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Abstract
An extensible system permits multiple third-parties to add to, revise, or fundamentally alter the functionality

provided by the base system. System extensibility is a spectrum: on one extreme is a completely hard-coded system
with no extensions permitted; at the far extreme is a system that provides the barest minimum of hard-coded support
and expects all functionality to be provided as extensions. As the capabilities of extensions grow, so too does the
likelihood and severity of conflicts among extensions. Working with these systems thus requires a solid understanding
of the extensibility model they provide: what exactly are extensions capable of doing, both to the underlying system
and to each other, and what can go wrong when extensions interact?

Recently, a new extensible system has grown in importance: the web browser. Browser vendors have experimented
with various extensibility mechanisms, but little systematic work has been done to understand the design space. In this
report we examine several types of systems that prominently deal with extensibility—aspect-oriented programming,
operating systems, feature specification, and security monitors—and explore the extensibility model taken by several
illustrative papers in these areas. We develop a classification scheme for the extension design space and show that in
each area the scope of extensibility can vary widely. Finally, we position the web browser in this design space, and
show techniques from these systems may be adapted to the browser.

1 Defining extensibility

Intuitively, an extensible system is one that permits later revision of the previously-designed base system: additions to,

improvements upon, or replacements of existing functionality. Extensibility is everywhere, in varying degrees. On the

minimalist extreme, simple music players admit additional codecs to support new encoding formats, but for example no

extension may provide internet support. More flexibly, office suites embed scripting languages that can encode fairly

powerful computations, but for example cannot add support for new file formats. On the far extreme, some systems are

practically nothing but extensions—other than a small runtime core, the emacs editor is a default collection of macro

packages, written the same way as the non-default packages known as extensions.

In the past few years, people have come to expect their web browser to be an extensible system as well, adding

toolbars, social-network customizations, interface tweaks, and many other personalizations to adapt the browser to

their needs. Currently, the undisputed leader in customizability is the Firefox browser, which was architected so that

extensions could leverage the same technologies for their interfaces and functionality as web pages and Firefox itself use

for their own appearances and behaviors. One fascinating consequence of this design choice is that nearly anyone can

write a Firefox extension—the learning curve is only modestly higher than that for publishing a web page. Further, it is

extremely easy for end users to install extensions: addons.mozilla.org hosts over six thousand distinct extensions,

and over one billion extensions have been served as of 2008. As a result, for the first time we have a software system
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that can be extended by very amateur programmers, and where the interactions between extensions cannot feasibly be

tested by anyone, let alone independent extension authors. Indeed, in the current forty top-ranked extensions at least

five directly conflict with each other.

The paper examines the extensibility problem as it pertains to web browsers: understanding how extensions interact

with one another and how best to resolve conflicts that arise. We will examine prior work in four other areas of

research: aspect-oriented programming and operating systems, which focus primarily on defining extensions; and

feature specification and security monitors, which focus mainly on resolving conflicts. To frame the discussion, we

introduce a set of criteria against which to describe an extensibility system. Previous efforts have classified system-

specific criteria for operating systems [33, 116] and feature specification [74]; our criteria generalize and combine these

to apply to all systems examined here. In this paper, extensions will be examined based upon their:

• Design considerations: What behavior does the extension have—e.g., new policies, better performance, new

functionality? Alternatively, what semantics are designed into the extension system? Who is the author—e.g.,

the base system’s designer, an external developer, or an amateur? When is the extension integrated with the base

system—e.g., at design, build, install, load, or run time? Finally, how much cooperation does the extension need

from the base system—e.g., can the base system be written oblivious to future extensions, or must it accommodate

them during its design?

• Extension abilities: What base system resource do extensions target—e.g., the set of supported hardware, or

the available security policies? Given that, how pervasive is the extension—how much of the system may be

modified? How granular can extensions be—e.g., can they replace single lines of code, or only entire subsystems

at once? In what ways can extensions compose? Finally, what interactions are possible between multiple

extensions or between each other and the base system, and what guarantees can be made when no features

interact?

• Troubleshooting techniques: What conflicts are possible—i.e., which interactions are undesirable? When can

conflicts be detected—e.g., at design time, via runtime testing, or via user problems? Can individual extensions

be be checked modularly for conflicts? Finally, how are conflicts resolved—e.g., by restricting the action of the

extensions, by manually composing them into a corrected composite, or by rewriting the extensions to cooperate?

The rest of the paper is organized as follows. The breadth of each area precludes defining the extension model

for each domain, so in Section 2 we first give an overview and a strawman extension model of the four systems types

mentioned above. We then survey several salient approaches across these areas that focus on design considerations

(Section 3), extension abilities (Section 4) and troubleshooting techniques (Section 5). Finally, in Section 6 we approach

the browser design space with these reference points as guides. Section 7 concludes.
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2 Overviews

To ground our discussion of extensibility, we will first give a general overview of aspect-oriented programming, operating

systems, feature specification and security monitors. We describe the systems in terms of our classifications above, then

define a generic strawman extension model for each system, to contrast with each specific instance presented later.

2.1 Aspect-oriented programming

Fundamentally, an aspect extends the control flow of an existing program by declaring what additional work must be

done when certain conditions arise. The primitive hook for extension within AOP is the joinpoint, which describes an

“interesting” moment of control-flow such as a function entry or exit. Pointcuts1 define groups of joinpoints, usually via

simple set operations. Specifying what action to take at a given pointcut is known as advice. Multiple pointcut–advice

pairs may be combined to define a single aspect, which is defined compactly and separately from the mainline code

(i.e., the non-aspect remainder of the program), until being woven together at compile time. Advice may apply before,

after, or around a pointcut, though these forms may be simplified: as presented in Walker et al. [126], these can all be

compiled to idioms of joinpoints, where advice is executed at the moment the joinpoint is reached.

An idealized AOP system permits extensions to modify the state and control flow of the mainline program via aspects

that advise function calls. Advice is authored by the same developers as the mainline system, and is integrated at

build time. The mainline code need not cooperate to enable advice, though care must be taken for the advice to work

properly: conflicts may arise when multiple advice apply to a particular pointcut (detectable by the compiler), when

aspects overlap in function, or when changes in the mainline break an aspect (detectable only by testing); all require

programmer intervention. When all aspects are compatible with each other and the mainline, the semantics of the woven

program is predictable and independent of the weaving order (modulo any explicitly specified ordering constraints.)

The above definitions are very much simplified; each part of these definitions can be varied, yielding systems with

greater or lesser flexibility—and impact on ease of analysis for conflict. The set of available joinpoint kinds (granularity)

differs considerably between AOP implementations; while AspectJ contains a predefined set [75], they could be

programmer-specified labels interspersed anywhere within the code [126]. Moreover, while AspectJ’s joinpoints are

focused on OO-style code (e.g. a special joinpoint for object constructors), there is nothing inherently object-oriented

about aspects, and indeed aspects can be formalized for functional languages as well [28, 29, 36, 126]. Similarly, the

flexibility of pointcut specification differs between implementations (e.g., [19, 36, 40, 75, 126]), and is a key factor in

the utility of the AOP approach. More complex systems permit pointcuts that can examine the stack2; others permit state

machine-like inspection of the history of the computation. AOP languages may choose whether aspects are second-order,

1Confusingly, Douence et al. [36] use the term crosscut; Rinard et al. [107] uses the latter as an adjective, so we will avoid using it in this report.
2Such pointcuts include AspectJ’s cflow construction, which matches when the specified procedure is present on the stack; arbitrary pattern

matching against the stack is possible [27].

3



syntactic constructs baked into the language [75], are extensible but still second-order language constructs [19], or are

first-order values definable and manipulable within the language itself [40]. Advice can be dynamically installed for a

given scope, or lexically inserted at compile time. One point of common disagreement appears to be the appropriate

weaving order for aspects. Aldrich [5] applies advice in a LIFO order, while Dantas and Walker [27] take the exact

opposite approach. AspectJ [75] defines a complex (and incomplete) set of rules governing weaving. Other systems

(e.g., Douence et al. [38]) permit programmer-specified weaving orders. The only commonalities seem to be the need

for clearly specifying the semantics of the system under study, and to choose the appropriate heuristic for the task at

hand. Finally, the pervasiveness of the advice itself can be varied, by varying the environment available to the advice.

2.2 Operating systems

Operating systems are the lowest-level software interface between physical resources and software. They are traditionally

responsible for multiplexing those limited resources between multiple clients, and for abstracting the details of those

resources into a convenient programming interface. In one sense all operating systems are trivially extensible: they

permit an unbounded set of user-level programs by exposing an abstracted view of the machine. In the following

discussion, we are uninterested in these applications, and focus rather on more fundamental changes in functionality,

which require operating beneath the user-visible abstraction layers. The case for kernel extensibility has been made

numerous times (see for instance [7, 42, 44, 60, 81, 82, 111]) and can be summarized by the simple observation that no

closed system can be all things to all people. An extensible OS therefore must expose enough control over its internal

structures to permit tailoring their behavior to applications’ needs. Such extensibility must be tempered by concerns for

performance and safety—if the extensibility mechanisms are too expensive, functionality would be better written in

user-mode on a system with a cheaper mechanism; if unsafe, the system behavior becomes unmanageable.

An idealized extensible OS permits kernel extensions to expand the resources (e.g., new hardware or better

performance) available to the rest of the system, via modules that expose new APIs. Extensions are typically authored

by the vendors of those new resources, rather than the OS developer, and are loaded dynamically when the OS boots.

The OS itself must expose some hooks so modules can rely upon a standard interface. Modules may interact through

any shared state of the OS, and may conflict if multiple modules expect exclusive control over some resource; such

conflicts are detectable only through detailed testing, and require developer intervention to fix. Compatible extensions

may be loaded in any order (unless otherwise specified), and will not destabilize the system.

This focus on extensibility leads to the microkernel approach to OS architecture: as explained by Liedtke [86, 87],

microkernels should include in the kernel only that which is necessary to implement the remainder of the system;

everything else need not be in the kernel. (Note that this is distinct from whether extensions may run in the kernel

memory space or not, a choice which varies among different microkernels—for instance, device drivers are not
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considered part of a microkernel, but may run with kernel privileges.) Since operating system efficiency is paramount,

endless clever mechanisms have been proposed to provide extensibility.

Broadly, all OS extensions, regardless of mechanism, supply a new method of interacting with some resource of the

system: they extend the set of resource access protocols. The space of extensions therefore depends heavily on the

granularity of the resources exposed by the existing kernel. If a kernel exposes a file system abstraction, for instance,

then extending it might entail permitting new access-control mechanisms or policies for files. If the kernel only exposes

a disk-level abstraction, extensions might include file system implementations themselves.

2.3 Feature specification

The larger a system grows, the greater the chance that seemingly unrelated parts interact in unexpected ways. At the

concrete level of code, interactions may make the codebase difficult to improve over time; at a higher level, interactions

may threaten the correctness of the system’s user-visible behavior. Feature specification aims to address this higher-level

concern: a feature is an informal, self-contained, user-visible piece of functionality, whose behavior may be rigorously

specified using a number of techniques. These specifications may be checked against each other and against axioms of

the base system, to detect unwanted interactions—conflicts. This feature interaction problem has been intensely studied

by the telecommunications industry: as they roll out new features (e.g., call waiting, caller ID) they must ensure that

previously-working features do not break unexpectedly.

Unlike AOP or operating system extension mechanisms, feature specification is is a step removed from the extensible

systems it is used to model. While the underlying system therefore has to contend with granularity, pervasiveness,

integration and other architectural issues, feature specification simply uses a very expressive (and therefore granular)

logic to express whatever properties the underlying system ought to have. Likewise, the integration of multiple feature

specifications mimics whichever integration technique the underlying system uses. Feature specification concerns itself

almost exclusively with the troubleshooting part of extensibility.

An idealized feature specification effort is a collection of abstracted, checkable formal models that represent the

desired behavior of the implemented system. Features can specify fine-grained responses to individual situations, and

may require behavior that spans the entire underlying system. New features can be added to the collection over time,

and the collection can be checked anew to ensure different features do not break each other’s specifications. Interactions

occur when feature specifications require distinct reactions to the same situation; conflicts occur when interactions

were not expected. Conflicts are resolved by prioritizing features (i.e., restricting their scope) or rewriting them; these

resolutions are then reflected in the eventual implemented program. When all features are compatible, all behaviors

demanded of the system hold—a guarantee only as strong as the specification effort.

As should be no surprise, there are a wealth of techniques for defining and modeling features, and defining, detecting
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and resolving conflicts. Keck and Kuehn [74] and Calder et al. [22] give several axes to examine the literature; we

will focus on their causal view, where the goal is to identify a witness to the cause of the interaction, rather than

classifying interactions by when during development they might have been introduced or managed. Additionally,

we will focus solely on design-time specification techniques. Though there are several efforts at run-time feature

specification (e.g. [15, 16, 21]), these feature-managers look very similar to runtime security monitors discussed later.

The essential idea behind feature specification is to describe the behavior over time of the features in the system:

a temporal property is true now if at some time later a sub-property holds. All temporal logics can express several

powerful notions relating to time: e.g., a property p holds always, eventually, until a property q holds, or next time.

Deterministic automata encode (nearly) the same notions via sequences of states. (Some temporal logics can also express

properties concerning nondeterminism; we ignore the details here.) For both mechanisms, all feature specification

work focuses on predicates that will be satisfied infinitely often—temporally finite properties are a special case as they

trivially can be converted to infinite ones. Depending on the problem formulation, conflicts arise either when two

specifications are simultaneously enabled infinitely often (where each feature thinks it has sole control but doesn’t), or

when combining two specifications admits no solutions at all (no system could satisfy both).

2.4 Security monitors

Security monitors are necessary whenever a user (or a runtime system) does not trust another piece of code to run

within some prescribed bounds. Monitors supervise the execution of untrusted code and intervene when necessary to

maintain the desired policy of the system, accepting all program executions the policy deems good and rejecting the rest.

Most practical policies are properties: they judge a program execution in isolation and not relative to other executions.

There are two fundamental kinds of properties: safety properties that ensure “nothing bad ever happens,” and liveness

properties that ensure “something good eventually happens.” Thus, never accessing /etc/passwd is a safety property,

while always closing all open files is a liveness property. Obviously, these two properties can be conjoined to yield a

non-safety, non-liveness property; surprisingly, all reasonable3 properties can be written in this form. [91] All security

monitors can thus be classified by whether they support safety, liveness, or a combination of both property types.

An idealized security monitor enforces a single policy over a given program, by observing and mediating any

security-relevant actions taken by the program. The monitored program is oblivious to the presence of monitors; in

fact this obliviousness ensures that the monitor is not subvertible by the program. Policies are usually written by

users or system administrators, rather than the program’s developers, and their granularity depends on the monitoring

technique used. Multiple policies must be combined before the monitor can enforce the composite; the default is merely

to intersect the policies and reject the program if any monitor rejects it, which means conflicts among policies may

3Formally, a reasonable property is a decidable predicate over program executions that at minimum is true for the empty execution.
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cause fewer programs than expected to be valid. Conflicts among policies are simply mismanaged user expectations;

the monitor will run properly regardless of what cumulative policy it enforces.

The distinctions in security monitor implementations lie mainly along the integration axis: static access controls for

specific policies can be enforced at build time (of either the mainline program or the policies) [11, 41, 68, 69, 115];

execution monitors can supervise the program’s runtime; inlined reference monitors activate (at the latest) at load time.

Among the dynamic approaches, few systems actually consider their extension model in any detail (e.g., [3, 31, 32]):

how might multiple policies compose for a given target? For those that do, designs must consider whether policies apply

only to the mainline program, or whether they layer over each other. (Consider combining a policy limiting memory

usage with one limiting processor time: if for a tiny, fast program the CPU-usage policy took too much memory to

enforce, should the memory-usage policy abort the program due to the CPU policy, or accept the well-behaved mainline

program?) Systems that ignore policy composition implicitly assume that policies inspect only the original program.

As was mentioned earlier, security monitors are one of AOP’s strengths, describing a whole-program property that

should be expressible in a concise and easily-understood way. Unsurprisingly, AOP is one of several implementation

techniques for security monitors [31, 59, 117], though binary rewriting has been explored more thoroughly [12, 25,

46–50]. Additionally, we have seen security monitors appear as access control mechanisms in operating systems

(e.g., [58, 93, 108]). These systems usually enforce only one policy at a time, obviating the need for policy composition.

3 Design considerations

Of the design considerations described above, authorship and integration time tend not to vary widely within each

systems type. However, there is extensive work on formalizing semantics for these areas; we mention several efforts

here.

Aspects: Language design Common wisdom [54] suggests that aspects are most effective when the mainline code

is oblivious to the effects of the aspects, i.e., written without consideration of or accommodation for future aspect

extension, though this is somewhat oversimplified [63], and demands understanding what effects aspects can have

on a program. There is extensive work on formalizing the foundations of aspects [4, 26, 28–30, 36, 40, 63, 64, 70,

90, 110, 113, 123, 126–128]. Several of these try to apply aspects to a typed (e.g. [28, 30, 90]) and/or higher-order

functional [40, 94] setting. The former, while technically demanding, ensures that well-typed aspects cannot cause

well-typed programs to go wrong. The latter adds enormous flexibility by permitting the definition of new forms of

pointcuts as needed, though it makes compiling and optimizing the woven code much harder. There is also work that

examines the semantics of extending one language with multiple aspect mechanisms themselves. [77] This level of

extensibility does not bear on the browser extensibility model, and will not be addressed further here.
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Feature specification: Logic choice As with aspects, nearly every feature specification effort proposes a slightly

different mechanism (among others, [18, 39, 62, 95, 103, 114]), and the subtleties distinguishing one temporal logic

from another are not important here (indeed, no real consensus has been reached; see for instance [1, 2, 43, 80, 124]).

Choosing a particular logic ultimately depends on knowing what conflicts need to be expressed for a given problem.

Security monitors: Complexity Before addressing the pragmatic concerns of how security policies might be speci-

fied, it is necessary to know what policies are expressible and enforceable. One line of research [6, 88, 89, 112, 125]

precisely defined the complexity class of properties enforceable by security automata: if the only remedy available

to a monitor is to terminate the offending program, then such a monitor can enforce precisely the safety policies; if a

monitor can also forge or suppress behavior of the offending program, then a wider class of transaction-like policies are

available. Understanding this class, and under what operations it remains closed, informs how policies may compose.

4 Extension abilities

Though every project tweaks several of our organizing criteria, our discussion below describes efforts most notable for

varying some facet of extension ability. The precise extended resource and set of interactions depends on the particular

approach, so we organize our discussion around the other extension ability axes: defining safe idioms for their usage

(indirectly varying their pervasiveness), exploring composition mechanisms, and refining extension granularity.

4.1 Safe idioms

Safe AOP idioms There are several efforts to define safer idioms of programming with aspects [5, 10, 27, 71, 100, 107].

This line of work seeks to place limits on either pointcuts [5] or advice [27] to restrict their unprincipled tampering with

the mainline program. These two approaches roughly correspond, in other systems settings, to narrowing the client API

and restricting permissions on client actions.

Aldrich [5] takes as his starting point the fragility of pointcuts: by hooking into the control flow of a program, they

necessarily rely on that structure remaining unchanged across versions. Moreover, such deep hooks prevent most local

reasoning about abstraction boundaries. To address this, Aldrich restricts his set of primitive joinpoints to include only

call sites of declarations, rather than of all functions, a distinction that exposes only named, exported functions to

advice, while anonymous lambda expressions and functions hidden behind module boundaries are immune. Within

a module’s definition, all call sites are available as joinpoints; “open modules” can choose to expose some of these

otherwise-hidden joinpoints as part of their signature4, making them targetable by external advice. External calls to

4The use of modules, opaque signatures, and functors derives heavily from ML’s module system, but includes width, depth and transitivity
subtyping rules among signatures, not described here.
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functions in the signature are advisable; intra-modular calls to those functions are not, unless they are exposed through

an explicit addition to the module signature. Doing this makes the exposed joinpoints “a part of the API,” implying they

will be stable in the face of future internal changes. Note that this comes at a price: the module author is no longer

oblivious to the potential for future advice.

This stability is formalized by Aldrich’s treatment of the equivalence of modules, which for our purposes is the

key contribution of this paper. A revision of a module is equivalent to the original when it does not break aspects that

previously worked. More formally, “equivalent functions must not only produce equivalent results given equivalent

arguments, they must also trigger advice on client-accessible labels in the same sequence with the same arguments”—

revisions must preserve the behavior of their declared joinpoints, and the social conventions regarding API change come

into effect. The essence of the open module approach has been adopted, for example, by the Eclipse platform [17],

where plugin authors explicitly declare extension points for future plugins to use. Additionally, extension points must

be deprecated before they are removed or changed. By contrast, in current browser designs, extensions frequently break

between minor version changes of the browser; while effort is made to prevent needless problems, such brittleness is

endemic when extension points are not promised to be stable.

Dantas and Walker [27] take the dual approach, placing restrictions on what advice can do with a source program.

They focus on when is it possible to be certain that aspects do not interfere with the mainline program. So-called

harmless aspects may observe the execution of a program and may influence its termination behavior (e.g., they can

terminate it in response to an error condition) but they cannot influence its computed results; this definition preserves

partial-correctness properties of the mainline program, in the face of changes to the aspects woven into it. To achieve

this noninterference result, the authors define an information flow-like type system that ascribes protection domains to

code. Their goal is an integrity property, so intuitively they ascribe a high-protection domain to the mainline code and

low-protection domains to the aspects; the typing rules then guarantee that non-unit (i.e., information-carrying) values

cannot flow back from the advice to the mainline code.

The key contribution here is their simplification of information-flow to the aspect setting. Harmless aspects are

consumers of the state produced by the mainline program, and the type system enforces the producer/consumer split.

But while their exposition in the paper only concerns separating aspects from mainline code via low- and high-integrity

levels, their framework supports a standard lattice. Such a general stratification could support the layering of aspects,

guaranteeing that for a weaving order compatible with the lattice order, aspects can be protected from each other as

well. The primary drawback to this particular approach is its rejection of any other kind of aspect. Other work [24, 107]

developed a classification of aspects supporting both consumers and the dual producers, as well as independent and

interfering varieties. In the web browser setting, extension authors typically write extensions that interfere with the

mainline browser, though potentially most extensions may not write to or interfere with each other.
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Static OS extensions: Aspects and code management There is a small line of research porting the code-management

facilities of AOP to OS development. In a short position paper, Fiuczynski et al. [55] observe that while several research

OS projects are obviously extensions to some mainline OS, they are equally well aspects—each one a single concern

cutting across the codebase to implement a feature. Indeed, matching our taxonomy, these extensions are build-time

integrated, pervasive and fine-grained, and provide new functionality and new policies. Like all aspects, they extend the

control flow and state of the mainline kernel. However, the authors lament that the current notation of these extensions

as patch sets—collections of the syntactic differences between the mainline and the extension—is inadequate. These

extensions are semantic units, and therefore ought to be expressed explicitly in an AOP language. Further, patches

are notoriously brittle to tiny perturbations in the mainline code, and a more semantics-driven weaving mechanism

(explored also in [99]) would ease extension management considerably. (In this spirit, Lohmann et al. [92] built an

aspect-oriented embedded OS, and described their successes implementing various memory protection schemes as

aspects—unsurprisingly, the AOP approach permitted more flexibility than patch-sets would have.)

In follow-up work, Reynolds et al. [106] examine to what extent the Linux kernel can be “unwoven” into separate

aspects, and how amenable it is to extension by advice. They note that coding conventions weakly approximate aspects,

as preprocessor directives are used to separate code pertaining to only one use-case, and optimistically suggest that an

AOP rephrasing of the code is feasible. As an added benefit, by making these aspects explicit, the analytical tools of

AOP (some of which we described earlier) can be applied to kernel maintenance issues, including easing the brittleness

of applying extensions and identifying when two extensions might cause conflicting changes to the mainline code.

4.2 Experiments in composition

Naccio: Safety properties with minimal composability Evans and Twyman [50] focus on code safety properties,

which ensure that no “bad thing” can occur in a program execution. They first compile safety properties into a policy

description, then use program transformation to weave that policy into a target program: they produce a library that

wraps the security-relevant system calls, and rewrite all existing calls to instead call the library. Safety policies are

straightforward to combine, since they are closed under conjunction. If two policies each prevent something bad from

occurring, the conjunction of those policies naturally would prevent both bad things from occurring. If all policies are

safety properties, then there can be no conflicts. As described, Naccio’s policies are somewhat limited to use, since

reasonable policies may wish to prohibit bad things except in special circumstances; Naccio permits these “weakened”

security policies as well [51]. These weakened policies provide more flexibility without creating new conflict types.

Polymer: Composable, non-safety properties Bauer et al. [12] provide a much richer environment for defining

security policies. Most notably, they use a more expressive mechanism for defining policies, and they give the policy

author much greater control over policy composition. We address each in turn.
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Their formalism is based upon edit automata [88, 89, 91], which can delay, suppress or forge security-relevant

actions taken by the monitored program. As noted earlier, this permits a much broader class of enforceable “transaction-

like” policies. In essence, the monitor can delay the beginnings of a transaction (e.g., logging in to an ATM and asking

for money) until a crucial commit action occurs (recording the withdrawal), at which point the monitor can replay the

beginning of the transaction and insert the remaining events needed to complete it (logging out), in one atomic action.

In this way, the observed behavior of the program jumps from one valid state to another, without the possibility of

crashing in a visibly invalid state. Such renewal properties strictly subsume the safety properties explored in Naccio.

As noted by the authors [91, section 5], it is not always reasonable to assume the monitor can delay, suppress or

forge arbitrary security-related actions. For instance, if a policy requires that programs close all opened files, it may not

be possible to delay the open event until the matching close occurs: any intervening I/O operations would block or

fail without a valid filehandle. Dually, the monitor cannot forge events that require secrets or time-sensitive responses.

These and other obstacles make the edit automata model fairly subtle to implement properly.

However, edit automata enjoy clean composition semantics, which are reflected in the design of Polymer. Instead

of the curt actions taken by an automaton (insert, replace, remove, halt), Polymer lets policies make suggestions, and

gives authors several combinators with which to merge suggestions: two policies may be intersected, one may take

precedence over the other, one may modify the other’s suggestion, etc. Thus, Naccio’s weakened security policies,

which had to be hard-coded into the system, are instead available in Polymer naturally as one policy overrules the

other’s halt suggestion. Put another way, Polymer supports higher-order policies, a flexibility few other systems match.

This flexibility comes at a price: in our model, we note that multiple policies cannot be written modularly in their

system without someone eventually manually composing them. Additionally, their language does not expose any

conflict checking (i.e., if two policies both address the same situation)—though it is possible that the underlying edit

automata may admit an intersection test answering exactly this question. With careful engineering, this may work

well in the browser space, as users may reasonably want different means of composing the same sets of extensions;

Polymer’s approach almost requires the user’s input in this case.

4.3 Experiments in granularity

The Exokernel approach: Composable, pervasive but coarse In some sense, any time a computer spends “running

the operating system” is time better spent running user programs, and therefore the design of the operating system

should optimize for unobtrusiveness and speed. Moreover, since no operating system can suffice for all users’ needs,

it would be sheer hubris to select some subset of needs to be addressed and declare the result sufficient. Instead, the

appropriate design should therefore be to address no needs beyond multiplexing the hardware resources of the system

to all users. This rather extreme rationale motivates the Exokernel system.
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Exokernel defines an operating system as “any piece of software that the application cannot either change or

avoid.” It views a kernel as a meticulous switchboard operator, whose sole function is to safely multiplex physical

resources [44, 45]. Everything else is policy—and therefore relegated to an extension: how to use the compute, storage

or communications resources is left to a “library OS”, on a per-application basis, that defines the semantics connecting

the low-level hardware and the application needs. Thus a databaseOS could implement a completely customized

file system, while a webOS could implement a highly-tuned network interface [56]. If necessary, a common libOS

could be implemented to provide emulation of a more traditional operating system [72]. The extension model here is

application-centric and very pervasive, but not very granular: a user-mode extension can do anything it wants, using a

nearly-native interface to the hardware of the system, but must reimplement an entire libOS to do so. The only conflicts

relevant to an exokernel are when a libOS or application hoards resources the system as a whole requires for some other

purpose. To that end, an exokernel defines a secure binding, a combination of a physical resource name (when possible)

and capabilities granting privileges over that resource to the requesting process. These capabilities are enforced by

hardware as often as possible, for sheer speed, and in software when unavoidable.

At first impression, the exokernel approach seems a poor fit for browser extensibility. Representing an extreme

design point, an exokernel aims to let applications manage and define the semantics of their required resources: speed is

a primary concern. But the resources available in a browser, such as incoming web content, profile data, or the user

interface, are qualitatively different than those in an OS: these are structured, semantics-laden resources, and are the

output of substantial processing effort. Skewing the system design to allow rapid access to slow resources does not

address the performance bottlenecks of the system. Speed is not the primary concern, and browser extensions therefore

need to be examined in a much more full-featured base environment.

On the other hand, if used correctly exokernels can provide robustness guarantees that current browsers cannot

match. If the minimal kernel contains just enough power to draw the window containing content, and provided a narrow

interface to talk to a renderer process, the result is fairly close to Chrome’s architecture [104]. Alternatively, if the

kernel provided most of the rendering logic, but provided a narrow interface for extensions to masquerade as HTTP

content providers, the result is the Xax approach [35]. Pushing Chrome’s approach to the extreme permits arbitrary

content-renderers to be fitted into the browser’s UI: there would be no fundamental distinction between rendering

HTML and rendering Flash, for instance. These approach does make the browser dramatically more flexible, allowing

increased experimentation with new scripting languages or web standards. But at this level a browser ceases being a

“browser” and is simply an extensible user program that can display networked information. Additionally, while these

extensions expand the set of content viewable within the browser, they do not extend the browser itself.

The SPIN approach: fine-grained and wide On one level, the SPIN project can be seen as an experiment in

mechanisms, showing that by requiring extensions to be written in a certain way, one could build a system with easier-
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to-use base abstractions, comparable performance, and stronger security guarantees than an exokernel approach [13].

On another level, SPIN is very similar to exokernel, “one step up”: providing as part of its ABI some abstractions above

the hardware level, but still permitting extensive customization. Philosophically, SPIN adopts the more traditional

model of actual kernel-mode extensions, which yields a non-degenerate kernel extension model.

The fundamental choice in SPIN, from which the rest of its architecture falls out as a consequence, is the choice of

Modula-3 as the only supported language for writing kernel extensions. Modula-3 is an object-oriented language that has

support for modules with opaque types: in a type-safe language, values of an opaque type may be used as capabilities,

and SPIN exploits this for its security mechanism. Unlike prior capability systems that required complex data structures

and capability checking (e.g., Hydra [129]), SPIN represents capabilities as bare pointers and capability checking

degenerates to pointer dereference. A pointer of type Console.T, for instance, permits the holder of that pointer to do

nothing beyond calling methods expecting a Console.T: this is a special case of a more general parametricity theorem

that in essence states that type-safe code cannot violate the encapsulation of opaque types. SPIN therefore discharges

most safety checks at compile or link time, rather than requiring runtime hardware or software support5.

SPIN defines higher-level abstractions than exokernel does: for instance, it defines the rudiments of a thread library

and provides a default global scheduler, though it does not impose a specific threading discipline to applications6. It also

chooses not to expose physical names for memory to extensions, but rather capabilities and virtual addresses; extensions

may implement memory management policies manipulating these abstractions (for instance, [109]). To surface these

interfaces to extensions, SPIN defines its extension model in terms of events and event handlers. Event handlers are

merely procedures of a given interface; raising an event is essentially just a procedure call. SPIN permits multiple

extensions to register handlers for an event7. The ordering of such handlers is explicitly undefined, so extensions cannot

make assumptions about the presence of other extensions or of their relative ordering. For even finer granularity than

handling every event of a given type, extensions may provide guards that pass along only those events they deem

relevant. In short, the SPIN model is less pervasive than that of Exokernel but of much finer granularity.

SPIN defines no explicit notion of conflict, though operationally, conflicts among extensions are simply those

problems caught by the compiler and linker. But other problems are left unspecified: extensions may remove other

extensions’ handlers for a given event, and an event’s dispatcher returns the value of the last-run handler, which is

ill-specified (as handlers are unordered). However, if extensions are well-behaved8, SPIN’s semantics are well-defined:

faulty extensions used by one application will not cause another application (or its extensions) to malfunction.

The SPIN model seems a closer fit to the web browser space than Exokernel’s does. The ability to define customized

protection domains is useful, especially in an environment where we do not yet know the best delineations of those

5One runtime precaution is needed: since user code is type-unsafe, raw pointers are wrapped as externalized references before escaping the kernel.
6At least in user-mode; when an application thread makes a system call, the kernel takes control of its scheduling until the call completes.
7In general, with multiple handlers, event dispatch bears an overhead linear in the size of handlers and guards.
8Which is rather vague; extensions that are application-specific or disjoint suffice.
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boundaries [104, 105]. Additionally, since web browsers currently distribute extensions in source-code form, using a

language mechanism to reduce execution overhead is a timely and practical approach. These language-level benefits

shine through even more clearly when we consider the Singularity architecture.

The Singularity approach: fine-grained, not too wide or narrow Singularity is an ongoing research effort in a

clean-slate redesign of an operating system [14, 34, 65–67, 118]. It is predicated on three primary techniques: the

exclusive use of type-safe languages, a first-class notion of an application, and a carefully managed channel abstraction

for interprocess communication. Together, these techniques permit a robust extensibility model: both user-mode

extensions (applications) and kernel-mode extensions (drivers) play by the same rules [67].

An extension in Singularity is defined by a manifest, declaring what resources it must be granted, what resources

it would like to use, and what channels it exports for interaction. (In fact, the only distinctions between applications

and drivers are merely the claim of belonging to the 〈driverCategory/〉 of extensions, and the dependency on raw

hardware resources.) Code is annotated with pre- and post-conditions using Spec# [9], thereby specifying requirements

down to the individual procedure level. Channels are essentially two-way pipes that are annotated with state-based

contract types, which encode the expected message protocol for the channel. These declarations and types are more

than documentation: they are checked by the kernel repeatedly, at compile time, at install time, and at load time9. These

repeated checks ensure that drivers that cannot run properly do not compile, that drivers that cannot ever successfully

load on a particular machine are never installed, and that drivers that cannot run in the current machine state are never

loaded. Singularity thereby provides feedback early and often, explaining the cause of an extension failure before it

causes a crash. Essentially, the manifest becomes a model for the extension, making it a “self-describing artifact” [118].

For all that it formalizes, Singularity does not explicitly define the notions of extension compatibility or conflict.

From the system invariants, compatibility among extensions amounts to requiring only resources already available from

the system and existing extensions, and using those resources in type-safe ways. All extensions in Singularity are sealed,

prohibiting runtime code generation or injection of data into a running process. Therefore all communication between

processes takes place via channels. Forcing this communication pattern ensures that the temporal guarantees from the

types apply in all circumstances. Thus type-safety here is a stronger claim than it is in SPIN. Note that while this does

not prevent logic bugs from making extensions handle inputs incorrectly, it does ensure extensions never have to handle

incorrect inputs. Dually, we can infer the kinds of conflicts avoided by the system: requiring unavailable resources,

sending incorrect inputs to another extension, or breaking abstraction and directly modifying another extension’s data.

Relative to the other operating systems discussed above, Singularity permits fewer lowest-level extensions than

Exokernel or SPIN allow. For example, Singularity provides thread-manipulation and exchange-heap functions as

part of the kernel ABI [66]; Exokernel permits a libOS to define its own threading model [8], while SPIN permits
9These declarations imply a need for some form of side-by-side versioning, to ensure that older drivers still have the expected versions of

dependencies and prevent “DLL Hell”. This is merely an engineering problem; the .NET framework addresses this issue.
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extensible memory management [13]. This is mostly because the projects goals are orthogonal—Singularity aims first

to improve the dependability and security of operating systems, and this imposes certain design choices that require a

more extensive kernel. This decision also simplifies the Sing# type system to ignore such low-level details.

As alluded to when discussing SPIN, language-level techniques seem particularly apropos for the browser space. The

choice of manifest-based extensions is particularly appropriate: Firefox’s extensions already use a manifest to describe

some (minimal) information about themselves, and enhancing these to declare needed resources, à la Singularity, is a

natural step. Further, Singularity’s type system encodes communication patterns of the extension; currently such patterns

in Firefox are merely unenforced documentation. Additionally, Singularity demonstrates a decent compromise between

lowest-level extensibility and a strong, expressive type system: by analogy, a browser has no need for replaceable

HTML rendering engines. The largest remaining challenge is the lack of a convenient but type-safe API for accessing

web pages’ contents: similarly to Singularity’s drivers and applications, extensions and web pages are defined almost

identically, differing only in what resources they are initially allowed to access.

5 Troubleshooting techniques

Conflict detection among aspects Another broad trend in AOP research focuses on giving developers tools to detect

conflicts among aspects or to manually manage their composition [10, 37, 38, 73, 78, 79, 107]. Aspects may conflict

with each other in two ways: directly, by overlaying the same joinpoint, or indirectly, by mutating shared state in ways

the other extension does not expect. (In AspectJ, advice is arbitrary Java code that can be granted read/write access to

the pointcut’s parameters (e.g., function arguments), potentially even to private members of classes. Aspects can change

the dispatching behavior of a program by adding new interface implementations to classes or even changing the class

hierarchy itself [61, 83, 120, 121].) Of the two, indirect conflict will persist independently of the weaving order (two

aspects may be disjoint in their pointcuts, yet still overlap in their effects on the program state), and is therefore a coding

flaw rather than an aspect-related problem. Therefore, research has focused on capturing weaving-related conflicts.

Douence et al. [37, 38] have developed a framework for modeling aspects whose pointcuts change over the course

of the program, and which can carry runtime-derived information through their evolution. They model aspects via

finite-state machines, where transitions between states correspond to triggering of pointcuts and associated advice.

A global program monitor is responsible for weaving the advice into the mainline and updating the aspects’ state as

the program runs. The expressiveness of their pointcut language is carefully engineered to keep certain intersection

problems decidable; as one consequence, their system cannot express AspectJ’s cflow pointcut for recursive functions.

Practically all the main ideas of these papers are applicable to the web setting; we focus here on just two. First,

they permit aspects to “change interest” and focus on different pointcuts at different times, in a history-dependent way.

This is far more general than AspectJ’s approach, or even the stack-based inspection examined before, and it remains
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orthogonal to the safe-idiom techniques described above. Moreover, in the web setting, the behavior of extensions

depends heavily on user interaction, so this facility is a natural fit. Second, the authors define notions of strong and

weak independence: whether two aspects are always compatible with each other, or compatible within the confines of a

specific mainline program. (They also note that neither independence notion is necessary for aspects to be compatible;

commutativity is sufficient as well.) Further, they go on to describe an intermediate independence relation, where aspects

may declare a minimal set of requirements on the base program; the aspects will be compatible with any mainline

program satisfying those requirements. We will see later that this directly applies to browser extensions.

Termination conditions Felty and Namjoshi [53] adopt the use of temporal logic for specifying both the system and

the features. (Since temporal logic will eventually be necessary, they view the use of additional mechanisms, such as

state machines, as needless additional sources of error.) Specifications in their system are divided into system axioms

and feature properties. Their system is not modular: adding new features may require adding to or changing the set of

system axioms. (They give the example of adding a new type of call resolution; existing axioms must be enriched to

reason about this new status.) Feature properties as presented here are engineered to be intuitive to specify.

Recall that a specification details the behavior over time of a feature: once a feature has reached a given state (a

precondition), it will exhibit a certain property until no longer applicable (a postcondition). Felty and Namjoshi give an

intuitive internal structure to pre- and post-conditions. Preconditions are modeled as a sequence of events, between

which a sequence of properties hold. Postconditions specify what behavior persists as a consequence, either until some

normal resolution or until an exception discharges the situation. For example, an informal specification of patients

visiting a doctor might say “the patient must arrive at the office, and stay there until the receptionist greets him; once

greeted, the doctor sees the patient until finished or another emergency discharges the patient early.” This rule schema is

simple but redundant: in their case study, the authors never used multiple events in their preconditions, and instead

encoded the ongoing properties as persistent postconditions of multiple rules. Additionally, distinguishing the release

and the discharge conditions adds no expressive power to the rules, but does simplify their definition of conflict.

A conflict occurs when in every execution where two features are enabled simultaneously infinitely often, the

system axioms hold, and the features are not discharged, somehow a feature property does not hold. When conflicts

occur, the authors either strengthen the precondition of one feature (making it apply less often) or weaken the discharge

postcondition (making it apply more often), so as to prioritize the other feature. This is again not modular, as adding a

feature requires editing the properties of the others to resolve conflicts. For browser extensions, the lack of modularity

is problematic. However, this clean skeleton for specifying a weakening of one rule with respect to another will be very

useful for resolving feature conflicts and, using the insights we explore below, may be achievable in a modular way.

Modular checking Li et al. [84, 85] propose a modular approach to feature checking. They work with open features,
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which depend upon variables or predicates not under the control of the feature. Their key approach (shared by [20, 23])

is to interpret temporal logic formulas using a three-valued logic: variables may be unknown, indicating the lack of

knowledge that one feature has about another’s behavior. When validating feature composition, modularly guess the

values for these unknown predicates. Pessimistically, if everything unknown is assumed false, and the feature still

validates, then the feature will always validate successfully. Conversely, if everything unknown is assumed true and

the feature fails to validate, then the feature will never validate and there is an intrinsic conflict. Otherwise, manual

intervention is needed to resolve possible conflicts, by modifying the specifications or by manually composing features.

To achieve modular checking, i.e., validation of a single open feature without knowing the precise set of other

features being composed into the system, the authors require that specifications not be written obliviously: if a given

property p plausibly may be reduced (resp. expanded) in scope by later features, it must be specified proactively as

p ∧ cp (resp. p ∨ cp), where cp is a symbol of unknown value. Moreover, they split the validation process into two:

first, they verify that the feature’s specifications hold in the current product. The same technique as above broadly

applies: optimistically set all cp that reduce scope, and pessimistically set the others, and see if any verifications fail10.

Second, they ensure that any changes the new feature makes to the product preserve existing properties required by

prior features. This is their modularity result: once composed and verified, it becomes later features’ responsibilities to

ensure they do not invalidate prior features. In short, while their modular checking does model only one feature at a

time, it still requires the presence of the base program and hence is not as modular as might be desired.

The essential points for our purposes are the elaboration on the idea of cleanly weakening of one feature with respect

to another from Felty and Namjoshi [53], and identifying a plausible way to modularly specify and reason about open

features. Moreover, their modularity result depends heavily on “unknown” values and on the cooperation of specification

authors—oblivious properties cannot be modularly checked. Additionally, as presented, the authors acknowledge that

they assume a linear ordering of feature composition, but state that the work easily extends to composing features in the

absence of a base product. If so, the essence of this approach may be very useful for browser extensions, indicating

what cooperation levels may be necessary for independent extension authors to produce easily composable extensions.

Reified features Plath and Ryan [102] propose making features an explicit construct of the language used to verify

feature interactions. They also use a hybrid approach in which the system is specified as a state machine while the

requirements over it are specified as temporal formulas. Together, these essentially form a feature aspect: a reified,

syntactic component that may specify the presence of required data, functionality or other features; may introduce new

data, functionality, or specifications; and may change the behavior of existing data. Like aspect weaving, this last step is

inherently not modular. They identify four types of conflict between two extensions, reminiscent of aspect conflicts: a

feature composed later (resp. earlier) breaks one composed earlier (resp. later); both features together break a property

10The actual algorithm is much subtler for improved precision; the gist shown here omits the requisite but confusing bookkeeping.
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satisfied by the base system and either feature alone; finally, the two features do not commute.

Firefox extensions are already syntactically reified, declarative objects. (They are not quite first-class in the language

sense, as they cannot be assigned as values.) Extending them to include verification information would be natural. The

exact technical assumptions made in this work may be too expensive: the authors admit that even in their case study

with a small number of simple features, the state-space explosion quickly made the verification intractable. Perhaps

surprisingly, they argue for relative nonchalance over conflicts that break the original system (after all, extensions are

intended to change system behavior). It is unclear whether this argument is warranted for browsers: most browser

extensions do not supplant core functionality (unlike some telephony features examined here), but merely augment it.

6 Extensibility in Web Browsers

A browser is a multi-layered architecture: in its core are subsystems for rendering HTML and CSS, running Javascript,

using the network and disk, and applying security policies to downloaded content. Beside these modules, nearly every

browser supports a binary plugin API through which plugins can add support for new media formats and new interface

elements to trigger their functionality. These plugins run in the browser process, and are unconstrained in their behavior

beyond implementing a few key interfaces. They are analogous to kernel drivers in commodity OS designs: like drivers,

a poorly-written plugin can destabilize the entire browser. In most browsers, only one plugin can be active for a given

extension point (e.g., a media file type) at a given time, which neatly avoids any conflicts between plugins.

Like user-mode applications in an OS, web pages from different origins are isolated from one another. This

level supports two closely related kinds of extensions: bookmarklets and user scripts. A bookmarklet is a bookmark

containing a snippet of script that, when selected by a user, runs in the context of the current page. User scripts do the

same, but are activated automatically upon navigating to a page that the script selects as relevant. These extensions are

analogous to, and as powerful as, remote thread injection in operating systems. If multiple bookmarklets or user scripts

run on a page, they may conflict with one another and break that web page, but cannot interact with or do any harm to

the browser as a whole (assuming proper page isolation [104]). All modern browsers support bookmarklets; nearly all

have support for user scripts either built into the browser or available as a plugin.

Between these two levels of the browser sits a third, which so far has been explored only in the Firefox browser11.

Firefox defines most of the functionality and appearance of its user interface using XUL (a markup language much

like HTML) and CSS styling, complete with a DOM (the document object model, which makes available to scripts

the structure and behaviors of the currently displayed document), and additionally exposes JS bindings to internal

functionality. In other words, UI and functionality in Firefox can be programmed just like web pages can, except

11Technically, Firefox also supports a fourth layer below all of these, which admits extensions to the Gecko runtime (e.g. debugging extensions
such as Chromebug). We view this as a technical artifact, and not a necessary part of an extensible browser’s design.
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more powerfully. These languages are exposed to extensions, giving them the same flexibility as Firefox itself uses.

Extensions run with the same privileges as the browser kernel (for instance, free of the same-origin policy) and can add,

remove or modify UI and functionality. This type of extensibility has no exact analogue in operating systems.

For comparison, besides binary plugins, Internet Explorer 8 now supports two new forms of extension, Web Slices

and Accelerators [76, 96, 97], which are quicker ways of interacting with web content. Analogues of both abilities have

been implemented as Firefox extensions [52, 57, 98]. Both Accelerators and Web Slices offer limited extensibility:

authors can define short XML files which add support for a new accelerator or slice; these extensions cannot interact

with each other at all. Likewise, Opera has deliberately chosen not to include extension mechanisms in its product

beyond binary plugins, opting instead to hard-code a wide variety of additional functionality into the browser itself [119].

They do support widgets, which are web-like bundles of HTML, CSS and JS code that run “on the desktop” outside the

visual confines of a browser window. There is no meaningful notion of conflict between widgets: while they can read

files written by other widgets, this is not inherently a widget-level conflict. [101, and articles].

Since Firefox extensions are intentionally programmed similarly to web pages, one might wonder whether web

programming suffers similar extensibility conflicts. Certainly, heavily-scripted pages cannot simply be excerpted into

other pages and be expected to work properly—the scripts and styles from the old page will conflict with the new one.

Similarly, multiple JS libraries (such as jQuery and Dojo) cannot easily be combined on a single page any more than

can, say, GTK and Qt in a desktop application. The closest web-page analogue to a browser with multiple extensions is

a mashup: a web site that aggregates data from multiple sites to display something new. Three differences make this a

less exciting challenge: first, a mashup author is a developer (unlike a browser user) and so has the skill to refine the

mashup until it works. Second, mashups do not weave multiple sites onto each other (as extensions weave into the

browser), but rather use scripts to extract the content from multiple sites and produce the mashup. This has led to the

development of mashup editors such as Yahoo! Pipes and Open Mashups Studio; no such help exists for extension

authors. Finally, unlike scripted web pages, Firefox extensions only target a single browser.

6.1 Firefox’s extension model

In more detail, Firefox extensions consist of three primary pieces: a set of XUL overlays that define new UI content to

be appended to existing UI that itself is defined in XUL, a set of JS files that define the functionality of the extension,

and a simple manifest that declares some minimal metadata about the extension to Firefox. XUL, like HTML, exposes a

DOM to scripts that manipulate it. Extensions can therefore define new UI with as rich capabilities as Firefox itself, and

their scripts can manipulate both new and existing content. Additionally, Firefox exports a very wide API for internal

functionality, which extensions can use to modify the browser’s behavior.

Firefox extensions lie in a region of the design space distinct from the previous domains we have examined. First,
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and perhaps obviously, Firefox extensions must define both functionality and user interfaces; all the examples we

have seen so far have dealt primarily with functionality12. As such we have to be careful to distinguish UI-specific

architectural choices from functionality ones, especially when discussing abilities of and conflicts among extensions.

Focusing first on design considerations, Firefox’s extension mechanisms have been used to define new policies and

new functionality for the browser. These extensions have been written primarily by non-Firefox developers, unlike most

of the domains studied above where extension authors typically were also the mainline code’s authors. Extension authors

are given an erratic level of cooperation from Firefox, with strong support for UI extension and weaker cooperation for

code extension. The UI extension mechanism only permits XUL elements with identifiers to be extended: on the one

hand, this (like Aldritch’s open modules) requires pervasive cooperation in Firefox to permit arbitrary extension; on

the other, giving identifiers to (nearly all) page elements is standard practice in HTML and so is no onerous burden.

Firefox’s code extension, on the other hand, offers no cooperation to the extension author; indeed, because JS is so

mutable at runtime, none is needed. UI extensions are integrated into Firefox at load-time using a simplified analogue

of aspect weaving. Code extensions, however, may be integrated at any point after loading, since JS makes no essential

distinction between load-time and runtime. In short, from design considerations alone, Firefox’s extensions are closest

to OS extensions in terms of authorship, integration time and cooperation from the mainline system.

Turning to extension abilities, Firefox extensions target a rich variety of resources: UI, code, web content, profile

settings, and local storage, for example. All of these are accessed either declaratively (for UI) or via code (everything

else). UI declarations are strictly additive, and apply on a per-element basis, which is the inherent granularity of the

DOM. Their pervasiveness depends on how much of the existing UI has been annotated with identifiers; in practice, this

is very pervasive. Code extensions are likewise granular but far more pervasive: the DOM permits scripts to remove and

modify existing content (as well as dynamically add new elements), and JS permits the redefinition of existing code;

together these permit scripts to modify almost anything. Consequently, extension interactions are difficult to describe.

Firefox permits users to install multiple extensions in a given profile simultaneously; extensions load in some

unspecified order as Firefox loads. Interactions between extensions can occur via any of the resources mentioned above.

Extensions may modify each other’s UI, dynamically change each other’s code, or interfere with each other’s state.

(These last two are particularly troublesome: since JS has no namespace mechanism for modularity, poorly-written

extensions pollute the global namespace, which can silently redefine code added by other extensions.) Some of these

interactions are intentional: for instance, TabMix Plus and Session Manager both implement saving and restoring of

browser sessions (open windows and tabs), and the former changes both extensions’ UI to enable exactly one or the

other’s ability, as both managers running simultaneously would break. However, many extensions have inadvertent

conflicts: FoxyTunes inserts a small Flash object to play M P 3 files directly from the browser, while FlashBlock

eponymously disables this functionality. Other, more subtle interactions are possible, artifacts due to quirks in Firefox’s

12Feature specification comes closest, albeit indirectly, to dealing with user interaction.
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architecture. Thus from an extension abilities viewpoint, Firefox extensions are most like unrestrained aspects.

Firefox only implements very rudimentary conflict checking: an extension’s manifest can declare with which

versions of Firefox it is compatible, and which other extensions it depends upon for successful execution; these checks

can be enforced at extension installation and load time. However, all interactions over UI, code or execution state are not

detectable until runtime, by users who likely cannot debug problems they encounter. From a troubleshooting perspective,

Firefox extensions ought to be designed slightly closer to static feature specification than runtime monitoring.

6.2 Improving the extension model

Firefox’s extension model is not ideal, but it is far more capable than any other current browser extension model.

Firefox’s glaring failing is in conflict detection. Here we suggest an idealized extension model, and relate the techniques

explored earlier to this new domain. Because extensions by nature split into functionality and interface, it is natural that

the techniques to resolve UI conflicts be different than those tailored for functionality.

An idealized extensible browser permits extensions to modify the state, functionality, and appearance of the browser

in a fine-grained, pervasive manner. Extensions are written by amateur developers external to the browser, and should

require minimal cooperation from the browser to run successfully. Interactions between extensions are possible:

extensions may communicate, may adapt to each other’s presence, and may modify the mainline browser in benign

ways. Conflicts may occur when extensions try to modify each other or the mainline browser in incompatible ways, by

changing UI or invariants upon which the other relies. It is not acceptable that extension conflicts first be found by

end-users at runtime, so conflicts must be detectable by load-time and preferably at install time. Extensions must have a

mechanism for controlling their composition to resolve conflicts, either automatically or through user intervention.

Considering first UI conflicts, we may reasonably expect feature specification techniques to be readily applicable.

Indeed, viewing sequences of user interaction as features, feature specification readily checks that patterns of interaction

remain feasible despite the addition of new features. (For instance, a feature could declare that “from any state, the Save

functionality is available” and “once the Save menu item or Save toolbar button is selected, the page will eventually be

saved.” Extensions may then remove either the toolbar or the menu and not violate the existing feature, but removing

both would result in conflict.) Ideally, we would like conflict checking to be as efficient as possible (since users are

notoriously impatient), which argues for modular verification of extensions. Unfortunately, modularity is in direct

tension with our desire for minimal cooperation: while Li et al. [84, 85] enable modular checking of features compared

to Felty and Namjoshi [53], it comes at the cost of explicitly specifying interaction points between features. Depending

on how this is presented to the developer, this again may not be too onerous or restrictive a requirement. Additionally,

Douence et al. [37] distinguish the notions of strong and weak independence. Adapting this notion to UI specification,

we see that the more extensions can be certified as strongly independent (i.e., never in conflict regardless of other
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extensions), the more modularly they can be verified for other feature interactions. In fact, in preliminary work we have

modeled XUL overlays as document transformers; weak and strong independence fell out naturally from our definitions.

Turning to address conflicts from code as well, we see the full flexibility of Javascript is a liability, and some

more constrained language is necessary to prevent conflicts here. This was the approach taken by SPIN [13] and

Singularity [34], which both abandoned C/C++ for a strongly typed extension language that permitted compile-time

assurances of correctness. The danger with static type systems is they are specialized to enforce a particular safety

property of the code; as we have seen, not all policies are safety policies, and policies may override each other when

composed. However as Singularity has shown, a strong type system may be sufficient (but not necessary) to enforce an

over-approximation of desired properties, provided one uses a narrow interface with just the right abstractions. The

engineering challenge in adapting Singularity’s approach will be to apply a typing discipline to the DOM [122] and

extend it to a suitably constrained interface to the browser’s runtime services.

It is likely that many browser extensions cannot be considered “harmless,” as they deliberately change behaviors

of the browser. However, perhaps a weaker noninterference result holds: if the browser declares certain behaviors as

extensible (à la open modules), harmless extensions merely must not modify anything else. If not: Javascript routinely

employs event handlers that are dynamically added and removed; perhaps these patterns can be expressed using the

dynamic pointcuts of Douence et al. [37, 38], or even more powerfully using Felty and Namjoshi’s intuitive specification

language [53]? Then the absence of conflicts using these systems would imply extension compatibility.

Not all conflicts may be resolvable by load-time; sometimes users may wish to choose to dynamically prioritize

one extension over another. Here security monitors’ runtime techniques become relevant. Assuming we can present

the user with a sufficient approximation of all conflicts between two extensions, the user can define a policy resolving

the conflicts. When more than two extensions conflict, we may naturally need to compose policies. Moreover, these

need not be simple security policies: it is too limiting to ensure only that no bad thing occurs (e.g., two extensions

activate simultaneously); we may want to ensure that eventually something good occurs (e.g., both extensions run in a

well-defined order). For appropriately expressive sets of “security-relevant” events, this is precisely Polymer’s aim [12].

7 Conclusion

This report has examined the extensibility problem: how systems should be designed to support extensions, and how we

can reason about conflicts between them. Our target system has been the relatively new extensible web browser, and

we have explored extensibility efforts in aspect-oriented programming, operating systems, feature specification and

security monitors in order to better understand the browser. We developed a classification scheme through which we

have defined the extensibility models for each of these systems. Finally, we have examined several specific techniques

from these domains, and explored how they might be used to design a better extensibility model for a web browser.
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