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Abstract—Aspnes et al [2] introduced an innovative game for
modeling the containment of the spread of viruses and worms
(security breaches) in a network. In this model, nodes choose to
install anti-virus software or not on an individual basis while
the viruses or worms start from a node chosen uniformly at
random and spread along paths consisting of insecure nodes.
They showed the surprising result that a pure Nash Equilibrium
always exists when all nodes have identical installation costs and
identical infection costs.

In this paper we present a substantial generalization of the
model of [2] that allows for arbitrary security and infectio n costs,
and arbitrary distributions for the starting point of the at tack.
More significantly, our model GNS(d) incorporates a network
locality parameter d which represents a hop-limit on the spread of
infection as accounted for in the strategic decisions, due to either
the intrinsic nature of the infection or the extent of neighborhood
information that is available to a node.

We determine that the network locality parameter plays a key
role in the existence of pure Nash equilibria (NE): local (d = 1)
and global games (d = ∞) have pure NE, while for GNS(d)
games with1 < d <∞, pure NE may not exist, and in fact, it is
NP-complete to determine whether a given instance has a pure
NE. For local and global games, we also characterize the price of
anarchy in terms of the maximum degree and vertex expansion
of the contact network; these suggest natural heuristics toaid a
network planner in enforcing efficient equilibria.

We design a general LP-based framework for approximating
the NP-complete problem of finding a socially optimal configura-
tion in our game. Our framework yields a 2d-approximation for
general GNS(d) games, and anO(log n)-approximation for the
global model wheren is the number of network nodes; the latter
result improves on the approximation bound of O(log1.5

n) of
[2] achieved for a special case of our global model.

We study the characteristics of NE and the quality of our
approximations empirically in two distinct classes of graphs:
random geometric graphs and power law graphs. We find that
in local and global games on these real-world networks, best
response dynamics converge in linear or sub-linear time and
have costs comparable to the social optimum. Finally, we study
the performance of our approximation algorithms, and find that
the approximation guarantees with respect to social cost are much
better in practice than our theoretical bounds.

I. I NTRODUCTION

Over the recent decades, there has been a explosive growth
in the use of personal digital devices of various kinds, which
are connected to the Internet through new technologies, such as
BlueTooth and Wi-Fi to allow ubiquitous access. This has, un-
fortunately, been accompanied by significant increase in worm
attacks that exploit bugs in these new technologies, and which
have new and growing “medium” to spread on - recent attacks,
e.g., Cabir and CommWorm, that span multiple networks are

expected to become increasingly prevalent in future. While,
effective anti-virus software and patches are readily available,
the average user is very independent and does not often care
to be proactive about installing the most effective anti-virus
software, and downloading the latest patches, partially because
of the cost of the software and the effort involved, which we
refer to as thesecurity cost. Indeed, a large fraction of devices
are estimated to be without adequate anti-virus protection. If
a user does not install protective software, they would incur
a cost if his device gets attacked, due to downtime, loss of
revenue, and cost of reinstalling systems; we refer to theseas
the infection cost. If enough other nodes in the network are
secured, the likelihood of a specific device getting infected
would go down (as a result of the “herd immunity”), leading
to a natural game theoretic scenario. A number of different
non-cooperative game formulations have been developed to
study this basic problem, e.g., [2], [3], [9], [15], [17], [22],
[27]; one issue with many of these formulations is that they
involve utility functions that require quite a lot of non-local
information to compute, and it is not clear how implementable
such games might be.

In this paper, we present a generalized network security
game model GNS(d), which incorporates arbitrary contact
networks through an undirected graphG and heterogeneous
nodes with individual security and infection costs. Our model
is parametrized by network locality parameterd, which rep-
resents the distance within the network that a given infection
can spread. Equivalently, the parameterd in the game GNS(d)
could represent the extent of neighborhood information that is
available to a node when making strategic security decisions,
which is a departure from earlier models which require global
information for making decisions. Qualitatively, we consider
three important cases with respect tod. The cased = 1,
which we refer to as thelocal infection model, is most well-
suited for ad hoc wireless networks and social networks, when
certain actions initiated by an insecure node could adversely
affect immediate neighbors, friends, or email contacts. For this
case, our model can be viewed as a variant of the IDS model
of [19]. The cased = ∞, which we refer to as theglobal
infection model, is most well-suited for the highly infectious
worms and viruses in the Internet that can be transmitted in an
hop-unlimited manner through unsuspecting insecure nodes,
under the assumption that individual nodes have complete
information. Our GNS(∞) model is a generalization of the
elegant model of [2]. The intermediate case1 < d < ∞
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applies to the majority of network security hazards where
the transmission may be hop-limited and nodes may only
have limited local information about the topology and security
decisions taken by others. Our main results are the following.

1) Existence of pure Nash equilibria (NE):We show that
the locality parameterd plays a significant role in the
structure of the resulting games. Both the extremes of
GNS(1) and GNS(∞) turn out to be ordinal potential
games, and a pure NE can be computed by best response
dynamics – that is, every sequence of best response
steps by the individual players converges to a pure
NE. However, for everyd in the range(1,∞), there
exists an instance of GNS(d) that does not have a pure
equilibrium. The price of anarchy for a GNS(1) game
is at most the maximum degree of the contact graph,
while that for GNS(∞) is inversely proportional to the
vertex expansion of the contact graph.

2) Complexity of computing pure NE: While there is a
simple combinatorial characterization for the existence
of pure NE in GNS(d) for all d, we show that for1 <
d < ∞, deciding if an arbitrary instance of GNS(d)
has a pure NE is NP-complete. For GNS(1), we show
that finding a pure NE of least cost is NP-complete; a
corresponding result for GNS(∞) is in [2].

3) Approximating the social optimum: We show that
computing the social optimum is NP-complete for a
GNS(d) game, for anyd; the case ofd = ∞ was shown
by [2]. We design a general framework for finding a
strategy vector for the players in polynomial time, whose
cost is at most2d times that of the optimal, for any fixed
d. In particular, this implies that ford = 1, we obtain
a 2-approximation. Ford = ∞, we provide a different
algorithm within the framework that yields anO(log n)-
approximation, wheren is the number of nodes in the
network; this improves on the approximation bound of
O(log1.5 n) of [2] achieved for a special case of the
GNS(∞).

4) Empirical results: We study the characteristics of NE
empirically in two distinct classes of graphs: random
geometric graphs and power law graphs. Ford = 1,
we find that the convergence time for best response is
sub-linear in the number of nodes in both the classes of
graphs, while it is linear ford = ∞. Also, for d = 1,
we find that the cost of the pure NE obtained is very
close to that of the social optimum, indicating that the
pure NE obtained in real-world networks approximate
social optimum very well. Ford = ∞, we observe
that there may be a significant gap between the cost
of the pure NE and that of the social optimum, even for
small networks. Finally, we study the performance of
our approximation algorithms for the social optimum,
and find that the approximation guarantees in practice
are much smaller than our theoretical bounds.

Pure NE represent stable operating points for a system with
selfish users. Therefore, for a network planner, understanding

and controlling the quality of equilibria reached is an impor-
tant issue. Our results suggest locality characteristics of the
network or the amount of information available to the strategic
network players have a significant impact on the existence of
equilibria. The non-monotonicity in the existence of NE, with
respect tod, is somewhat surprising and suggests a closer
examination of the impact of information on pure NE in such
games. While our theoretical analysis indicates that pure NE
may be significantly inferior to the optimum in terms of social
optimum in the worst-case, our experiments suggest that for
real-world network models pure NE obtained by uncoordinated
best response dynamics have low cost relative to the social
optimum, especially in the case ofd = 1. Additionally, our
results on the price of anarchy suggest natural heuristics to aid
a network planner in enforcing efficient equilibria, as discussed
in Section VII. Finally, the approximations achieved by our
approximation algorithms, both in theory and experiments,
indicate that our proposed algorithms are viable candidates
wherever centralized decisions can be made on network pro-
tection mechanisms.

II. RELATED WORK

Non-cooperative game theory has been used in analyzing a
number of problems in traffic and communication networks,
e.g., routing [26], topology control and network formation
[12], [23] and security [17], [25]. The basic questions of
interest have usually been about the existence and the structure
of Nash equilibria and the price of anarchy, which is the worst
case cost of a Nash equilibrium to the social optimum, as
defined formally later. See [24] for a good introduction on the
use of game theoretic techniques for networking applications.

Several formulations have been proposed for analyzing
network security problems and the spread of epidemics in
networks [2], [3], [9], [15], [17], [22], [27]. Our paper directly
builds on the formulation of Aspnes et al. [2], who model the
risk of infection for an insecure nodev as the probability that
the initial infection, which is assumed to originate at a node
chosen uniformly at random, starts in the same component as
v in the subgraph induced byv and the other insecure nodes.
They show the surprising result that pure Nash equilibria
always exist in such games. They also establish a high price
of anarchy and give anO(log1.5 n) approximation algorithm
for computing the social optimum, wheren is the number
of nodes in the network. Their approximation algorithm uses
anO(

√
log n)-approximation for the sparsest cut problem [1],

which is based on a semidefinite programming relaxation of
the problem. In this paper, we are able to give a much simpler
LP-based approximation algorithm using the vertex multi-cut
problem, which improves the approximation ratio toO(log n)
and also applies to a more general model. Another direction
of work is based on SIS models for the worm spread, e.g.,
then-intertwined model [25]. In this model, nodes are in two
states - susceptible or infected. Each infected node spreads
the infection to its neighbors with some probability. Another
closely related class of models is that of Interdependent
Security games (IDS) [19], which is similar to our model for
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the special case ofd = 1. One crucial technical difference
between the two models, which leads to two different games,
is the assumption about the initial infection: in IDS, it is
assumed to originate independently at different nodes, while in
our GNS(1) model, we assume an initial location is selected
according to a given probability distribution.

Our formulation of generalized network security games is
largely motivated by mechanisms to protect communication
networks. Some of our model and results, especially the lower
bound results, however, also apply equally well to the spread
of diseases and the protection of communities through vacci-
nations. The pure Nash equilibria correspond to stable points
in the space of vaccination decisions made by individuals,
and our approximation algorithms yield public policies for
vaccination that well-approximate the social welfare. There
is considerable work in epidemiology, both from a game-
theoretic perspective, as well as on the analysis of disease
spreads through SIR and SIS models [7], [8], [20], [5], [6].
The game-theoretic models adopted in these studies, however,
do not consider the impact of the underlying contact network.
Furthermore, there is little work on quantifying the effectof
locality (in disease spread or in information availability).

III. M ODEL AND DEFINITIONS

In this section, we present our game-theoretic model for
network security.

Contact Graph. Let V denote the set of users/devices (hence-
forth, referred to asnodes), each of which is assumed to be an
autonomous player. LetG denote the underlying contact graph
over the node setV ; an edge(u, v) ∈ G indicates that nodes
u andv are directly connected, so that if nodeu is infected by
a worm it can potentially spread to nodev. We will frequently
work with certain subgraphs ofG, for which we introduce the
following notation. For any undirected graphH and subset
S of vertices ofH , we let H [S] denote the subgraph ofH
induced by the vertices inS.

Strategies. The strategy for each nodev is the decision of
whether to install an anti-virus software or not; we use a
variable av ∈ [0, 1] to denote the probability of securing
the device. In this paper, we focus onpure strategies, i.e.,
av ∈ {0, 1}. Let ~a denote the strategy vector of all nodes.
Following [2], the attack graph, G~a, is the subgraph of the
contact graph induced by the set of insecure nodes according
to ~a.

Infection model. We assume that the infection is initiated at
a node chosen fromV according to an arbitrary probability
distribution. Let wv denote the probability that nodev is
chosen as the initial infection point; for convenience, we
introduce the notationw(S) to denote the sum ofwv over allv
in S. We parameterize the infection model byd, the maximum
number of hops over which an infection can be transmitted.
Thus, for a given contact graphG and strategy vector~a, an
infection originating at nodev infects nodeu if and only u
is within d hops ofv in G~a. For notational convenience, Let
~a[v/x] be the strategy vector obtained by replacingav by x in

the vector~a. SinceG is fixed andd is clear from the context,
denoteSv(~a) the set of nodes that are withind hops ofv in
G~a[v/0].

Generalized Network Security Game GNS(d). We now
present our model for a generalized network security game
GNS(d), parameterized by the hop-limitd in the infection
model. The game GNS(d) is specified by a contact graphG,
initial infection probability distributionw, and two costs per
network node. LetCv denote the security cost (installing an
anti-virus software) of userv; we assume the software is fool-
proof so that secure nodes do not get attacked. LetLv denote
the infection cost of userv (recovering from a worm attack in
case an insecure nodev gets attacked). For a given strategy
vector~a, therefore, the probability that nodev gets attacked
in this model (denoted bypv(~a)) is w(Sv(~a)). Then, the cost
to nodev is defined as

costv (ā) = avCv + (1 − av)Lv · pv (ā) .

A pure Nash equilibrium (henceforth, pure NE) is a strategy
vector ~a such that no nodev has any incentive to switch
his strategy, if all other nodes’ strategies are fixed.~a is a
Nash equilibrium if costv(~a[v/x]) ≥ costv(~a) for x ∈ {0, 1}.
Therefore, a pure NE is a natural configuration to aim for in
a non-cooperative game. It is easy to verify that the following
characterization of a pure NE (shown in [2] for the special
case whereG is the complete graph) holds.

Lemma 1. For v ∈ V , let tv = Cv/Lv. A strategy vector
~a ∈ {0, 1}n is a pure NE if the following conditions hold: (i)
for all i such thatav = 0, w(Sv(~a)) ≤ tv, and (ii) for all v
such thatav = 1, w(Sv(~a[v/0])) > tv.

Social cost. The total social cost of a strategy profile is the sum
of the individual costs, which is cost(ā) =

∑n
v=1 costv (ā).

A socially optimum strategy is a vector~a that minimizes this
cost - this is not necessarily (and is not usually) a pure NE.
Therefore, the cost of a pure NE relative to the social cost is
an important measure; the maximum such ratio (i.e., over all
possible pure NE) is also known as theprice of anarchy[21].

For convenience, Table I summarizes our notations.

IV. NASH EQUILIBRIA

A. The local infection model:d = 1

For the local infection model, we show that a pure NE
always exists. Our proof is by a reduction to a result of
Borodin et al. [10] on existence of subgraphs with restricted
degree sequences; their result is based on a potential function
argument. LetN(v) denote the set of neighbors ofv in G.

Theorem 2. Every GNS(1) instance has a pure NE.

Proof: We first define two functionsa : V → R and
b : V → R: for eachv ∈ V , a(v) = w(N(v))− Cv

Lv
+w(v) and

b(v) = Cv

Lv
−w(v). We argue next, using a generalization of an

argument due to [10], that there exists a partitionV = A∪B
such that for eachv ∈ A, we havew(A ∩ N(v)) ≤ a(v) and
for eachv ∈ B, we havew(B ∩ N(v)) ≤ b(v). Consider the
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TABLE I
A LIST OF NOTATIONS.

Notations Explanation
G Contact graph.

G[S] Subgraph ofG induced by the vertices inS.
Cv Security cost for nodev
Lv Infection cost for nodev
~a Strategy vector of nodes.

G~a Attack graph, i.e. the subgraph of the contact graph
induced by the set of insecure nodes according to~a.

~a[v/x] Strategy vector obtained by replacingav by x in the
vector~a.

Sv(~a) Set of nodes that are withind hops ofv in G~a[v/0].
wv Probability that nodev is chosen as the initial

infection point.
w(S) Sum ofwv over all v in S.

costv(~a) Cost to nodev given strategy vector~a.
GNS(d) Generalized network security game parameterized by

the disease hop limitd.

following function that defines a potential for each partition
(A, B).

R(A, B) =
∑

v∈A w(v) (w(A ∩ N(v)) − 2a(v))

+
∑

v∈B w(v) (w(B ∩ N(v)) − 2b(v))

Among all the partitions, we take a partition(A∗, B∗) min-
imizing R and assert that(A∗, B∗) is the partition we need.
Assume that a vertexx belongs toA∗, andw(A∗ ∩N(x)) >
a(x). Now we movex from A∗ to B∗ to obtain the par-
tition (A′, B′). Becausea(x) + b(x) ≥ w(N(x)), we have
w(N(x) ∩ B′) ≤ b(x). By setting A′ to be A∗ − {x}, R
decreases byw(x) (w(N(x) ∩ A∗) − 2a(x))+w(x)w(N(x)∩
A∗) = 2w(x) (w(N(x) ∩ A∗) − a(x)), which is a posi-
tive value. By settingB′ to be B∗ + {x}, R increases
by w(x) (w(N(x) ∩ B∗) − 2b(x)) + w(x)w(N(x) ∩ B∗) =
2w(x) (w(N(x) ∩ B∗) − b(x)), which is a negative value or 0.
This meansR(A∗, B∗) > R(A′, B′), which is a contradiction.
So such a vertexx doesn’t exist implying that(A∗, B∗) is the
desired partition.

Given such a partition(A, B), we establish the existence
of pure NE. Let~a be a strategy vector withav = 1 for
all v ∈ A and av = 0 for all v ∈ B; i.e., A denotes
the set of secure nodes. Then, we argue that~a is indeed a
pure NE. First consider the case wherev ∈ A. Then v is
secure and pays costCv. If v changes strategy, its expected
infection cost isLv (w(N(v) ∩ B) + w(v)). Sincev ∈ A, we
have w(N(v) ∩ A) ≤ a(v) = w(N(v)) − Cv/Lv + w(v).
Therefore,Cv ≤ Lv (w(N(v) ∩ B) + w(v)), i.e. v won’t
change its strategy. Next considerv ∈ B. Thenv is not secure
and its expected infection cost isLv (w(N(v) ∩ B) + w(v)).
If v changes strategy, its cost isCv. Since v ∈ B, we
have w(N(v) ∩ B) ≤ b(v) = Cv/Lv − w(v). Therefore,
Lv (w(N(v) ∩ B) + w(v)) ≤ Cv, i.e. v won’t change its
strategy. Thus it follows that~a is a Nash equilibrium.

When the security and infection costs are uniform, we show
that for the case ofd = 1, the maximum ratio of the cost of a
pure NE to the social optimum is bounded by the maximum

degree.

Lemma 3. When security and infection costs are uniform, the
price of anarchy inGNS(1) is at most∆ +1, where∆ is the
maximum degree of the contact graph.

Proof: Let C and L denote the security and infection
costs, respectively. SupposeC > L(∆ + 1)/n. Then no node
is secured in any pure NE and therefore, the cost of any pure
NE is at mostL(∆ + 1). In the optimum strategy, each node
has a cost ofC if it is secured, or at leastL/n otherwise.
Therefore the optimal cost is at leastL, and the lemma follows
in this case.

Next, consider the caseC ≤ L(∆ + 1)/n. In any pure NE,
any node has cost at mostC, and therefore the cost of a pure
NE is at mostCn. In an optimum solution, each node has
cost at leastL/n, and therefore, the optimal cost is at leastL.
Therefore, the price of anarchy in this case is at most∆ + 1.

B. The global infection model:d = ∞
In this section, we consider the global model (d = ∞); thus,

any nodev is capable of infecting any other nodeu as long
there is a path of insecure nodes betweenv andu in the contact
graphG. In this special case, our model is a generalization
of the model of [2] in that we allow different security costs,
infection costs, and initial infection probabilities.

Theorem 4. Every GNS(∞) instance has a pure NE1.

Proof: Let tv = Cv/Lv; we refer totv as the threshold
for v. We relabel then nodes so thatt1 ≥ t2 ≥ . . . ≥ tn,
where we break ties arbitrarily. Given a strategy vector~a, we
say that a secure nodev is happyif w(Sv(~a[v/0])) > tv, and
unhappyotherwise. Similarly, an insecure nodev is happy
if w(Sv(~a)) ≤ tv, and unhappyotherwise. Recall that when
d = ∞, Sv(~a) is the set of nodes that can reachv in G~a.

Consider the following potential function.

Φ̂(~a) = (Φ1(~a), Φ2(~a), . . . , Φm(~a))

where Φv(~a) is 0 if v is secure,−1 if v is insecure and
happy, and1 otherwise. We next show this potential always
lexicographically decreases. There are two cases:

1) Some nodev switches from being an insecure unhappy
node to being a secure happy node, changing the strategy
vector from~a to ~b. In this casew(Sv(~a)) > tv. Since
the set of secure nodes in~b is a superset of the set
of secure nodes in~a, it follows that for any nodeu,
w(Su(~b)) ≤ w(Su(~a)); it thus follows that no insecure
happy node in~a can become unhappy in~b. Therefore,
thevth component of the potential decreases by1, while
none of the other components increases.

2) Some nodev switches from being secure to not being
secure, changing the strategy vector from~a to ~b. In this

1In fact, our proof of existence of pure NE even extends to the case where
the initial infection may originate at multiple attack points simultaneously,
even in an arbitrarily correlated manner; we defer the details to the full paper.
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case,w(Sv(~b)) ≤ tv. We thus have thevth component
of the potential changing from0 to −1. Consider any
nodeu 6= v. If u is secure, then theuth component of the
potential is unchanged. Otherwise, consider two cases.
If v andu are in different connected components, then
w(Su(~b)) = w(Su(~a)), implying that theuth component
of the potential is unchanged. Ifv andu are in the same
connected component, thenw(Su(~b)) = w(Sv(~b)); thus,
if u is happy in~a but unhappy in~b, then it must be the
case thattu < tv, implying thatu > v. Thus, the only
components of the potential that can increase are the
components greater thanv, implying that the potential
decreases lexicographically.

Since the value of each column in the potential vector is
between−1 and1, and this potential vector lexicographically
decreases, we conclude that this process converges to a pure
Nash equilibrium (in fact, in at most3n steps).

Even when the security and infection costs are uniform, [2]
showed that the price of anarchy isΩ(n). We give a more
precise characterization in terms of the vertex expansion of the
contact graph. For any graphH over vertex setV , the vertex
expansionα(H) is defined as the largest numberc such that
for any subsetV ′ of the vertices such that|V ′| ≤ |V |/2, the
set of vertices inV \ V ′ that are adjacent to a vertex inV ′ is
at leastc|V ′|.
Lemma 5. When security and infection costs are uniform, the
price of anarchy in anyGNS(∞) game isO(1/α(G)).

Proof: First we calculate the lower bound for social
optimum. Let~a be the strategy vector of a social optimum,
andS1, S2, . . . , Sm denote the connected components inG~a.
Without loss of generality, we can assume|S1| ≤ |S2| ≤ . . . ≤
|Sm|. We consider the following 3 cases:

1)
∑

i |Si| < n/2, wheren is the total number of nodes in
G. In this case more than half of the nodes are secure.
Thus, social optimal cost is at leastCn/2.

2)
∑

i |Si| ≥ n/2 and |Sm| ≥ n/4. Then social optimal
cost is at least

∑
v∈Sm

costv(~a) ≥ n
4 Ln/4

n = Ln/16.
3)

∑
i |Si| ≥ n/2 and|Sm| < n/4. Then there must be aj

such that
∑

i≤j |Si| ≥ n/4. Let S = ∪i≤jSi. Then the
number of neighbors of setS in G is at leastα(G)|S| ≥
α(G)n/4. This implies social optimal cost is at least
Cα(G)n/4.

Therefore, the lower bound for social optimum is
min{Cn/2, Ln/16, Cα(G)n/4}.

Next we calculate the upper bound for NE cost. Let~a be
the strategy vector of a NE. Again, letS1, S2, . . . , Sm denote
the connected components inG~a. |S1| ≤ |S2| ≤ . . . ≤ |Sm|.
We consider the following 2 cases.

1) L ≤ C. In this case no one is going to be secure
in NE, which implies its cost isnL. The ratio be-
tween NE and the social optimum is no more than
max{2, 16, 4/α(G)}.

2) L > C. The cost of NE is no more than
∑

i L|Si|2/n+
Cn. Because this is a NE, for those who choose

to be insecure,L|Si|/2 ≤ C. Therefore, we have∑
i L|Si|2/n+Cn ≤ ∑

i C|Si|+Cn ≤ 2Cn. The ratio
between NE and the social optimum is no more than
max{4, 32, 8/α(G)}.

Putting these 2 cases together completes the proof of this
lemma.

C. Thed-neighborhood infection model:d > 1

Having established the existence of a pure NE for every
instance of the generalized network security game in both the
local and the global models, a natural question is whether
pure NE exist for the entire spectrum ofd in between these
two extremes. In this section, we show that for any1 < d <
∞, there exist instances of GNS(d) for which there are no
pure NE. Furthermore, it is NP-complete to determine whether
a pure NE exists for a given instance. We first present the
non-existence result which also provides the basis for the NP-
hardness reduction.

Lemma 6. For any fixedd, 1 < d < ∞, there exists an
instance ofGNS(d) in which no pure NE exists.

Proof: We first consider the cased = 2. Consider the
instance defined by the contact graph in Figure 1. We set the
infection cost to be identical, sayL, for all nodes. For nodes D
through I, we set the security cost to be high enough so that
in any equilibrium they are all insecure. That leaves nodes
A, B, and C, for whom we set the security cost such that
9Cv/L = 7 for v in {A,B,C}; thus, in any pure NE~a, node
v in {A, B, C} is secure if and only if|Sv(~a[v/0])| ≥ 7. We
now consider four cases. If all of A, B, and C are insecure
in ~a, then we do not have a pure NE since|Sv(~a[v/0])| = 9
for eachv in {A, B, C}. If exactly one of A, B, or C – say
A – is secure, as shown in Figure 2, then B won’t change
its strategy since|SB(~a)| = 7, but C will change its strategy
since |SC(~a)| = 8 (Notice C can reachI, but B cannot). If
exactly two of A, B, C – say A and B – are secure, then B will
change its strategy since|SB(~a[B/0])| = 7. Finally, if all three
are secure, then none of A, B, or C will stick to its current
strategy since|Sv(~a[v/0])| = 5 for eachv in {A,B,C}. We
have thus established that there is no pure NE in the instance
of Figure 1.

It is easy to extend the above non-existence proof to larger
d by replacing selected edges in the instance of Figure 1 by
two-hop paths. Similarly, one can also extend the proof to the
case of uniform security costs and uniform infection costs by
inserting additional nodes in the proximity of those nodes in
the above instance that have lower security costs. We defer
the details of these extensions to the full paper.

We next show that it is, in fact, NP-complete to determine
whether a given instance of the generalized network security
game with1 < d < ∞ has a pure NE. It is easy to argue that
the problem is in NP since one can efficiently verify whether
a given strategy vector~a is a pure NE. In the remainder of
this section, we focus on the hardness reduction.

Our starting point is the non-existence instance defined in
the preceding lemma. We observe that if the security cost of
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Fig. 1. An instance of a contact graph that has no pure NE.

Fig. 2. Residual graph whenA chooses to secure itself.

exactly one of the three nodes in{G, H, I}, say G, is reduced
so that G always secures itself, then we do have a pure NE
in which C secures itself, while A and B are insecure. Thus,
if we can control the decision of G through an external input,
then we can use the above instance as a gadget which has
the property: it has a pure NE if and only if G is secure. We
now show how to use this gadget to obtain an NP-hardness
reduction.

Theorem 7. The problem of determining if aGNS(d) in-
stance,1 < d < ∞, has a pure NE is NP-complete.

Proof: We reduce 3SAT problem to a GNS(2) instance,
and show that a given formulaφ is satisfiable if and only
if the corresponding game has a pure NE. The reduction is
shown in Figure 3. For each variableX in the formula, we
create two nodes in the contact graph,X and X̄ , which are
connected to each other. For each literall in the formula, we
create a node, and connect it with corresponding variable. For
each clauseC, we create a gadget, treat node G as clause node,
and connect it to its 3 literal nodes. The costs for gadget nodes

are as before. The costs of literal nodes are set such that their
“threshold” – the number of insecure nodes that can tolerate
without securing themselves – is 1. And the threshold forX is
set to bea+1 wherea is the number of adjacent literal nodes;
the threshold forX̄ is set to beb+1 whereb is the number of
adjacent literal nodes. We add padding nodes between edges
(X, X̄), (X, I), (X̄, I), and(C, I). We set their security costs
to be 0, so they always wish to be secure.

We first show ifφ is satisfiable, then there is a pure NE in
this game. For variable nodeX , if its assignment is true, then
make it secure. For literal nodeI, if its assignment is false,
then make it secure. If a clause is true, then make it secure. All
the other nodes are insecure. We now argue that the defined
strategy vector is a pure NE. If a variable nodeX is secure,
then all the literal nodes connected to it are not secure,X̄
is not secure, while all the literal nodes connected toX̄ are
secure. Since the formula is satisfiable, all the clause nodes
are secure. It is clear that̄X is happy, since its threshold is
b+1 andX is secure. SimilarlyX is happy since if it were to
be insecure, it will be in a component with sizea + 2 which
is bigger than its threshold. All the literal nodes connected to
X are happy, because for each of them, the only two adjacent
nodes are secure. And all the literal nodes connected toX̄
are happy, because if any of them does not secure itself, it
will be in a component with size 2, which is bigger than its
threshold. All the clause nodes are happy because the formula
is satisfiable, at least one of its literal is true, which means at
least one of its literal nodes is insecure, hence this clausenode
has to secure itself because its threshold is 6. And within each
gadget, we can make node C to secure itself (together with
the nodes D, E, and F) to make all the nodes in the gadget
happy. We thus have a pure NE in the game instance.

Next, we argue if the game has a pure NE, then the formula
is satisfiable. Suppose we have a pure NE strategy vector~a.
For each variable nodeX , if X is secure, we assignX to
be true for the SAT formula; and false otherwise. We know
that in any pure NE, the clause node in each gadget has to
be secure. Furthermore, exactly only ofX and X̄ is secure.
If X is secure, then̄X and all the literal nodes connected to
X have to be insecure, while all the literal nodes connected
to X̄ have to be secure. Since all the clause nodes are happy,
at least one of its literal nodes is not secure, implying thatin
each clause at least one of the literals is true. This establishes
that the formula is satisfiable.

In sum, the formula is satisfiable if and only if the security
game has Nash equilibrium. It is easy to see that the above
reduction can be carried out in polynomial time, thus yielding
the NP-hardness of the problem.

V. OPTIMIZING SOCIAL WELFARE: NP-COMPLETENESS

AND APPROXIMATION ALGORITHMS

A. NP-completeness of computing the social optimum

We show that computing the social optimum is NP-complete
in GNS(d) games for alld. The result ford = ∞ follows
from Aspnes et al. [2], even for the special case where all
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Fig. 3. Reduction from 3SAT to GNS(d). Xi’s refer to variables in the
boolean formula.Iij refers to thejth literal in theith clause. AndCi’s refer
to the clauses.

security costs, infection costs, and initial infection probabilities
are uniform. We now establish NP-completeness for alld > 0.

Lemma 8. Computing the social optimum for an instance of
GNS(d) is NP-complete for alld.

Proof: We construct a reduction from vertex cover on
regular graphs, which is also NP-complete [14]. Consider
an instance of vertex cover specified by anr-regular
graph G = (V, E). We construct an instanceI of the
GNS(d) problem as follows. LetH = (V ′, E′) be a
graph obtained by splitting each edgee = (u, v) ∈ E
by d − 1 auxiliary nodes ve,1, . . . , ve,d−1, so that
V ′ = V ∪∪e∈E{ve,1, . . . , ve,d−1}, andE′ consists of the edges
∪e=(u,v)∈E{(u, ve,1), (v, ve,d−1), (ve,1, ve,2), . . . , (ve,d−2, ve,d−1)}.
For all nodesv ∈ V , let them have the same secure cost
C and infection costL. And we setC = L(r(d−1)+1)

|V ′| + 1.
For each u ∈ V ′ \ V , we have Lu = 1/|V ′|3 and
Cu = (C + L)|V ′|. This ensures all nodes inV ′ \ V are
insecure, and

∑
u∈V ′\V costu(~a) ≤ ǫ for small constantǫ, for

any strategy~a.
Let B = {v ∈ V : av = 1} for a pure strategy~a, and let

b = |B|. It is easy to verify that cost(~a) = L|V |(r(d−1)+1)
|V ′| +

b + ǫ + 2L
|V ′| |{e = (u, v) : u, v ∈ V, au = av = 0}|. Therefore,

when we setL > |V | · |V ′|, B is a vertex cover inG of
size k, if and only if the social optimum inI is at most
L|V |(r(d−1)+1)

|V ′| + k + ǫ.
Ford = 1, we also show that while a pure NE always exists,

finding the least cost one is NP-complete.

Lemma 9. Finding the least cost pure NE in a given instance
of GNS(1) is NP-complete.

Proof: Our proof is a reduction from Vertex Cover. Let
G be an instance of vertex cover. We construct an instance
I of the game in the following manner. We set the contact
graph to beH = (V ′, E′) with V ′ = V ∪ ∪i∈V A(i), where
the setA(i) = {vi,1, . . . , vi,t}, for t ≥ ∆(G), where∆(G)
is the maximum degree ofG. The setE′ consists ofE along

with the edges(i, j), for all i ∈ V and j ∈ A(i). The
security and infection costs for all nodes inV are identical,
C and L, respectively. SetC = (t+1)L

|V ′| + 1. For nodes in
V ′ \ V , these corresponding costs areC′ = L′(1 + ǫ)/|V ′|
andL′ = 1/M , respectively, whereM ≥ |V ′|2t. We assume
that the initial infection probability distribution is uniform.
Therefore, the contribution, costv(~a) of a nodev ∈ V ′ \ V
to the total cost cost(~a) for any strategy vector~a is at most
max{C′, 2L′/|V ′|}, and the total contribution of all such
nodes is at most1. We show that the least cost NE has cost
very close to the social optimum.

Let A be a vertex cover forG, with |A| = a. Consider the
following strategy vector~a: for eachi ∈ A, we haveai = 1
and avi,j

= 0 for all j, and for i 6∈ A, we haveai = 0 and
avi,j

= 1 for all j. Following Lemma 1, this vector is a NE
because: (i) for each nodei ∈ A, there are at leastt insecure
neighbors (namely, the nodesvi,j), (ii) for each i 6∈ A, the
number of insecure neighbors is at most∆(G) ≤ C|V ′|/L,
where∆(G) is the maximum degree ofG, (iii) if i ∈ A, each
nodevi,j has no insecure neighbor, and sinceC′|V ′|/L′ =
1+ ǫ, such a node won’t change its strategy, and (iv) ifi 6∈ A,
each nodevi,j has an insecure neighbor and it will stay being
secure. As in the proof of Lemma 8, cost(~a) ≤ L + |A| + 1.
Therefore, ifG has a vertex cover of sizek, the reduced game
instance has a pure NE of cost at mostL + k + 1.

For the converse, let~a be the strategy vector of a NE, and
A = {i : ai = 1}∩V . As in the proof of Lemma 8, cost(~a) =
L + |A| + 2L

|V ′| |{(u, v) : au = av = 0, u, v ∈ V }|, which
implies if A is not a vertex cover forG, cost(~a) > L + |A|.
Therefore, the lemma follows.

B. Approximating the social optimum

We describe a general framework to derive approximation
algorithms for GNS(d) games for alld. For fixed d, we
achieve an approximation ratio of2d. For d = ∞, we obtain
an approximation ratio ofO(log n). Our framework involves
the following three steps.

1) Formulate a linear programming relaxation.
2) Let x be the optimum LP solution. Partially round and

filter the variables. Letx′ be the resulting solution.
3) Round thex′ solution appropriately - for constantd, this

involves solving a suitable covering problem, while for
d = ∞ this reduces to a vertex separator problem.

1) An LP Formulation:Let P d
ij denote the set of all simple

paths fromi to j of length at mostd. Let xv be the indicator
variable for nodev that is 1 if v is secured. Letyij be the
indicator variable for nodesi and j that is 1 if there is no
pathP ∈ P d

ij consisting entirely of insecure nodes. By abuse
of notation, for i = j, we assumeyii = 1 if node i has
been secured, i.e.,xi = 1. We start with the following integer
programming formulationP of the social optimum.

min
∑

v Cv · xv +
∑

j∈V Lj

∑
i∈V wi(1 − yij)

s.t.
∑

v∈p xv ≥ yij p ∈ P d
ij (1)
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xv ∈ {0, 1} ∀v ∈ V

yij ∈ {0, 1} ∀i, j ∈ V

The objective function can be interpreted in the following
manner: the first part corresponds to the cost of securing nodes,
and the second part corresponds to the infection cost, which,
for nodej is Lj times the sum of the probabilities of all nodes
that have a path toj of length at mostd consisting entirely
of insecure nodes. The first constraint says that in order to
separate a pair of nodesi and j, we need to secure at least
one node in every pathP ∈ P d

ij between these two. Fori = j,
we define the only pathP in P d

ij to consist of the nodei.
We relax the IP to a linear program (LP) by changing the

last two constraints to0 ≤ xv ≤ 1 and0 ≤ yij ≤ 1.
2) Solving the LP and partial rounding and filtering:We

now perform the following steps.
(1) Solve the LP: for any fixedd, the number of paths of
length at mostd, |P d

ij | is at mostnO(1), and therefore, the
above program can be solved in polynomial time. Whend is
not a constant, the program cannot be written down efficiently
but we can solve it in polynomial time using the ellipsoid
method. This requires the construction of a polynomial time
separation oracle, which, given a candidate solution(~x, ~y), can
decide if it is feasible, or finds a constraint that is infeasible.
Such a separation oracle can be designed as follows: define
the cost of a path to be the sum of the weightsxv of the nodes
on the path. For each pairi, j, compute the shortest path from
i to j in the graph restricted to thed-hop neighborhood of
nodei. If this distance exceedsyij , the constraints for all the
pathsp ∈ P d

ij are satisfied. Else, the constraint corresponding
to the shortest such path is violated.

Ellipsoid-based methods are, however, expensive to imple-
ment in practice. For the cased = ∞, we address this draw-
back by solving an equivalent polynomial-sized LP in which
we introduce a “distance variable” for each pair of nodes and
replace the exponentially-many path constraints given in (1)
with polynomially-many triangle inequality constraints,and
linear number of lower bounds on the distances. It is this more
compact LP that we solve in our experiments.
(2) Construct a new vector~y′ in the following manner: for
eachi, j, y′

ij = 0 if yij ≤ 1/2 andy′
ij = 1 if yij > 1/2. Next,

let x′
v = min{2xv, 1}, for all v ∈ V .

3) Final rounding: We now round the vector~x′ to an
integral solution. Ford = 1, it is easy to see that~x′ is already
integral, since each constraint only has two variables. We now
consider generald. Consider a pair of nodesi andj such that
y′

ij = 1. By constraint (1), along every pathp of length at
mostd betweeni andj, the sum, overv ∈ p, of x′

v is at least
1. It follows that along every such pathp, there exists at least
one vertexv ∈ p with x′

v ≥ 1/d. Consider now the following
filtering procedure: ifx′

v ≤ 1/d, we setx′′
v = 0; otherwise,

we setx′′
v = 1. It is clear that all the constraints of the LP are

satisfied, and the cost of~x′′ is at mostd times the cost of~x′,
yielding a final2d approximation.

We finally consider thed = ∞ case. In this case, we are left
with a minimum weighted vertex multi-cut problem, where we

would like to determine the minimum weight of vertices that
can separate all the pairs(i, j) for which y′

ij = 1. The elegant
LP rounding algorithm of [16] yields an integral solution for
the vertex multi-cut problem, whose cost isO(log n) times the
cost of fractional solution. We can thus find a setX of vertices
to secure such that all pairs of vertices for whichy′

ij = 1 are
separated and

∑
v∈X Cv is at mostO((log n)

∑
v Cvx′

v).
Putting the above analyses together, we have the following.

Theorem 10. For any fixedd, the social optimum for an
instance ofGNS(d) can be approximated to within a factor
of 2d in polynomial time. Ford = ∞, we obtain anO(log n)-
approximation to the social optimum, wheren is the number
of nodes in the contact graph.

VI. EXPERIMENTAL RESULTS

We now empirically study the properties of NE and the
performance of our algorithms. We use two classes of graphs:
(i) random geometric graphs formed by distributingn2 nodes
uniformly at random in ann × n square and add an edge
between a pair of nodes if there distance is no more than 1,
and (ii) power law graphs generated by preferential attachment
process [4]. These two graph classes are very different, with
the former being a model for wireless networks, while the
latter suited for the Internet [13], World Wide Web [4],
and email networks [11]. Also, they have very contrasting
properties, e.g., the latter class has larger separators, and we
expect to see effects of these differences. We set the infection
costs to be identical for every node (this can be done without
loss of generality for the pure NE analysis) and the security
costs are chosen uniformly at random between 0 and the
infection cost.

Our main experimental observations are the following.

1) Convergence time for best response strategies: We find
that best response works pretty well in practice. For
d = ∞, we find the convergence time to be linear in
the number of nodes for both graph classes, while it
seems to be sub-linear in the case ofd = 1. For the
d-neighborhood model, with1 < d < ∞, best response
does not converge to a NE quite often, suggesting that
even on average, these games do not have NE.

2) Structural properties of NE and the quality of NE: We
find that high degree nodes tend to be secured in the NE
for the local game. Additionally, we find that the cost
of NE is very low ford = 1 in both the graph classes,
but it is somewhat high ford = ∞.

3) Performance of our approximation algorithms for the
social optimum: While we show a worst case bound of
O(log n) for approximating the social optimum (Section
V), we find that our algorithms perform much better in
practice. Ford = 1, the approximation bound is very
close to 1; while ford = ∞, it seems to be a constant.

A. Convergence times for best response strategies

We implement best response in a round robin fashion on
both the graph classes and study the convergence time; note
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that the results of Section IV imply that this converges to a NE.
Figure 4 shows that the convergence time of the global model
for random geometric and power law graphs grows linearly
with the number of nodes. Figure 5 shows the corresponding
plots for the local model and they seem to grow much slower
than in thed = ∞ case. Also, for thed-neighborhood model,
we find that best response often does not converge to a NE.
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Fig. 4. Convergence time in the global model(d = ∞) for random geometric
graphs and power law graphs.
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Fig. 5. Convergence time in the local model (d = 1) for random geometric
graphs and power law graphs.

B. Structural properties of NE

In Figure 6, we examine the degrees of secured nodes in
the NE computed by best response on power law graph with
5000 vertices, and we find that they tend to be high. In fact,
the degree distribution of the secured nodes seems to mirror
the overall degree distribution in the graph. We also study the
quality of NE in the local and global models. Figure 7 and 8
show that the cost of NE is very low for the local model in
both graph classes. The ratio to optimal value is at most 1.3.
In contrast, Figure 9 and 10 show that this ratio is larger for

the global model, about 7 in both graph classes. We note that
this ratio is for the case of non-uniform costs; we expect the
ratio to be smaller with uniform costs, especially for power-
law graphs owing to their high vertex expansion.
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Fig. 6. Properties of secured nodes in NE in power law graphs.

C. Empirical performance of approximation algorithms

We now study the empirical performance of the algorithms
we design in Section V for approximating the social optimum.
Since computing social optimum is very expensive, we use
LP optimal values as lower bound. Figure 7 and 8 show that
our approximation algorithm’s cost is almost the same as the
LP lower bound for the local model. For the global model,
Figure 9 and 10 show that the approximation algorithm’s cost
is within a constant of the LP lower bound, in contrast to the
worst caseO(log n) bound we prove. Additionally, we observe
that our approximation algorithm has a much better guarantee
for power law graphs than for random geometric graphs.
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Fig. 7. The costs of the LP solution, our approximation algorithm, and the
Nash equilibrium computed by best response, for the local model in random
geometric graphs.
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Fig. 8. The costs of the LP solution, our approximation algorithm, and the
Nash equilibrium computed by best response, for the local model in power
law graphs.
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Fig. 9. The costs of the LP solution, our approximation algorithm, and the
Nash equilibrium computed by best response, for the global model in random
geometric graphs.
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Fig. 10. The costs of the LP solution, our approximation algorithm, and the
Nash equilibrium computed by best response, for the global model in power
law graphs.

VII. C ONCLUSION

Non-cooperative games have been recognized as a useful
paradigm for studying decentralized network security prob-
lems; however, the resources needed for individual decision
making are important issues for the implementability of such
games. In this paper, we have developed a framework for
network security games parametrized by the amount of local
information available for individual decision making. We find
this parameter plays an important role in the structure of the
equilibria, and needs to be taken into account in such analysis.

NE are considered as natural operating configurations in
such systems with selfish users. Therefore, ensuring that the
system has efficient NE is desirable (equivalently, a low price
of anarchy (PoA)) for network planners. Specifically, if the
network planner has a limited budget to securek nodes, an
important design problem is to choose a subset of nodes to
secure so that the graph restricted to the remaining nodes has
low PoA; such a strategy is also referred to as aStackelberg
strategy for the network planner [24]. Lemmas 3 and 5,
which bound the PoA in terms of the network parameters,
suggest natural heuristics to design stackelberg strategies for
the network planner. We discuss this briefly below. Because
of limited space, we omit the proofs of the results mentioned
below.

In the neighborhood model, Lemma 3 shows that PoA is
bounded by∆ + 1. Therefore, given a budget to securek
nodes, the Stackelberg question is to choose a subset of nodes
to secure, so that the maximum degree of the residual graph
is minimized. An analogous question, dual to this, is the
following: for a given target maximum degree∆′, choose
the smallest setk of nodes to secure so that the maximum
degree in the residual graph is∆′. Both these versions are NP-
complete to solve optimally, but greedy heuristics are likely
to perform well. In the global model, Lemma 5 shows that
the PoA is bounded by1/α(G). The analogous question of
finding an optimal Stackelberg strategy is NP-complete in this
case also. We can use the spectral clustering algorithm of [18],
which finds an(α, ǫ) clustering of low cost using at most an
ǫ fraction of the edges, while ensuring that each cluster has
expansion at leastα, as a natural heuristic for this problem.

Finally, there are a number of other possible infection
models which are interesting, and could be more useful in
specific settings. We mention two of them here. In the first
model, we modify the infection model so thati infects j if
they are within distanced in the original graphG, and remain
connected inG[~a] - this models settings in which even secure
nodes can spread the infection, though they themselves cannot
get infected. In the second model, we have a probability for
disease transmission on each edge, which captures SIS/SIR
worm propagation models. Other extensions of our models
include directed and weighted graphs. Many of our results,
especially the lower bounds, extend to these models as well,
though they present new challenges.
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