1) sf2

matching the third case of the definition. Now, from above, we have sfAFun sf1 = f ′, and so

cpAuxA1(sfAFun sf1) sf2 = cpAuxA1 f ′ sf2

Since sf2 = sfArr id, we have, by exact analogy with sf1, that it matches the second case of
the definition, and so

cpAuxA1 f ′ sf2 = sfArr(id · f ′) = sfArr f ′

Substituting these results back into the prior computations yields

tf0 = λa0 → (cpAux sf1 sf2, c0)
= λa0 → (sfArr f ′, f ′ a0)

and therefore

arr f ′ ≫ arr id = SF{sfTF = λa0 → (sfArr f ′, f ′ a0)}
= arr f ′

Which yields the desired result
f ≫ arr id = f

14

3. Case f = SF{sfTF = λa → (SFTIVar{sfTF′ = tf}, f ′ a)} for some initial f ′:

Again, let SF{sfTF = tfid}
def= arr id and SF{sfTF = tff}

def= f . Then

f ≫ arr id = compPrim f arr id

= compPrim SF{sfTF = tff} SF{sfTF = tfid}
= SF{sfTF = tf0} where

tf0 = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tff a0

= (SFTIVar{sfTF′ = tf}, f ′ a0)
(sf2, c0) = tfid b0

= (sfArr id, id b0)
= (sfArr id, id(f ′ a0))
= (sfArr id, f ′ a0)

where that last line is obtained by substituting the value of b0 into the previous line. We now
need to evaluate cpAux sf1 sf2. We know that

sf2 = sfArr id

= sf where
sf = SFArr{sfTF′ = λ a → (sf, id a), sfAFun = id}

Substituting the value of sf into this expression, and simplifying id a = a,

sf2 = SFArr{sfTF′ = λ a → (sfArr id, a), sfAFun = id}

Therefore,
cpAux sf1 sf2 = cpAuxA2 sf1 (sfAFun sf2)

matching the fourth case of the definition. Now, from above, we have sfAFun sf2 = id, and
so

cpAuxA2 sf1 (sfAFun sf2) = cpAuxA2 sf1 id

= cpAuxA2 SFTIVar{sfTF′ = tf} id

= SFTIVar{sfTF′ = tf ′} where
tf ′ dt a′ = (cpAuxA2 sf ′

1 id, id c) where
(sf ′

1, c) = tf dt a′

We now need a lemma:

Lemma 2.6. cpAuxA2 s id = s

Proof. This proof proceeds by cases, using structural induction on the nesting depth of
SFTIVar{} constructions:

15

(a) Case s = sfConst c′: Trivially,

cpAuxA2 s id = sfConst(id c′) = sfConst c′ = s

by the first case of cpAuxA2.

(b) Case s = sfArr f ′: Using the second case of cpAuxA2,

cpAuxA2 s id = cpAuxA2(sfArr f ′) id = sfArr(id · f ′) = sfArr f ′ = s

(c) Case s = SFTIVar{sfTF′ = g}: Using the third case of cpAuxA2, we have

cpAuxA2 s id = cpAuxA2 SFTIVar{sfTF′ = g} id

= SFTIVar{sfTF′ = g′} where
g′ dt a′

0 = (cpAuxA2 h id, id c) where
(h, c) = g dt a′

0

Assume, by the induction hypothesis, that cpAuxA2 h id = h, since h must have a nesting
depth of SFTIVar{} which is one lower than s. Then

g′ dt a′
0 = (cpAuxA2 h id, id c)

= (h, c)
= g dt a′

0

where that last equality is obtained from the line defining h. By η-reduction, we have
that g′ = g, and therefore cpAuxA2 s id = s.

Using this lemma on our previous statement, we have that

cpAuxA2 sf ′
2 id = sf ′

2

and therefore,

tf ′ dt a′ = (cpAuxA2 sf ′
2 id, c)

= (sf ′
2, c) by the lemma

= tf dt a′

By η-reduction, we have that tf ′ = tf , and therefore

cpAuxA2 SFTIVar{sfTF′ = tf} id = SFTIVar{sfTF = tf ′}
= SFTIVar{sfTF′ = tf}

Therefore,

tf0 = λa0 → (cpAux sf1sf2, c0)
= λa0 → (cpAux(SFTIVar{sfTF′ = tf})(sfArr id), f ′ a0)
= λa0 → (cpAuxA2(SFTIVar{sfTF′ = tf}) id, f ′ a0)
= λa0 → (SFTIVar{sfTF′ = tf}, f ′ a0) by the above η-reduction

16

By inspection, it is clear that tf0 = tf , as they differ only in renaming a0 to a. Substituting
this result back in to the original expression for the composition yields

f ≫ arr id f = SF{sfTF = tf0}
= SF{sfTF = tf}
= f

This shows the desired formula, that

f ≫ arr id = f

17

Theorem 2.7. Let f be an arrow, and let g be a function. Then

first f ≫ arr(id× g) = arr(id× g) ≫ first f

Proof. We note, to begin with, that this law as stated in [5] is equivalent to the law as stated in
[4], provided we have the following result, expressed as a lemma:

Lemma 2.8. Let g be a function. Then second(arr g) = arr(id× g).

Proof. We have from the definition of (· × ·) that

id× g = λ∼(c, a) → (id c, g a)
= (c, g a)

and therefore, by simple substitution, that

arr(id× g) = arr(λ∼(c, a) → (c, g a))

Approaching the other side of the equation, we have

second(arr g) = second(SF{sfTF = λa → (sfArr g, g a)})
= SF{sfTF = tf0} where

tf0 = λ∼(c0, a0) → (spAux sf1, (c0, b0)) where
(sf1, b0) = tf1a0

= (sfArr g, g a0)

and by expanding the definition of spAux, we get

spAux sf1 = spAux(sfArr g)
= sfArr(λ∼(c, a) → (c, g a))

and therefore

second(arr g) = SF{sfTF = λ∼(c0, a0) →
(sfArr(λ∼(c, a) → (c, g a)), (c0, g a0))}

= arr(λ∼(c0, a0) → (c0, g a0))

These two expressions are clearly equal, after renaming a and c to a′ and c′, and renaming a0 and
c0 to a and c. Therefore we have

second(arr g) = arr(id× g)

With that lemma, we can now begin proving the law in earnest. We do so, as usual, by
proceeding with a case analysis.

18

1. Case f = constant b:

We know that first f = arr(λ∼(, c) → (b, c)). Let

SF{sfTF = tff}
def= first f

We also know that

arr(id× g) = SF{sfTF = λ∼(c, a) →
(sfArr(λ∼(c′, a′) → (c′, g a′)),

(c, g a))}

and therefore will let
SF{sfTF = tfc}

def= arr(id× g)

Therefore,

first f ≫ arr(id× g) = compPrim(first f)(arr(id× g))
= SF{sfTF = tf} where

tf = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tff a0@(a, c)

= (sfArr(λ∼(, c) → (b, c)), (b, c))
(sf2, c0) = tfc b0

= tfc(b, c)
= (sfArr(id× g), (id× g)(b, c))
= (sfArr(id× g), (b, g c))

Simplifying cpAux, we have

cpAux sf1 sf2 = cpAuxA1(λ∼(, c) → (b, c)) sf2

= sfArr((id× g) ·(λ∼(, c) → (b, c)))
= sfArr(λ∼(, c) → (b, g c))

From the other side of the equation, we have

arr(id× g) ≫ first f = compPrim(arr(id× g))(first f)
= SF{sfTF = tf} where

tf = λa0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tfc a0@(a, c)

= (sfArr((id× g)), (a, g c))
(sf2, c0) = tff b0

= tff (a, g c)
= (sfArr(λ∼(, c) → (b, c)),

(b, g c))

19

Simplifying cpAux we have

cpAux sf1 sf2 = cpAuxA1(id× g) sf2

= sfArr((λ∼(, c) → (b, c)) ·(id× g))
= sfArr(λ∼(, c) → (b, g c))

As
snd(tf0 a0) = (b, g c) = snd(tf1 a0)

and
fst tf0 a0 = sfArr(λ∼(, c) → (b, g c) = fst tf1 a0

we have the desired equality.

2. Case f = arr f ′:

first(arr f ′) ≫ arr(id× g) = arr(λ∼(a, c) → (f ′ a, c))≫

arr(λ∼(a, c) → (a, g c))

where the functions are obtained by unfolding first(arr f ′) and id× g. Let tf10
def= first(arr f ′)

and tf20
def= arr(id× g).

= SF{sfTF = tf0} where
tf0 a0 → (cpAux sf1 sf2, c0) where

(sf1, b0) = tf10 a0@(a, c)
= (sfArr(λ∼(a, c) → (f ′ a, c)), (f ′ a, c))

(sf2, c0) = tf20 b0

= (sfArr(λ∼(a, c) → (a, g c)), (f ′ a, g c))

Simplifying cpAux, we have

cpAux sf1 sf2 = cpAuxA1(sfAFunsf1)sf2

= cpAuxA1(λ∼(a, c) → (f ′ a, c)) sfArr(λ∼(a, c) → (a, g c))
= sfArr((λ∼(a, c) → (a, g c)) ·(λ∼(a, c) → (f ′ a, c)))
= sfArr(λ∼(a, c) → (f ′ a, g c))

From the other side of the equation, we have

arr(id× g) ≫ first(arr f ′) = arr(λ∼(a, c) → (a, g c))≫

arr(λ∼(a, c) → (f ′ a, c))
= SF{sfTF = tf1} where

tf1 a0 → (cpAux sf1 sf2, c0) where
(sf1, b0) = tf10 a0@(a, c)

= (sfArr(λ∼(a, c) → (a, g c)), (a, g c))
(sf2, c0) = tf20 b0

= (sfArr(λ∼(a, c) → (f ′ a, c)), (f ′ a, g c))

20

and again simplifying cpAux, we have

cpAux sf1 sf2 = cpAuxA1(sfAFunsf1)sf2

= cpAuxA1(λ∼(a, c) → (a, g c)) sfArr(λ∼(a, c) → (f ′ a, c))
= sfArr((λ∼(a, c) → (f ′ a, c)) ·(λ∼(a, c) → (a, g c)))
= sfArr(λ∼(a, c) → (f ′ a, g c))

As
snd(tf0 a0) = (f ′ a, g c) = snd(tf1 a0)

and
fst tf0 a0 = sfArr(λ∼(a, c) → (f ′ a, g c) = fst tf1 a0

we have the desired equality.

3. Case f = SF{sfTF = λa → (SFTIVar{sfTF′ = tf ′}, t′ a)}: Let SF{sfTF = tfg} = arr(id× g).
Expanding first f , we obtain

first f = SF{sfTF = tff} where
tff ∼(a, c) = (fpAux sf ′, (bf , c)) where

(sf ′, bf) = tf ′a

Then

first f ≫ arr(id× g) = SF{sfTF = tf1} where
tf1 a0@(a, c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (fpAux sf ′
1, (bf , c))

(sf2, c0) = tfg b0

= (sfArr(id× g), (bf , g c))

and unfolding cpAux once yields

cpAux sf1 sf2 = cpAuxA2(fpAux sf ′
1)(id× g)

From the other side of the equation we have

arr(id× g) ≫ first f = SF{sfTF = tf2} where
tf2 a0@(a, c) = (cpAux sf ′

1 sf ′
2, c0) where

(sf ′
1, b0) = tfg a0

= (sfArr(id× g), (a, g c))
(sf ′

2, c0) = tff b0

= (fpAux sf ′, (bf , g c))

and again unfolding cpAux once yields

cpAux sf ′
1 sf ′

2 = cpAux(id× g)(fpAux sf ′)

It is clear by inspection that snd(tf1 a0) = (bf , g c) = snd(tf2 a0), so we now need to show
that fst(tf1 a0) = fst(tf2 a0).

21

Lemma 2.9. For any sf ,

cpAuxA1(id× g)(fpAux sf) = cpAuxA2(fpAux sf)(id× g)

Proof. We proceed by cases on sf :

(a) Case sf = sfConst b:
It is clear from the first case of fpAux that

fpAux sf = sfArr(λ∼(, c) → (b, c))

Expanding one side of the desired equality yields

cpAuxA1(id× g)(fpAux sf) = sfArr((λ∼(, c) → (b, c)) ·(id× g))
= sfArr(λ∼(a, c) → (b, g c))

while the other side yields

cpAuxA2(fpAux sf)(id× g) = sfArr((id× g) ·(λ∼(, c) → (b, c)))
= sfArr(λ∼(a, c) → (b, g c))

(b) Case sf = sfArr h: It is clear from the second case of fpAux that

fpAux sf = sfArr(λ∼(a, c) → (h a, c))

Expanding one side of the desired equality yields

cpAuxA1(id× g)(fpAux sf) = sfArr((λ∼(a, c) → (h a, c)) ·(id× g))
= sfArr(λ∼(a, c) → (h a, g c))

while the other side yields

cpAuxA2(fpAux sf)(id× g) = sfArr((id× g) ·(λ∼(a, c) → (h a, c)))
= sfArr(λ∼(a, c) → (h a, g c))

(c) Case sf = SFTIVar{sfTF′ = sf ′}: From the third case of fpAux we have

fpAux sf = SFTIVar{sfTF′ = tf ′} where
tf ′dt ∼(a, c) = (fpAux sf ′

1, b) where
(sf ′

1, b) = sf ′dt a

Expanding one side of the desired equality yields

cpAuxA1(id× g)(fpAux sf) = SFTIVar{sfTF′ = tfA1} where
tfA1dt a@(a0, c0) = (cpAuxA1(id× g)sf ′

2, c) where
(sf ′

2, c) = tf ′dt((id× g)a)
= (fpAux sf ′

1, (b, g c0))

22

while the other side yields

cpAuxA2(fpAux sf)(id× g) = SFTIVar{sfTF′ = tfA2} where
tfA2dt a@(a0, c0) = (cpAuxA2 sf ′

3(id× g), (id× g)c) where
(sf ′

3, c) = tf ′dt a

= (fpAux sf ′
1, (b, c0))

(id× g)c = (b, g c0)

Clearly sf ′
3 = fpAux sf ′

1 = sf ′
2. Assume by the induction hypothesis that cpAuxA1(id× g)sf ′

2 =
cpAuxA2 sf ′

3(id× g). Then it is obvious that tfA2 = tfA1 , and hence

cpAuxA1(id× g)(fpAux sf) = cpAuxA2(fpAux sf)(id× g)

as desired.

Using this lemma, clearly fst(tf1 a0) = fst(tf2 a0), and therefore tf1 = tf2, and therefore we
have the desired equality

first f ≫ arr(id× g) = arr(id× g) ≫ first f

23

Theorem 2.10. Let f be an arrow. Then

first(first f) ≫ arr assoc = arr assoc ≫ first f

Proof. As usual, we proceed by cases of f :

1. Case f = constant b:

By the first case of first we have

first f = arr(λ∼(a0, c0) → (b, c0))

Let arr h
def= first f .

first(first f) = arr(λ∼((a0, c0), c1) → ((b, c0), c1))

Let arr g
def= first(first f). Then from one side of the equation we have

arr g ≫ arr assoc = arr(assoc · g)
= arr(λ∼((a0, c0), c1) → (b, (c0, c1)))

while from the other we have

arr assoc ≫ first f = arr(h · assoc)
= arr(λ∼(a1@(a0, c0), c1) → h(a0, (c0, c1)))
= arr(λ∼((a0, c0), c1) → (b, (c0, c1)))

2. Case f = arr f ′:

first f = arr(λ∼(a0, c0) → (f ′ a0, c0))

Let arr h
def= first f .

first(first f) = arr(λ∼((a0, c0), c1) → ((f ′ a0, c0), c1))

Let arr g
def= first(first f). Then from one side of the equation we have

arr g ≫ arr assoc = arr(assoc · g)
= arr(λ∼((a0, c0), c1) → (f ′ a0, (c0, c1)))

while from the other we have

arr assoc ≫ first f = arr(h · assoc)
= arr(λ∼(a1@(a0, c0), c1) → h(a0, (c0, c1)))
= arr(λ∼((a0, c0), c1) → (f ′ a0, (c0, c1)))

24

3. Case f = SF{sfTF = tff}
def= SF{sfTF = λ∼(a0, c0) → (SFTIVar{sfTF′ = tf ′

f}, f ′ a0, c0)}:

first f = SF{sfTF = tf0} where
tf0 ∼(a0, c0) = (fpAux sf ′

1, (b0, c0)) where
(sf ′

1, b0) = tff a0

and so

first(first f) = SF{sfTF = tf1} where
tf1 ∼(a1@(a, c), c1) = (fpAux sf2, (b1, c1)) where

(sf2, b1) = tf0 a1

= (fpAux sf ′
1, (b0, c))

or

first(first f) = SF{sfTF = λ∼((a, c), c1) → (fpAux(fpAux sf1), ((b0, c), c1))} where
(sf ′

1, b0) = tff a

Therefore

first(first f) ≫ arr assoc = SF{sfTF = tf2} where
tf2 a0@((a, b), c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = (fpAux(fpAux sf ′
1), ((a

′, b), c)) where
(sf ′

1, a
′) = tff a

(sf2, c0) = (sfArr assoc, (a′, (b, c)))

cpAux sf1 sf2 = cpAuxA2(fpAux(fpAux sf ′
1)) assoc

and

arr assoc ≫ first f = SF{sfTF = tf3} where
tf3 a0@((a, b), c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = tfassoc a0

= (sfArr assoc, (a, (b, c)))
(sf2, c0) = tf0 b0

= (fpAux sf ′
1, (a

′, (b, c))) where
(sf ′

1, a
′) = tff a

cpAux(sfArr assoc)(fpAux sf ′
1) = cpAuxA1 assoc(fpAux sf ′

1)

Clearly snd(tf2 a0) = (a′, (b, c)) = snd(tf3 a0). To get fst(tf2 a0) = fst(tf3 a0), we need a
lemma:

Lemma 2.11. With all variables as above,

cpAuxA1 assoc(fpAux sf ′
1) = cpAuxA2(fpAux(fpAux sf ′

1)) assoc

25

Proof. We proceed by induction on cases of sf ′
1:

(a) Case sf ′
1 = sfConst k:

fpAux sf ′
1 = sfArr(λ∼(a0, c0) → (k, c0))

Let sfArr h
def= fpAux f .

fpAux(fpAux f) = sfArr(λ∼((a0, c0), c1) → ((k, c0), c1))

Let sfArr g
def= fpAux(fpAux f). Then from one side we have

cpAuxA1 assoc(fpAux sf ′
1) = sfArr(h · assoc)

= sfArr(λ∼((a0, c0), c1) → (k, (c0, c1)))

while from the other we have

cpAuxA2(fpAux(fpAux sf ′
1)) assoc = sfArr(assoc · g)

= sfArr(λ∼(a1@(a0, c0), c1) → h(a0, (c0, c1)))
= sfArr(λ∼((a0, c0), c1) → (k, (c0, c1)))

As these two expressions are equal, we have the desired result.

(b) Case sf ′
1 = sfArr f ′:

fpAux sf ′
1 = sfArr(λ∼(a0, c0) → (f ′ a0, c0))

Let sfArr h
def= fpAux f .

fpAux(fpAux f) = sfArr(λ∼((a0, c0), c1) → ((f ′ a0, c0), c1))

Let sfArr g
def= fpAux(fpAux f). Then from one side we have

cpAuxA1 assoc(fpAux sf ′
1) = sfArr(h · assoc)

= sfArr(λ∼((a0, c0), c1) → (f ′ a0, (c0, c1)))
cpAuxA2(fpAux(fpAux sf ′

1)) assoc = sfArr(assoc · g)

while from the other we have

= sfArr(λ∼(a1@(a0, c0), c1) → h(a0, (c0, c1)))
= sfArr(λ∼((a0, c0), c1) → (f ′ a0, (c0, c1)))

As these two expressions are equal, we have the desired result.

26

(c) Case sf ′
1 = SFTIVar{sfTF′ = tf ′

s}:

fpAux sf ′
1 = SFTIVar{sfTF′ = tf ′} where

tf ′ dt ∼(a, c) = (fpAux sf ′′
1 , (b, c)) where

(sf ′′
1 , b) = tf ′

s dt a

fpAux(fpAux sf ′
1) = SFTIVar{sfTF = tf ′′} where

tf ′′ dt ∼(a@(x, y), c) = (fpAux sf ′′′
1 , (b, c)) where

(sf ′′′
1 , b) = (sfTF′(fpAux sf ′

1)) dt a

= tf ′ dt a

= (fpAux sf ′′
1 , (b′, y)) where

(sf ′′
1 , b′) = tf ′

s dt x

Then

cpAuxA1 assoc(fpAux sf ′
1) = SFTIVar{sfTF′ = tfc′} where

tfc′ dt a@((x, y), z) = (cpAuxA1 assoc sf ′
2, c) where

(sf ′
2, c) = tf ′ dt (assoc a)

= (fpAux sf ′′
1 , (b, (y, z))) where

(sf ′′
1 , b) = tf ′

s dt x

and

cpAuxA2(fpAux(fpAux sf ′
1)) assoc = SFTIVar{sfTF′ = tfc′′} where

tfc′′ dt a@((x, y), z) = (cpAuxA2 sf ′
2 assoc, assoc a) where

(sf ′
2, c) = tf ′′ dt a

= (fpAux(fpAux sf ′′
1), ((b, y), z)) where

(sf ′′
1 , b) = tf ′

s dt x

We assume

cpAuxA1 assoc(fpAux sf ′′
1) = cpAuxA2(fpAux(fpAux sf ′′

1)) assoc

by the induction hypothesis. Therefore, we have the lemma that

cpAuxA1 assoc(fpAux sf ′
1) = cpAuxA2(fpAux(fpAux sf ′

1)) assoc

Given this lemma, we have the desired result that

first(first f) ≫ arr assoc = arr assoc ≫ first f

27

2.1 Invalid laws under strict equality

These two laws break where constant and arr interact. As a result, we need an evaluation function
to show equivalence instead of strict equality. That function is defined herein as follows:

evalSF SF{sfTF = tf} [] = []
evalSF SF{sfTF = tf} a : as dts = evalSFTF(tf a) dts as

where evalSFTF(sf ′, b) dts as = b : (evalSF′ sf ′ dts as)
evalSF′ [] = []
evalSF′ [] = []
evalSF′ SFConst{sfTF′ = tf ′, sfCVal = b} dt : dts a : as = evalSFTF′(tf ′ dt a) dts as

evalSF′ SFArr{sfTF′ = tf ′, sfAFun = f} dt : dts a : as = evalSFTF′(tf ′ dt a) dts as

evalSF′ SFTIVar{sfTF′ = tf ′} dt : dts a : as = evalSFTF′(tf ′ dt a) dts as

This definition ignores cached constant values or functions for now; it can be trivially modified to
include them, and the proofs involving it modified accordingly to use the new values.

Theorem 2.12. Let f and g be arrows. Then

first(f ≫ g) = first f ≫ first g

Proof. We proceed by cases on f and g:

1. Case g = SF{sfTF = tfg} = constant b:

In this case, f ≫ g = g, and so

first(f ≫ g) = first g = arr(λ∼(, c) → (b, c))

which is easily checked with two unfolding steps. Let arr g′ def= first g.

(a) Case f = constant h: By the same two unfoldings as above,

first f = arr(λ∼(, c) → (h, c))

and so

first f ≫ first g = arr(g′ ·(λ∼(, c) → (h, c)))
= arr(λ∼(, c) → (b, c))
= arr g′

= first(f ≫ g)

(b) Case f = arr f ′:
Using the second case of first, we have

first f = arr(λ∼(a, c) → (f ′ a, c))

and so

first f ≫ first g = arr(g′ ·(λ∼(a, c) → (f ′ a, c)))
= arr(λ∼(, c) → (b, c))
= arr g′

= first(f ≫ g)

28

(c) Case f = SF{sfTF = tff} = SF{sfTF = λa → (SFTIVar{sfTF′ = tf ′
f}, f ′ a)}:

Using the third case of first, we have

first f = SF{sfTF = tfffirst} where
tfffirst∼(a0, c0) = (fpAux sf ′

1, (b0, c0)) where
(sf1, b0) = tff a0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)

fpAux sf1 = SFTIVar{sfTF′ = tf ′
ffirst} where

tf ′
ffirst dt ∼(a, c) = (fpAux sf ′

1, (b
′, c)) where

(sf ′
1, b

′) = tf ′
f dt a

and therefore

first f ≫ first g = SF{sfTF = tffg} where
tffg a0@(a, c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = tfffirst a0

= (SFTIVar{sfTF′ = tf ′
ffirst}, (f ′ a, c))

(sf2, c0) = tfg b0

= (sfArr(λ∼(, c) → (b, c)), (b, c))
= (sfArr g′, (b, c))

cpAux sf1 sf2 = cpAuxA2 sf1 g′

= SFTIVar{sfTF′ = tf ′
fg} where

tf ′
fg dt (a, c) = (cpAuxA2 sf ′

1 g′, g′b′) where

(sf ′
1, b

′) = tfffirst dt (a, c)
= (fpAux sf ′′

1 , (b′′, c)) where
(sf ′′

1 , b′′) = tf ′
f dt a

where that last is obtained by substituting the value for tfffirst found above, and re-
naming variables as needed. Simplifying all of this, we have

first(f ≫ g) = arr(λ∼(, c) → (b, c))
= SF{sfTF = λa0@(a, c) → (sfArr g′, (b, c))}

first f ≫ first g = SF{sfTF = tffg} where
tffg = λa0@(a, c) → (SFTIVar{sfTF′ = tf ′

fg}, (b, c)) where

tf ′
fg dt (a, c) = (cpAuxA2 sf ′

1 g′, (b, c)) where

sf ′
1 = fpAux(fst(tf ′

f dt a))

Clearly, these two constructions are not equal. Their second elements are equal, as is
obvious by inspection, however their first elements are not. They are equivalent, however,
under evalSF, and showing that will give the equality we need:

Lemma 2.13. With all variables defined as above,

evalSF(arr g′) a0 : as dts = evalSF SF{sfTF = tffg} a0 : as dts

29

Proof. We prove that after the first expansion, both sides contain subexpressions which
evaluate to the same value:

evalSF(arr g′)a0 : as dts = evalSFTF(tfg a0) dts as

Noting that a0 must be a pair, and noting that g′ accepts lazy pairs, let (a, c) def= a0

= (b, c) : (evalSF′ sfArr(g′) dts as)

Let a1@(a′, c′) : as′ def= as, and dt : dts′ def= dts

= (b, c) : (evalSFTF(tf ′
g dt a1) dts′ as′)

= (b, c) : (b, c′) : (evalSF′ sfArr(g′) dts′ as′)

Now, by repeated unfolding and substitution,

evalSFSF{sfTF = tffg}a0 : as dts = evalSFTF(tffg a0) dts as

= (b, c) : (evalSF′ SFTIVar{sfTF′ = tf ′
fg} dts as)

= (b, c) : (evalSFTF(tf ′
fg dt a1) dts′ as′)

= (b, c) : (evalSFTF(cpAuxA2(fpAux(fst(tf ′
f dt a1)))g′, g′(snd(tf ′

f dt a1), c′)) dts′ as′)

= (b, c) : (evalSFTF(cpAuxA2(fpAux(fst(tf ′
f dt a1)))g′, (b, c′)) dts′ as′)

= (b, c) : (b, c′) : (evalSF′(cpAuxA2(fpAux(fst(tf ′
f dt a′)))g′) dts′ as′)

We now need to show that those last two subexpressions are equal. We proceed induc-
tively by cases on the right hand side:

i. Case fst(tf ′
f dt a′) = sfConst h:

We immediately have

fpAux sfConst h = sfArr(λ∼(, c) → (h, c))

and therefore

cpAuxA2(fpAux sfConst h)g′ = sfArr g′

which is equal to the above left hand expression and we are done.
ii. Case fst(tf ′

f dt a′) = sfArr f ′′:
We immediately have

fpAux sfArr f ′′ = sfArr(λ∼(a, c) → (f ′′ a, c))

and therefore

cpAuxA2(fpAux sfConst h)g′ = sfArr g′

which is equal to the above left hand expression and we are done.

30

iii. Case fst(tf ′
f da a′) = SFTIVar{sfTF′ = tf ′′

f }:

fpAux SFTIVar{sfTF′ = tf ′′
f } =

SFTIVar{sfTF′ = tf ′
ffirst} where

tf ′
ffirst dt ∼(a, c) = (fpAux sf ′

1, (b, c)) where

(sf ′
1, b) = tf ′′

f dt a

and therefore

cpAuxA2(fpAuxSFTIVar{sfTF′ = tf ′′
f })g′ =

SFTIVar{sfTF′ = tf ′′
ffirst} where

tf ′′
ffirst dt a = (cpAuxA2(fpAux sf ′

1)g
′, g′ b′) where

(sf ′
1, b

′) = tf ′′
f dt a

By the inductive hypothesis,

evalSF(cpAuxA2(fpAux(fst(tf ′′
f dt a)))g′) dts as = evalSF(sfArr g′) dts as

since tf ′′
f is of lower nesting depth of SFTIVar{} constructions, and so we are done.

2. Case g = SF{sfTF = tfg} = arr g′:

(a) Case f = constant h:
We know from the first two cases of first that

first f = arr(λ∼(, c) → (b, c))
first g = arr(λ∼(a, c) → (g′ a, c))

Therefore,

first(f ≫ g) = arr(λ∼(, c) → (g′ b, c))

and

first f ≫ first g = arr(λ∼(, c) → (g′ b, c))

(b) Case f = arr f ′: By the exact same logic as above

first f = arr(λ∼(a, c) → (f ′ a, c))
first g = arr(λ∼(a, c) → (g′ a, c))

first(f ≫ g) = arr(λ∼(a, c) → (g′(f ′ a), c))
first f ≫ first g = arr(λ∼(, c) → (g′(f ′ a), c))

31

(c) Case f = SF{sfTF = tff} = SF{sfTF = λa → (SFTIVar{sfTF′ = tf ′
f}, f ′ a)}:

first f = SF{sfTF = tff2} where
tff2 ∼(a0, c0) = (fpAux sf1, (b0, c0)) where

(sf1, b0) = tff a0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a)

fpAux sf1 = SFTIVar{sfTF′ = tf ′′
f } where

tf ′′
f dt ∼(a, c) = (fpAux sf ′

1, (b, c)) where

(sf ′
1, b) = tf ′

f dt a

and

first g = arr(λ∼(a, c) → (g′ a, c))
= SF{sfTF = tff2} where

tfg2 a0@(a, c) = (sfArr(λ∼(a, c) → (g′ a, c)), (g′ a, c))

Let arr g2
def= first g. Then

first f ≫ first g = SF{sfTF = tffg1} where
tffg1 a@(a0, c0) = (cpAux sf1 sf2, c

′
0) where

(sf1, b0) = tff2 a

= (SFTIVar{sfTF′ = tf ′′
f }, (f ′ a0, c0))

(sf2, c
′
0) = tfg2 b0

= (sfArr g2, (g′(f ′ a0), c0))

cpAux sf1 sf2 = cpAuxA2 sf1 g2

= SFTIVar{sfTF′ = tf ′
fg1
} where

tf ′
fg1

dt (a, c) = (cpAuxA2 sf ′
1 g2, g2 b′) where

(sf ′
1, b

′) = tf ′′
f dt (a, c)

= (fpAux sf ′′
1 , (b, c)) where

(sf ′′
1 , b) = tf ′

f dt a

32

On the other side of the equation, we have

f ≫ g = SF{sfTF = tf ′
fg2
} where

tf ′
fg2

a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)

(sf2, c0) = tfg b0

= (sfArr g′, g′(f ′ a0))

cpAux sf1 sf2 = cpAuxA2 sf1 g′

= SFTIVar{sfTF′ = tf ′′
fg2
} where

tf ′′
fg2

dt a = (cpAuxA2 sf ′
1 g′, g′ b) where

(sf ′
1, b) = tf ′

f dt a

and so

first(f ≫ g) = SF{sfTF = tffg2} where
tffg2a@(a0, c0) = (fpAux sf1, (b0, c0)) where

(sf1, b0) = tf ′
fg2

a0

= (SFTIVar{sfTF′ = tf ′′
fg2
}, g′(f ′ a0))

fpAux sf1 = SFTIVar{sfTF′ = tf ′′′
fg2
} where

tf ′′′
fg2

dt ∼(a, c) = (fpAux sf ′
1, (b

′, c)) where

(sf ′
1, b

′) = tf ′′
fg2

dt a

= (cpAuxA2 sf ′′
1 g′, g′ b) where

(sf ′′
1 , b) = tf ′

f dt a

Now,
snd(tffg1 (a0, c0)) = (g′(f ′ a0), c0) = snd(tffg2 (a0, c0))

and

fst(tffg1 (a0, c0)) = SFTIVar{sfTF′ = tf ′
fg1
} where

tf ′
fg1

dt ∼(a, c) = (cpAuxA2(fpAux sf ′′
1) g2, (g′ b, c)) where

(sf ′′
1 , b) = tf ′

f dt a

while

fst(tffg2 (a0, c0)) = SFTIVar{sfTF′ = tf ′′′
fg2
} where

tf ′′′
fg2

dt ∼(a, c) = (fpAux(cpAuxA2 sf ′′
1 g′), (g′ b, c)) where

(sf ′′
1 , b) = tf ′

f dt a

Naturally, we have the following lemma, which proves the above are equal:

Lemma 2.14. With all variables as above,

fpAux(cpAuxA2 sf ′′
1 g′) = cpAuxA2(fpAux sf ′′

1) g2

33

Proof. As usual, proceed by cases on sf ′′
1 :

i. Case sf ′′
1 = sfConst k:

fpAux sf ′′
1 = sfArr(λ∼(, c) → (k, c))

Let sfArr fk
def= fpAux sf ′′

1

cpAuxA2(fpAux sf ′′
1) g2 = sfArr(g2 · fk)

= sfArr(λ∼(, c) → (g′ k, c))
cpAuxA2 sf ′′

1 g′ = sfConst(g′ k)
fpAux(cpAuxA2 sf ′′

1 g′) = sfArr(λ∼(, c) → (g′ k, c))

ii. Case sf ′′
1 = sfArr h:

fpAux sf ′′
1 = sfArr(λ∼(a, c) → (h a, c))

Let sfArr fk
def= fpAux sf ′′

1

cpAuxA2(fpAux sf ′′
1) g2 = sfArr(g2 · fk)

= sfArr(λ∼(a, c) → (g′(h a), c))
cpAuxA2 sf ′′

1 g′ = sfArr(g′ ·h)
fpAux(cpAuxA2 sf ′′

1 g′) = sfArr(λ∼(a, c) → ((g′ ·h)a, c))
= sfArr(λ∼(a, c) → (g′(h a), c))

iii. Case sf ′′
1 = SFTIVar{sfTF′ = tf ′

s}:

fpAux sf ′′
1 = SFTIVar{sfTF′ = tf ′′

s } where
tf ′′

s dt ∼(a, c) = (fpAux sf ′
1, (b, c)) where

(sf ′
1, b) = tf ′

s dt a

cpAuxA2(fpAux sf ′′
1) g2 = SFTIVar{sfTF′ = tf ′′′

s } where
tf ′′′

s dt a0@(a, c) = (cpAuxA2 sf ′′′
1 g2, g2 b′) where

(sf ′′′
1 , b′) = tf ′′

s dt a0

= (fpAux sf ′
1, (b, c)) where

(sf ′
1, b) = tf ′

s dt a

So

cpAuxA2(fpAux sf ′′
1) g2 = SFTIVar{sfTF′ = tf ′′′

s } where
tf ′′′

s dt a0@(a, c) = (cpAuxA2(fpAux sf ′
1) g2, (g′ b, c)) where

(sf ′
1, b) = tf ′

s dt a

34

On the other side, we have

cpAuxA2 sf ′′
1 g′ = SFTIVar{sfTF′ = tf ′′

s } where
tf ′′

s dt a = (cpAuxA2 sf ′
1 g′, g′ b) where

(sf ′
1, b) = tf ′

s dt a

fpAux(cpAuxA2 sf ′
1 g′) = SFTIVar{sfTF′ = tf ′′′

s } where
tf ′′′

s dt ∼(a, c) = (fpAux sf ′′′
1 , (b′, c)) where

(sf ′′′
1 , b′) = tf ′′

s dt a

= (cpAuxA2 sf ′
1 g′, g′ b) where

(sf ′
1, b) = tf ′

s dt a

So

fpAux(cpAuxA2 sf ′′
1 g′) = SFTIVar{sfTF′ = tf ′′′

s } where
tf ′′′

s dt a0@(a, c) = (fpAux(cpAuxA2 sf ′
1 g′), (g′ b, c)) where

(sf ′
1, b) = tf ′

s dt a

Clearly these two sides are equal, and hence the lemma is proven.

With the lemma as above, we have that tffg1 = tffg2 , and so we have the desired result
in this case.

3. Case g = SF{sfTF = tfg} = SF{sfTF = λa → (SFTIVar{sfTF′ = tf ′
g}, g′ a)}:

(a) Case f = SF{sfTF = tff} = constant h:

f ≫ g = SF{sfTF = tffg} where
tffg a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (sfConst h, h)
(sf2, c0) = tfg b0

= (SFTIVar{sfTF′ = tf ′
g}, g′ h)

cpAux sf1 sf2 = cpAuxC1 h sf2

= SFTIVar{sfTF′ = tf ′
fg} where

tf ′
fg dt = (cpAuxC1 h sf ′

2, c) where

(sf ′
2, c) = tf ′

g dt h

35

Then

first(f ≫ g) = SF{sfTF = tffg1} where
tffg1 ∼(a0, c0) = (fpAux sf1, (b0, c0)) where

(sf1, b0) = tffg a0

= (SFTIVar{sfTF′ = tf ′
fg}, g′ h)

fpAux sf1 = SFTIVar{sfTF′ = tf ′
fg1
} where

tf ′
fg1

dt ∼(a, c) = (fpAux sf ′
1, (b, c)) where

(sf ′
1, b) = tf ′

fg dt a

= (cpAuxC1 h sf ′
2, c

′) where
(sf ′

2, c
′) = tf ′

g dt h

On the other side, we have

first f = arr(λ∼(, c) → (h, c))

Let SF{sfTF = tffirstf}
def= arr f ′ def= first f

first g = SF{sfTF = tffirstg} where
tffirstg ∼(a0, c0) = (fpAux sf1, (b0, c0)) where

(sf1, b0) = tfga0

= (SFTIVar{sfTF′ = tf ′
g}, g′ a0)

fpAux sf1 = SFTIVar{sfTF′ = tf ′
firstg} where

tf ′
firstg dt ∼(a, c) = (fpAux sf ′

1, (b, c)) where

(sf ′
1, b) = tf ′

g dt a

And therefore,

first f ≫ first g = SF{sfTF = tffg2} where
tffg2 a0@(a, c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = tffirstf a0

= (sfArr f ′, (h, c))
(sf2, c0) = tffirstg b0

= (SFTIVar{sfTF′ = tf ′
firstg}, (g′ h, c))

cpAux sf1 sf2 = cpAuxA1 f ′ sf2

= SFTIVar{sfTF′ = tf ′
fg2
} where

tf ′
fg2

dt a@(a1, c1) = (cpAuxA1 f ′ sf ′
2, c

′) where

(sf ′
2, c

′) = tf ′
firstg dt (f ′ a)

= (fpAux sf ′
1, (b, c)) where

(sf ′
1, b) = tf ′

g dt h

Up to renaming, it is clear that

snd(tffg1 (a, c)) = (g′ h, c) = snd(tffg2 (a, c))

36

and that
snd(tf ′

fg1
dt (a, c)) = (snd(tf ′

g dt h), c) = snd(tf ′
fg2

dt (a, c))

and if fst(tf ′
fg1

dt (a, c)) = fst(tf ′
fg2

dt (a, c)), then we can show that tffg1 = tffg2 , and
we are done.

Lemma 2.15. With all variables as above,

fpAux(cpAuxC1 h (fst(tf ′
g dt h))) = cpAuxA1 f ′ (fpAux(fst(tf ′

g dt h)))

Proof. Proceed, as always, by cases on sf
def= fst(tf ′

g dt h):

i. Case sf = sfConst k:

cpAuxC1 h sfConst k = sfConst k

fpAux sfConst k = sfArr(λ∼(, c) → (k, c))
cpAuxA1 f ′ (fpAux sf) = sfArr(λ∼(, c) → (k, c))

ii. Case sf = sfArr k′:

cpAuxC1 h sfArr k′ = sfConst(k′ h)
fpAux sfConst(k′h) = sfArr(λ∼(, c) → (k′ h, c))

fpAux sfArr k′ = sfArr(λ∼(a, c) → (k′ a, c))
cpAuxA1 f ′ (fpAux sf) = sfArr(λ∼(, c) → (k′ h, c))

iii. Case sf = SFTIVar{sfTF′ = sf ′}:
This case is similar to the ones above it, details omitted. See other lemmas for
similar proof techniques.

(b) Case f = SF{sfTF = tff} = arr f ′:
This proof is identical to the one above, replacing the constant k by the function appli-
cation f ′ a.

(c) Case f = SF{sfTF = tff} = SF{sfTF = λa → (SFTIVar{sfTF′ = tf ′
f}, f ′ a)}: This

case is similar to the ones above it, details omitted. See other lemmas for similar proof
techniques.

37

Theorem 2.16. Let f be an arrow. Then

first f ≫ arr fst = arr fst≫ f

Proof. We proceed by cases on the constructors for SF{}.

1. Case f = constant b: We have from the definition of first that

first f = SF{sfTF = λ∼(a0, c0) → (sfArr(λ∼(, c) → (b, c)), (b, c0))}

We also have from the definition of arr that

arr fst = SF{sfTF = λa → (sfArr(λ∼(a0, c0) → c0), c0)}

Then

first f ≫ arr fst = SF{sfTF = tf0} where
tf0 = λa0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tf1 a0

= (, (b,))
(sf2, c0) = tf2 b0

= (sfArr fst, b)

Therefore

cpAux sf1 sf2 = cpAuxA1(λ∼(, c) → (b, c))(sfArr fst)
= sfArr(fst(λ∼(, c) → (b, c)))
= sfArr(λ∼(, c) → b)

And so
first f ≫ arr fst = arr(λ∼(b, c) → b)

But
arr fst≫ first f = g ≫ f = f = constant b

and so clearly these two values are not equal. However, they are equivalent, under evalSF:

Lemma 2.17.

evalSF(arr(λ∼ a → b)) as dts = evalSF(constant b) as dts

Proof. By induction on the length of as:

(a) Case as = []: Trivially, both sides equal [].

(b) Case as = a : as′: Let f
def= λ∼ a → b. Then let SF{sfTF = tfarr}

def= arr f , and let
SF{sfTF = tfconst}

def= constant b. Then

evalSF(SF{sfTF = tfarr}) a : as dts = evalSFTF(tfarra) dts as

= evalSFTF(sfArr f, b) dts as

= b : evalSF′(sfArr f) dts as

38

Let SFArr{sfTF′ = tf ′} def= sfArr f . Then

= b : evalSFTF(tf ′ hd(dts) hd(as)) tl(dts) tl(as)
= b : evalSFTF(sfArr f, b) tl(dts) tl(as)

and

evalSF(SF{sfTF = tfconst}) a : as dts = evalSFTF(tfconsta) dts as

= evalSFTF(sfConst b, b) dts as

= b : evalSF′(sfConst b) dts as

Let SFArr{sfTF′ = tf ′} def= sfConst b. Then

= b : evalSFTF(tf ′ hd(dts) hd(as)) tl(dts) tl(as)
= b : evalSFTF(sfConst b, b) tl(dts) tl(as)

By the inductive assumption, these two last values are equal, hence the original values
are equal.

2. Case f = arr f ′ = SF{sfTF = λa → (sfArr f ′, f ′a)}: We know from the second case of first
that

first f = arr(λ∼(a0, c0) → (f ′ a0, c0))

and so

first f ≫ arr fst = arr(fst ·(λ∼(a0, c0) → (f ′ a0, c0)))
= arr(λ∼(a0, c0) → f ′ a0)

Likewise

arr fst≫ f = arr(f ′ · fst)
= arr(λ∼(a0, c0) → f ′ a0)

3. Case f = SF{sfTF = λa → (SFTIVar{sfTF′ = tf}, f ′ a)} for some initial f ′:

Let SF{sfTF = tff}
def= f , and SF{sfTF = tffst}

def= arr fst.

first f = SF{sfTF = tff0} where
tff0 ∼(a0, c0) = (fpAux sf1, (b0, c0)) where

(sf1, b0) = tffa0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)

fpAux sf1 = SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt ∼(a, c) = (fpAux sf ′

1, (b, c)) where
(sf ′

1, b) = tf ′
f dt a

39

Then from one side we have

first f ≫ arr fst = SF{sfTF = tfffst} where
tfffsta0@(a, c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff0 a0

= (SFTIVar{sfTF′ = tf ′
1}, (f ′ a, c))

(sf2, c0) = tffst b0

= (sfArr fst, f ′ a0)

where

cpAux sf1 sf2 = cpAuxA2 sf1 fst

= SFTIVar{sfTF′ = tf ′
ffst} where

tf ′
ffst td (a, c) = (cpAuxA2 sf ′

1 fst, fst b) where

(sf ′
1, b) = tf ′

1 dt (a, c)
= (fpAux sf ′′

1 , (b′, c)) where
(sf ′′

1 , b′) = tf ′
f dt a

While from the other we have

arr fst≫ f = SF{sfTF = tffstf} where
tffstfa0@(a, c) = (cpAux sf1 sf2, c0) where

(sf1, b0) = tffst (a, c)
= (sfArr fst, a)

(sf2, c0) = tffb0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a)

where

cpAux sf1 sf2 = cpAuxA1 fst sf2

= SFTIVar{sfTF′ = tf ′
fstf} where

tf ′
fstf dt (a, c) = (cpAuxA1 fst sf ′

2, c) where

(sf ′
2, c) = tf ′

f dt fst(a, c)

= tf ′
f dt a

Clearly, snd(tfffst a0) = f ′ a0 = snd(tffstf a0). Now, we need

fst(tfffst a0) = SFTIVar{sfTF′ = tf ′
ffst}

to equal
fst(tffstf a0) = SFTIVar{sfTF′ = tf ′

fstf}

for the two expressions to be equal. We note that

snd(tf ′
ffst dt (a, c)) = snd(tf ′

f dt a) = snd(tf ′
fstf dt (a, c)

40

and therefore we only need

fst(tf ′
ffst dt (a, c)) = cpAuxA2(fpAux fst(tf ′

f dt a)) fst

to equal
fst(tf ′

fstf dt (a, c)) = cpAuxA1 fst (fst(tf ′
f dt a))

to finish this case. We prove this in a lemma:

Lemma 2.18. For any sf ,

cpAuxA1 fst sf = cpAuxA2(fpAux sf) fst

Proof. We proceed by cases of sf :

(a) Case sf = sfConst b:
We have

cpAuxA1 fst sfConst b = sfConst b

by the first case of cpAuxA1. Now,

fpAux sf = sfArr(λ∼(, c) → (b, c))

and

cpAuxA2(fpAux sf) fst = sfArr(fst ·(λ∼(,c) → (b, c)))
= sfArr(λ → b)

As in the first case of the proof of this law, these two expressions are equivalent under
evalSF.

(b) Case sf = sfArr h:
We have

cpAuxA1 fst sfArr h = sfArr(f · fst)
= sfArr(λa → h a)

by the second case of cpAuxA1. Now,

fpAux sf = sfArr(λ∼(a, c) → (h a, c))

and

cpAuxA2(fpAux sf) fst = sfArr(fst ·(λ∼(a, c) → (h a, c)))
= sfArr(λa → h a)

(c) Case sf = SFTIVar{sfTF′ = sf ′}:
We have

cpAuxA1 fst sf = SFTIVar{sfTF′ = tf1} where
tf1 dt a0@(a, c) = (cpAuxA1 fst sf ′

1, c) where
(sf ′

1, c) = sf ′ dt (fst a0)
= sf ′ dt a

41

Now,

fpAux sf = SFTIVar{sfTF′ = tf ′
2} where

tf ′
2 dt ∼(a, c) = (fpAux sf ′

2, (b, c)) where
(sf ′

2, b) = sf ′ dt a

and

cpAuxA2(fpAux sf) fst = SFTIVar{sfTF′ = tf2} where
tf2 dt a0@(a, c) = (cpAuxA2 sf ′′

2 fst, fst b′) where
(sf ′′

2 , b′) = tf ′
2 dt a0

= (fpAux sf ′
2, (b, c)) where

(sf ′
2, b) = sf ′ dt a

Substituting back yields

tf2 dt a0@(a, c) = (cpAuxA2(fpAux sf ′
2) fst, b) where

(sf ′
2, b) = sf ′ dt a

Now, snd(tf1 dt a0) = snd(sf ′ dt a) = snd(tf2 dt a0), by simple inspection. Also, it is
clear that sf ′

1 = fst(sf ′ dt a) = sf ′
2. Then by our induction hypothesis,

fst(tf1 dt a0) = (cpAuxA1 fst sf ′
1)

= (cpAuxA2(fpAux sf ′
1) fst)

= (cpAuxA2(fpAux sf ′
2) fst)

= fst(tf2 dt a0)

Hence tf1 = tf2, proving the lemma

Given this lemma, we can see that tf ′
ffst = tf ′

fstf , and that therefore tfffst = tffstf , which
finally yields the desired result,

first f ≫ arr fst = arr fst≫ f

42

2.2 The associativity law

This law receives its own subsection for the single reason that it is incredibly long. Nearly twice as
long, in sheer number of cases, as the next longest proof, placing it among the others would result
in visual distraction. Also, the proofs involved is extremely similar to many proofs seen already; as
such, much will be left unstated. Nearly every case involving an SFTIVar{} construction requires
a lemma, in a similar vein to each of the preceeding proofs. The first lemma is explicitly proven;
the remaining ones are set up and stated, but not proven. Their proofs proceed in analogous and
straightforward manners.

Fortunately, no case involves dealing with the evalSF embedding; this is because no case involves
the transformation (via first) of an sfConst into an sfArr or an SFTIVar{} and back – rather, the
transformations proceed in only one direction.

Theorem 2.19. Let f , g and h be arrows. Then

(f ≫ g) ≫ h = f ≫(g ≫ h)

Proof. Throughout these cases, let

SF{sfTF = tff}
def= f

SF{sfTF = tfg}
def= g

SF{sfTF = tfh}
def= h

1. Case h = constant k: We show a simpler result, that f ≫ constant k = constant k for any f ,
and from that, this case follows immediately.

f ≫ constant k = SF{sfTF = tf0} where
tf0 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

(sf2, c0) = tfh b0

= (sfConst k, k)

cpAux sf1 sf2 = sfConst k

Hence

f ≫ constant k = SF{sfTF = λa0 → (sfConst k, k)}
= constant k

From this it immediately follows that

f ≫(g ≫ h) = f ≫ h = h

and
(f ≫ g) ≫ h = e≫ h = h

for some e = f ≫ g.

2. Case h = arr h′:

43

(a) Case g = constant k:

g ≫ h = SF{sfTF = tf0} where
tf0 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tfg a0

= (sfConst k, k)
(sf2, c0) = tfh b0

= sfArr h′, h′ k)

cpAux sf1 sf2 = cpAuxC1 k sf2

= sfConst(h′ k)

and therefore

g ≫ h = SF{sfTF = λa0 → (sfConst(h′ k), h′ k)}
= constant(h′ k)

Since g ≫ h is a constant construction, clearly, by the case above, f ≫(g ≫ h) = g ≫ h.
But we also have that f ≫ g = g, and therefore (f ≫ g) ≫ h = g ≫ h.

(b) Case g = arr g′:
i. Case f = constant k: By the above case, f ≫ g = constant(g′ k), and therefore

(f ≫ g) ≫ h = constant(h′(g′ k))

Now,

g ≫ h = SF{sfTF = tf0} where
tf0 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tfg a0

= (sfArr g′, g′ a0)
(sf2, c0) = tfh b0

= (sfArr h′, h′(g′ a0))

cpAux sf1 sf2 = cpAuxA1 g′ sf2

= sfArr(h′ · g′)

and therefore

g ≫ h = SF{sfTF = λa0 → (sfArr(h′ · g′), (h′(g′ a0)))}
= arr(h′ · g′)

and therefore

f ≫(g ≫ h) = constant k ≫(arr(h′ · g′)) = constant(h′(g′ k))

ii. Case f = arr f ′: By the above case,

f ≫(g ≫ h) = arr f ′ ≫(arr g′ ≫ arr h′)
= arr f ′ ≫(arr(h′ · g′))
= arr((h′ · g′) · f ′)

44

and

(f ≫ g) ≫ h = (arr f ′ ≫ arr g′) ≫ arr h′

= arr(g′ · f ′) ≫ arr h′

= arr(h′ ·(g′ · f ′))

and since function composition is indeed associative, these two expressions are equal.
iii. Case f = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′

f}, f ′ a0)}:

f ≫ g = SF{sfTF = tf0} where
tf0 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)

(sf2, c0) = tfg b0

= (sfArr g′, g′(f ′ a0))

cpAux sf1 sf2 = cpAuxA2 sf1 g′

= SFTIVar{sfTF′ = tf ′
0} where

tf ′
0 dt a = (cpAuxA2 sf ′

1 g′, g′ b) where
(sf ′

1, b) = tf ′
f dt a

Now,

(f ≫ g) ≫ h = SF{sfTF = tf0}≫ h

= SF{sfTF = tf1} where
tf1 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tf0 a0

= (SFTIVar{sfTF′ = tf ′
0}, g′(f ′ a0))

(sf2, c0) = tfh b0

= (sfArr h′, h′(g′(f ′ a0)))

cpAux sf1 sf2 = cpAuxA2 sf1 h′

= SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt a = (cpAuxA2 sf ′

1 h′, h′ b′) where
(sf ′

1, b
′) = tf ′

0 dt a

= (cpAuxA2 sf ′′
1 g′, g′ b) where

(sf ′′
1 , b) = tf ′

f dt a

so

cpAux sf1 sf2 = SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt a = (cpAuxA2(cpAuxA2 sf ′′

1 g′) h′, h′(g′ b)) where
(sf ′′

1 , b) = tf ′
f dt a

45

On the other side of the equation, we have

f ≫(g ≫ h) = f ≫ arr(h′ · g′)
= SF{sfTF = tf2} where

tf2 a0 = (cpAux sf1 sf2, c0) where
(sf1, b0) = tff a0

= (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)

(sf2, c0) = tfg b0

= (sfArr(h′ · g′), h′(g′(f ′ a0)))

cpAux sf1 sf2 = cpAuxA2 sf1 g′

= SFTIVar{sfTF′ = tf ′
0} where

tf ′
0 dt a = (cpAuxA2 sf ′

1 (h′ · g′), h′(g′ b)) where
(sf ′

1, b) = tf ′
f dt a

Clearly, snd(tf1 a0) = h′(g′(f ′ a0)) = snd(tf2 a0). We need tf ′
1 = tf ′

2 for fst(tf1 a0) =
fst(tf2 a0). We have that snd(tf ′

1 dt a) = h′(g′(snd(tf ′
f dt a))) = snd(tf ′

2 dt a). We
now need a lemma, for the remaining part:
Lemma 2.20.

cpAuxA2(cpAuxA2 sf g′) h′ = cpAuxA2 sf (h′ · g′)

Proof. We proceed by cases on sf , and the proof is markedly similar in nature to
this overarching case we are currently in:

A. Case sf = sfConst k: We have cpAuxA2(sfConst k)g′ = sfConst(g′ k), and so

cpAuxA2(cpAuxA2(sfConst k)g′)h′ = sfConst(h′(g′ k))

while on the other side we have

cpAuxA2(sfConst k)(h′ · g′) = sfConst(h′(g′ k))

B. Case sf = sfArr k′: We have cpAuxA2(sfArr k′)g′ = sfConst(g′ · k′), and so

cpAuxA2(cpAuxA2(sfArr k′)g′)h′ = sfConst(h′ ·(g′ · k′))

while on the other side we have

cpAuxA2(sfArr k′)(h′ · g′) = sfConst((h′ · g′) · k′)

C. Case sf = SFTIVar{sfTF′ = sf ′}:

cpAuxA2 SFTIVar{sfTF′ = sf ′} g′ = SFTIVar{sfTF′ = sf ′
2} where

sf ′
2 dt a = (cpAuxA2 sf ′′

2 g′, g′ b) where
(sf ′′

2 , b) = sf ′ dt a

46

and therefore

cpAuxA2 SFTIVar{sfTF′ = sf ′
2} h′ = SFTIVar{sfTF′ = sf ′

3} where
sf ′

3 dt a = (cpAuxA2 sf ′′
3 h′, h′ b′) where

(sf ′′
3 , b′) = sf ′

2 dt a

= (cpAuxA2 sf ′′
2 g′, g′ b) where

(sf ′′
2 , b) = sf ′ dt a

and so

cpAuxA2(cpAuxA2 sf g′) h′ =
SFTIVar{sfTF′ = tf ′

3} where
sf ′

3 dt a = (cpAuxA2(cpAuxA2 sf ′′
2 g′) h′, h′(g′ b)) where

(sf ′′
2 , b) = sf ′ dt a

while on the other side we have

cpAuxA2 SFTIVar{sfTF′ = sf ′} (h′ · g′) =
SFTIVar{sfTF′ = sf ′

4} where
sf ′

4 dt a = (cpAuxA2 sf ′′
4 (h′ · g′), (h′ · g′) b) where

(sf ′′
4 , b) = sf ′ dt a

or

cpAuxA2 SFTIVar{sfTF′ = sf ′} (h′ · g′) =
SFTIVar{sfTF′ = sf ′

4} where
sf ′

4 dt a = (cpAuxA2 sf ′′
4 (h′ · g′), h′(g′ b)) where

(sf ′′
4 , b) = sf ′ dt a

Now, it is obvious that sf ′′
4 = sf ′′

2 , and that the b’s on either side are equal,
since they all come from sf ′ dt a. Therefore we have that

snd(sf ′
4 dt a) = h′(g′ b) = snd(sf ′

2 dt a)

while

fst(sf ′
2 dt a) = cpAuxA2(cpAuxA2 sf ′′

2 g′) h′

fst(sf ′
4 dt a) = cpAuxA2 sf ′′

4 (h′ · g′)

We can assume these expressions are equal by induction over the nesting depth
of the SFTIVar{} constructions, and hence we have shown that this depth too
satisfies the lemma.

By the lemma, we’ve shown that tf1 = tf2, and hence have established this case.

47

(c) Case g = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
g}, g′ a0)}: Each of these cases will

require a lemma; the first two will have three cases each, while the third requires seven
cases to prove. This is quite simply seen by noting how many arrows are of the SFTIVar{}
type, and noting that the three cases involving sfConst as the second argument condense
to a single case. This lemma, in fact, will very strongly resemble this entire case 1. As
such, the proof will be omitted.

i. Case f = constant k:

f ≫ g = SF{sfTF = tf0} where
tf0 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (sfConst k, k)
(sf2, c0) = tfg b0

= (SFTIVar{sfTF′ = tf ′
g}, g′ k)

cpAux sf1 sf2 = cpAuxC1 k sf2

= SFTIVar{sfTF′ = tf ′
0} where

tf ′
0 dt a = (cpAuxC1 k sf ′

2, c) where
(sf ′

2, c) = tf ′
g dt k

and so

(f ≫ g) ≫ h = SF{sfTF = tf1} where
tf1 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tf0 a0

= (SFTIVar{sfTF′ = tf ′
0}, g′ k)

(sf2, c0) = tfh b0

= (sfArr h′, h′(g′ k))

cpAux sf1 sf2 = cpAuxA2 sf1 h′

= SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt a = (cpAuxA2 sf ′

1 h′, h′ b) where
(sf ′

1, b) = tf ′
0 dt a

= (cpAuxC1 k sf ′
2, c) where

(sf ′
2, c) = tf ′

g dt k

or

cpAux sf1 sf2 = SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt a = (cpAuxA2(cpAuxC1 k sf ′

2) h′, h′ c) where
(sf ′

2, c) = tf ′
g dt k

48

while on the other side we have

g ≫ h = SF{sfTF = tf2} where
tf2 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tfg a0

= (SFTIVar{sfTF′ = tf ′
g}, g′ a0)

(sf2, c0) = tfh b0

= (sfArr h′, h′(g′ a0))

cpAux sf1 sf2 = cpAuxA2 sf1 h′

= SFTIVar{sfTF′ = tf ′
2} where

tf ′
2 dt a = (cpAuxA2 sf ′

1 h′, h′ b) where
(sf ′

1, b) = tf ′
g dt a

and so

f ≫(g ≫ h) = SF{sfTF = tf3} where
tf3 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (sfConst k, k)
(sf2, c0) = tfg b0

= (SFTIVar{sfTF′ = tf ′
2}, h′(g′ k))

cpAux sf1 sf2 = cpAuxC1 k sf2

= SFTIVar{sfTF′ = tf ′
3} where

tf ′
3 dt a = (cpAuxC1 k sf ′

2, c) where
(sf ′

2, c) = tf ′
2 dt k

= (cpAuxA2 sf ′
1 h′, h′ b) where

(sf ′
1, b) = tf ′

g dt k

Comparing components of the functions above, we see that the second parts of each
pair are equal, and the first parts are equal under a lemma, which is stated without
proof:
Lemma 2.21.

cpAuxA2(cpAuxC1 k sf ′
2) h′ = cpAuxC1 k (cpAuxA2 sf ′

2 h′)

This lemma restates what we are trying to prove, one level deeper, at the SF’ level
instead of the topmost SF level. As such, its proof is precisely analogous to the
proofs of lemmas and this case as developed so far, using structural induction at the
last step (instead of repeating the lemma) to show that the result holds.

ii. Case f = arr f ′: This case is precisely analogous to the preceeding case, with the
changes being converting each explicit mention of k into f ′ a0, and changing each
cpAuxC1 into cpAuxA1. (This “naive” description works because of how very parallel

49

the code in each case has been written.)

f ≫ g = SF{sfTF = tf0} where
tf0 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (sfArr f ′, f ′ a0)
(sf2, c0) = tfg b0

= (SFTIVar{sfTF′ = tf ′
g}, g′(f ′ a0))

cpAux sf1 sf2 = cpAuxA1 f ′ sf2

= SFTIVar{sfTF′ = tf ′
0} where

tf ′
0 dt a = (cpAuxA1 f ′ sf ′

2, c) where
(sf ′

2, c) = tf ′
g dt (f ′ a)

and so

(f ≫ g) ≫ h = SF{sfTF = tf1} where
tf1 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tf0 a0

= (SFTIVar{sfTF′ = tf ′
0}, g′(f ′ a0))

(sf2, c0) = tfh b0

= (sfArr h′, h′(g′(f ′ a0)))

cpAux sf1 sf2 = cpAuxA2 sf1 h′

= SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt a = (cpAuxA2 sf ′

1 h′, h′ b) where
(sf ′

1, b) = tf ′
0 dt a

= (cpAuxA1 f ′ sf ′
2, c) where

(sf ′
2, c) = tf ′

g dt (f ′ a)

or

cpAux sf1 sf2 = SFTIVar{sfTF′ = tf ′
1} where

tf ′
1 dt a = (cpAuxA2(cpAuxA1 f ′ sf ′

2) h′, h′ c) where
(sf ′

2, c) = tf ′
g dt (f ′ a)

50

while on the other side we have

g ≫ h = SF{sfTF = tf2} where
tf2 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tfg a0

= (SFTIVar{sfTF′ = tf ′
g}, g′ a0)

(sf2, c0) = tfh b0

= (sfArr h′, h′(g′ a0))

cpAux sf1 sf2 = cpAuxA2 sf1 h′

= SFTIVar{sfTF′ = tf ′
2} where

tf ′
2 dt a = (cpAuxA2 sf ′

1 h′, h′ b) where
(sf ′

1, b) = tf ′
g dt a

and so

f ≫(g ≫ h) = SF{sfTF = tf3} where
tf3 a0 = (cpAux sf1 sf2, c0) where

(sf1, b0) = tff a0

= (sfArr f ′, f ′ a0)
(sf2, c0) = tfg b0

= (SFTIVar{sfTF′ = tf ′
2}, h′(g′(f ′ a0)))

cpAux sf1 sf2 = cpAuxA1 f ′ sf2

= SFTIVar{sfTF′ = tf ′
3} where

tf ′
3 dt a = (cpAuxA1 f ′ sf ′

2, c) where
(sf ′

2, c) = tf ′
2 dt a

= (cpAuxA2 sf ′
1 h′, h′ b) where

(sf ′
1, b) = tf ′

g dt a

Comparing components of the functions above, we see that the second parts of each
pair are equal, and the first parts are equal under a lemma, which is stated without
proof:
Lemma 2.22.

cpAuxA2(cpAuxA1 f ′ sf ′
2) h′ = cpAuxA1 f ′ (cpAuxA2 sf ′

2 h′)

iii. Case f = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)}: This case again boils

down to a similar lemma to those previously seen, and as such its proof is equally
similar:
Lemma 2.23.

cpAuxA2(cpAux sf ′
1 sf ′

2) h′ = cpAux sf ′
1 (cpAuxA2(sf ′

2 h′))

The only distinguishing feature of this lemma from those previous is that, since it
has two general SFTIVar{} constructions, it requires using cpAux itself again; it also
involves nine cases instead of three, though three can be reduced to a single case
where sf ′

2 = sfConst k.

51

3. Case h = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
h}, h′ a0)}: Every one of these cases will

require a lemma, since h is of the SFTIVar{} type. Many of these lemmas will have three
cases; the last lemma of cases a and b will have seven cases, while the last lemma will itself
have seventeen cases – and will be practically identical in spirit to this entire proof. As such,
these lemmas will only be stated, and not proven; the proofs are all straightforward. The
setup work will also be left unstated; it is precisely as formulaic as the preceeding seven cases
– all the “work” involved is wrapped within the lemmas, which express what occurs when the
cpAux expressions are evaluated.

(a) Case g = constant k:
i. Case f = constant l:

Lemma 2.24.
cpAuxC1 l (cpAuxC1 k sf ′

3) = cpAuxC1 k sf ′
3

ii. Case f = arr f ′:
Lemma 2.25.

cpAuxA1 f ′ (cpAuxC1 k sf ′
3) = cpAuxC1 k sf ′

3

iii. Case f = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)}:

Lemma 2.26.
cpAux sf ′

1 (cpAuxC1 k sf ′
3) = cpAuxC1 k sf ′

3

(b) Case g = arr g′:
i. Case f = constant k:

Lemma 2.27.

cpAuxC1 k (cpAuxA1 g′ sf ′
3) = cpAuxC1(cpAuxC1 k g′) sf ′

3

ii. Case f = arr f ′:
Lemma 2.28.

cpAuxA1 f ′ (cpAuxA1 g′ sf ′
3) = cpAuxA1(g′ · f ′) sf ′

3

iii. Case f = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)}:

Lemma 2.29.

cpAux sf ′
1 (cpAuxA1 g′ sf ′

3) = cpAux(cpAuxA2 sf ′
1 g′) sf ′

3

(c) Case g = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
g}, g′ a0)}:

i. Case f = constant k:
Lemma 2.30.

cpAuxC1 k (cpAux sf ′
2 sf ′

3) = cpAux(cpAuxC1 k sf ′
2) sf ′

3

ii. Case f = arr f ′:
Lemma 2.31.

cpAuxA1 f ′ (cpAux sf ′
2 sf ′

3) = cpAux(cpAuxA1 f ′ sf ′
2) sf ′

3

iii. Case f = SF{sfTF = λa0 → (SFTIVar{sfTF′ = tf ′
f}, f ′ a0)}:

Lemma 2.32.

cpAux sf ′
1 (cpAux sf ′

2 sf ′
3) = cpAux(cpAux sf ′

1 sf ′
2) sf ′

3

52

3 Discussion

As seven of the nine arrow laws are satisfied, little needs to be said about them immediately.
Expressions can be written with the various primitive combinators, secure in the knowledge that
they will work as expected. The arrow laws serve as a semantics for arrows, in a way – they
formalize the intuitive interactions between the combinators, such that a programmer can rely on
that behavior. However, two of the laws are not strictly satisfied.

The two laws which break under strict equality involve the interactions of first and ≫, specif-
ically in the optimized cases involving constant. The reason for this is simple, and was seen in
greater detail in the proofs above. When one takes first constant k, the result can no longer be a
constant, but must be a lifted pure function arr(λ(, c) → (k, c)). This in itself is not the problem;
after all, the arr case is still an optimized version of the most general SF{} arrow. The problem is
that arr interacts differently in terms of optimizations, than constant does – as was seen, anything
composed with a constant returned the constant, without any computation necessary, whereas a
lifted function needed to be applied to its argument, regardless of its actions.

To remedy the situation, as above, we implemented an evaluation function, which applies an
arrow to a list of inputs (and delta time values), and returns a list of output values. The rationale
for this function, as explained above, is that as long as two arrows behave the same for all inputs,
it does not matter what their internal representations are. To give a simplistic example, suppose
one defined the following two functions:

f(x) = x + 2
g(x) = h(h(x)) where h(x) = x + 1

Clearly, if one has meta-knowledge of the internals of these two functions, then one can say

g(x) = h(h(x)) = h(x + 1) = x + 2 = f(x)

and by η-conversion state that f = g. But if the functions are opaque, that meta-knowledge is not
accessible, and so the argument breaks. This is the standard case, since functions are λ-abstractions,
and abstractions by their nature are opaque as to how their internals work.

Returning to our SF{} arrows, a similar argument holds. If we could know, for example, that
the f in arr f was in fact the result of first constant k, then we could use that meta-knowledge to
maintain the optimization of constant, and would not need to resort to the evaluation function.
But we cannot know this information a priori, and so we are restricted.

This now raises an interesting opportunity. Since the laws are not satisfied under equality
(though they are satisfied under equivalence), it follows that one expression may be more efficient
than the other, in terms of computations necessary to arrive at the same result as the other side.
This means that conceivably, one could write an optimizer for Yampa programs, which could take
into account this advantage. Let us examine, then, what opportunities there are.

The first law is the distributive property of first over composition:

first(f ≫ g) = first f ≫ first g

Without giving a formal exposition, it is intuitively obvious that the left side should be more
efficient than the right side – in terms of combinators called, the left side has one fewer call to first.
This in itself is a decent savings, since first is a recursive function which must map itself (via fpAux)
down all future SFTIVar{} constructions. Halving the number of times this function is needed is a
substantial gain, perhaps especially in larger programs.

53

More importantly than this optimization, is the observation that the left side maintains more
optimizations than the right side does. In the case where g = constant k, the left side will always be a
lifted pure function, since f ≫ g = g. The right hand side cannot preserve this optimization for the
exact reasons stated above – first g is now a lifted function, and once there, there is no opportunity
to maintain the optimizations possible for a constant construction. A similar, if less substantial,
gain is available when f = constant h, and g = arr g′ – in this case, f ≫ g = constant g′(h). While
taking first of this will result in an arr construction, which would also have resulted from the right
side, the right side would involve computing two functions and composing their outputs, rather
than this left side which would only require one function call.

The other law which breaks under strict equality is the law dealing with first and fst:

first f ≫ arr fst = arr fst≫ f

Again, informally, it should be obvious that the right side is more efficient than the left, since it
saves a computation of first f . Again, while this is a good savings, it is not as important as the other
optimization, namely that when f = constant k, the right side immediately reduces to constant k,
while the left side reduces to arr(λ → k). These two expressions are equivalent as proven above,
but the right side involves zero function calls, which is a savings over any function calls at all.

One other optimization is possible, and is based on the law above that composition is associative.
Since composition is associative, let us choose to make it left-associative. This choice is valid, but
can have a useful effect in optimizations, again involving the constant case. When the rightmost
arguement to f ≫ g ≫ h ≫ . . .≫ z is a constant, none of the preceeding arguments need be
evaluated (especially in a lazy-evaluation language such as Haskell), since the first case of the
implementation of composition will immediately return the constant. To wit, if composition is
left-associative, then

f ≫ g ≫ h ≫ constant k = ((f ≫ g) ≫ h) ≫ constant k

= constant k

whereas if it were right-associative, the reduction sequence would be

f ≫ g ≫ h ≫ constant k = f ≫(g ≫(h ≫ constant k))
= f ≫(g ≫ constant k)
= f ≫ constant k

= constant k

which yields the same result, but in a time linear in the length of the chain of compositions.
Each of these three optimizations are useful on their own, but even more benefit can be derived

by considering their interaction. For example, the statement

first f ≫ first g ≫ first h = first(f ≫ g ≫ h)

is obvious, as are the generalizations to longer chains. (This one is derivable in three steps via

first f ≫ first g ≫ first h = first(f ≫ g) ≫ first h

= first((f ≫ g ≫) first h)
= first(f ≫ g ≫ h)

where the insistence on parentheses in the second step can be dropped by associativity, and the
distribution of first comes from the first rule discussed above.) This has the potential for drastically

54

reducing the computations needed if a long chain of arrows are applied to one input, while the
other is carried through (as might happen, say in some of the looping examples). If at any point in
that chain, a constant is encountered, all prior elements of the computation can be dropped, which
could result in large savings. Further, any pure arrows encountered can just be “wrapped” around
earlier ones, thus shortening the chain still further. For more on this particular optimization, see
below.

The second law above lets you discard extraneous data in the second argument; this law is less
useful for optimizations, though if a program is constructed to carry along and then discard its
second argument, it can easily just ignore it in the first place. As such, while it is an optimization,
it seems less likely to arise.

These two laws can interact with the seven strictly satisfied laws, to produce other optimizations
as well. While the seven laws themselves have no one side more efficient than the other, some do
have one side which interacts better with these laws, which do. For example, the law

arr(f · g) = arr f ≫ arr g

is satisfied with strict equality, so neither side is more efficient. However, consider the following
scenario:

f ≫ arr g ≫ arr h

where f could be anything. If f is a constant, then the whole expression evaluates to a constant,
but in one fewer steps if (arr g ≫ arr h) is reduced first. If f is a pure arrow, no benefit ensues.
But if f is a general arrow, this does have some effect, because rather than compute the recursive
cpAux twice (once with g and once with h), it can be computed once (with h · g).

Similarly, first arr f is less useful than arr(f × id), since the latter form is amenable to some of
the optimizations mentioned above.

Other transformations among the arrow laws could be useful, working towards the goal of
minimizing the number of applications of first present, since of the three primitive combinators,
this is the only one which reduces the possible optimizations.

4 Conclusions and Future Work

The above proofs have shown that SF, the class upon which Yampa is based, in fact does behave as
an arrow ought to, thus providing a strong support for reasoning about programs written in Yampa
– these proofs constitute an assurance that the the dataflow in the program will behave correctly
(though not necessarily as intended – these proofs do not eliminate the existence of logic bugs!)
as arrows should. Further, since two of the laws are not satisfied by equality, some discussion was
given as to possible optimization strategies based on the arrow laws.

This is not the complete semantics, however, of SF. SF is also declared to be an ArrowLoop – an
arrow which has another primitive combinator loop, and which satisfies another set of six identities,
also defined in [5]. These laws describe how loop interacts with the three primitive combinators
shown above, namely first, ≫ and arr. Looping arrows correspond very closely to circuits with
feedback – one or more outputs of the circuit (arrow) are looped and fed back into corresponding
inputs of the circuit (arrow). To prove the ArrowLoop laws for SF requires an excursion into
domain theory, to understand the semantics of, and to reason about, divergent or unstable loops.
One subtle and intriguiging aspect of the loop operator is that the second (feedback) argument of
the arrow need not stabilize, provided that the function returns a value for its first component of
output which does not depend on the feedback. Another is that reasoning about such loops leads

55

directly to the notions of fixpoints and least fixpoints, the latter of which corresponds directly to
reasoning about what a feedback circuit will produce given no a priori knowledge of the current
state of the circuit.

With a complete treatment of these ArrowLoop laws, the semantics of SF in Yampa will be
shown to be consistent with its expected behavior, and can then be used with no further consider-
ation to the implementation.

References

[1] Paul Hudak, The haskell school of expression; learning functional programming through multi-
media, Cambridge University Press, 2000.

[2] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson, Arrows, robots, and func-
tional reactive programming, Summer School on Advanced Functional Programming 2002, Ox-
ford University, Lecture Notes in Computer Science, Springer-Verlag, 2003, To Appear.

[3] , Yampa 0.9.1 source code, http://haskell.org/yampa/, 2003.

[4] John Hughes, Generalising monads to arrows, Science of Computer Programming 37 (2000),
no. 1–3, 67–111.

[5] Ross Paterson, A new notation for arrows, International Conference on Functional Program-
ming, ACM Press, September 2001, pp. 229–240.

[6] , Arrows and computation, The Fun of Programming (Jeremy Gibbons and Oege
de Moor, eds.), Palgrave, 2003, pp. 201–222.

56

