Weaving Code Extensions into JavaScript

Benjamin Lerner, Herman Venter & Dan Grossman
University of Washington MSR Redmond University of Washington

Customizing the web: apps and browsers

“I get a lot of plain-text email, and “Firefox’s new-tab screen is blank,

Browsers and web apps get modi- = | Nl |
wish Gmail would format it nicer” so let’s make it more useful”

fied in unexpected ways by third

| 8 i Tont - bfarri Rerroer gl - Mol Firwli =

W ——

B Gse o= Hgery [oclewls ook e

bs Sescer iWeb oo v By e S rwen gl e | Settigs | Help | Semmd =

Sk
B i i ha |

par ties: 400 million Fir efox in- m-~-- — e :: E—

Ll 3% PM (@ renuies a0

This text should be _underlined_

stallations use add-ons daily. Yet RS e e

the extension mechanisms are

This text should be underlined
This text should be italic
This text should be bold

brittle and semantically broken!

 Boply = Fomwan

Replacing idioms with aspects

Create a new function onLoad(evt) { window.alert("hello"); }
closure and bind A closure’s Pointcut: Whgn to \
0 emﬁ&qme toString() returns window.addEventListener("load", onLoad, ...); fun the advice
eval("foo = " + its source code at pointcut(callee(window.alert) &&
f00.toString() eval("onLoad = " + within(onLoad))
.replace("some code", onLoad.toString.replace("hello", before(msg)—t— ' Arguments to function
"modified COdE"))‘ "hi ther‘e")); msg = "hj_Ather\e"; 1areadviceparameters
. } Advice: what new code
String-level search > ...loading the page... to run at each pointcut
& replace > Alert: “hello” — wrong answer!
“Monkey-patching” breaks aliases, scoping, and possibly introduces syntax errors The same patch with aspects is shorter, cleaner,

faster, and more correct

Implementation & Effectiveness

10% of top 350 Firefox extensions use monkey-
patches. Examining 20 of those in detail:

« 99 KLOC total .
e 2.7 KLOC patches Lo Wrapping pays for
. We can easily express Nij) extra function calls
621/636 patches NS /{ Monkey-patching pays
' Re@ammg L5 are either — {‘/41 Advice is 30% faster | Dynamic advice weav-
easily fixable or are bugs q\r N féj than baseline! ing works particularly
To oo uwo awo o oo well with JIT compila-

tion: just delete the cached function and re-JIT.
And with very minimal runtime support, we get
nearly 30% performance gains over pure JS, and
60—70% improvements over common idioms!

