
Weaving Code Extensions into JavaScript
Benjamin Lerner, Herman Venter & Dan Grossman

MSR Redmond University of WashingtonUniversity of Washington

“Monkey-patching” breaks aliases, scoping, and possibly introduces syntax errors

Customizing the web: apps and browsers
“I get a lot of plain-text email, and
wish Gmail would format it nicer”

“Firefox’s new-tab screen is blank,
so let’s make it more useful”

Replacing idioms with aspects

Browsers and web apps get modi-
�ed in unexpected ways by third
parties: 400 million Firefox in-
stallations use add-ons daily. Yet
the extension mechanisms are
bri�le and semantically broken!

Implementation & E�ectiveness

function onLoad(evt) { window.alert("hello"); }

window.addEventListener("load", onLoad, ...);

eval("onLoad = " +
 onLoad.toString.replace("hello",
 "hi there"));

> ...loading the page...
> Alert: “hello” ― wrong answer!

eval("foo = " +
 foo.toString()
 .replace("some code",
 "modified code"));

A closure’s
toString() returns

its source code

String-level search
& replace

Create a new
closure and bind
to existing name

Pointcut: when to
run the advice

Arguments to function
are advice parameters

Advice: what new code
to run at each pointcut

at pointcut(callee(window.alert) &&
 within(onLoad))
before(msg) {
 msg = "hi there";
}

The same patch with aspects is shorter, cleaner,
faster, and more correct

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sp
ee

d
re

la
tiv

e
to

 b
as

el
in

e

0 20000 40000 60000 80000 100000

Advice is 30% faster
than baseline!

Monkey-patching pays
for regexs and eval

Wrapping pays for
extra function calls

Number of function calls a�er modi�cation

10% of top 350 Firefox extensions use monkey-
patches. Examining 20 of those in detail:

• 99 KLOC total
• 2.7 KLOC patches
• We can easily express

621/636 patches
• Remaining 15 are either

easily �xable or are bugs
Dynamic advice weav-
ing works particularly
well with JIT compila-

tion: just delete the cached function and re-JIT.
And with very minimal runtime support, we get
nearly 30% performance gains over pure JS, and
60—70% improvements over common idioms!

