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Abstract—Aspnes et al [2] introduced an innovative game for expected to become increasingly prevalent in future. While
modeling the containment of the spread of viruses and worms effective anti-virus software and patches are readilylalote,
(security breaches) in a network. In this model, nodes choesto the average user is very independent and does not often care

install anti-virus software or not on an individual basis while to b ti bout installing th t effect tisgi
the viruses or worms start from a node chosen uniformly at 0 be proactive about instaliing the most effective antusi

random and spread along paths consisting of insecure nodes.Software, and downloading the latest patches, partiatpbse
They showed the surprising result that a pure Nash Equiliorum  of the cost of the software and the effort involved, which we
always exists when all nodes have identical installation sts and  refer to as thesecurity costindeed, a large fraction of devices
identical infection costs. are estimated to be without adequate anti-virus protection

In this paper we present a substantial generalization of the d t install tecti ft th d i
model of [2] that allows for arbitrary security and infectio n costs, a user does not Install protective sortware, they would incu

and arbitrary distributions for the starting point of the at tack. @ cost if his device gets attacked, due to downtime, loss of
More significantly, our model GNS(d) incorporates a network revenue, and cost of reinstalling systems; we refer to thsse
locality parameter d which represents a hop-limit on the spread of ' the infection cost If enough other nodes in the network are
infection as accounted for in the strategic decisions, dueteither secured, the likelihood of a specific device getting infdcte

the intrinsic nature of the infection or the extent of neighborhood w . o .
information that is available to a node. would go down (as a result of the “herd immunity”), leading

We determine that the network locality parameter plays a key {0 @ natural game theoretic scenario. A number of different
role in the existence of pure Nash equilibria (NE): local ¢ = 1) non-cooperative game formulations have been developed to
and global games ¢ = oc) have pure NE, while for GNS(d)  study this basic problem, e.g., [2], [3], [9], [15], [17],7R
games with1 < d < oo, pure NE may not exist, and in fact, itis 5>71-" gne jssue with many of these formulations is that they

NP-complete to determine whether a given instance has a pure ; - . . .
NE. For local and global games, we also characterize the précof involve utility functions that require quite a lot of noneial

anarchy in terms of the maximum degree and vertex expansion information to compute, and it is not clear how implemergabl

of the contact network; these suggest natural heuristics taid a such games might be.

network planner in enforcing efficient equilibria. o In this paper, we present a generalized network security
We design a general LP-based framework for approximating game model GNGI), which incorporates arbitrary contact

the NP-complete problem of finding a socially optimal configta- .
tion in our game. Our framework yields a 2d-approximation for networks through an undirected graghand heterogeneous

general GNS(d) games, and ano(]og n)_approximation for the nodes with individual Security and infection costs. Our mlod
global model wheren is the number of network nodes; the latter is parametrized by network locality parametgrwhich rep-
result improves on the approximation bound of O(log"®n) of  resents the distance within the network that a given indecti
[2] achieved for a special case of our global model. can spread. Equivalently, the parametén the game GN&1)

We study the characteristics of NE and the quality of our . h LT
approximations empirically in two distinct classes of graphs: could represent the extent of neighborhood information iha

random geometric graphs and power law graphs. We find that available to a node when making strategic security decgsion
in local and global games on these real-world networks, best which is a departure from earlier models which require globa
response dynamics converge in linear or sub-linear time and jnformation for making decisions. Qualitatively, we cahesi
have costs comparable to the social optimum. Finally, we stly three important cases with respect do The cased = 1,

the performance of our approximation algorithms, and find that hich fer t théocal infecti deli t I
the approximation guarantees with respect to social cost & much which we refer 1o as cal infection modelis most weil-

better in practice than our theoretical bounds. suited for ad hoc wireless networks and social networksywhe
certain actions initiated by an insecure node could adiyerse
. INTRODUCTION affect immediate neighbors, friends, or email contacts tFis

Over the recent decades, there has been a explosive groeabe, our model can be viewed as a variant of the IDS model
in the use of personal digital devices of various kinds, Whioof [19]. The cased = oo, which we refer to as thglobal
are connected to the Internet through new technologieh,asic infection modelis most well-suited for the highly infectious
BlueTooth and Wi-Fi to allow ubiquitous access. This has, uworms and viruses in the Internet that can be transmitted in a
fortunately, been accompanied by significant increase inmvo hop-unlimited manner through unsuspecting insecure nodes
attacks that exploit bugs in these new technologies, andhwhunder the assumption that individual nodes have complete
have new and growing “medium” to spread on - recent attacksformation. Our GN$co) model is a generalization of the
e.g., Cabir and CommWorm, that span multiple networks aeéegant model of [2]. The intermediate case< d < ~



applies to the majority of network security hazards whemnd controlling the quality of equilibria reached is an impo
the transmission may be hop-limited and nodes may orignt issue. Our results suggest locality characteristiche
have limited local information about the topology and ségur network or the amount of information available to the sgate
decisions taken by others. Our main results are the follgwimetwork players have a significant impact on the existence of

1)

2)

3)

4)

Existence of pure Nash equilibria (NE):We show that equilibria. Th_e non-monotonicity in the existence of NEthwi
respect tod, is somewhat surprising and suggests a closer

the locality parameted plays a significant role in the e¥amination of the impact of information on pure NE in such
structure of the resulting games. Both the extremes 0

: .~ games. While our theoretical analysis indicates that puge N

Gal\rlnse%) ;n ddaG’dioﬁl)Etggg gztctgmbeufe rglg albggtiztslalowg be significantly inferior to the optimum in terms of sdcia
g namics B tr?at s every se uerr:ce of )lgest res %noelmum in the worst-case, our experiments suggest that for

y ’ y sed PO I-world network models pure NE obtained by uncoorditate

steps by the individual players converges to a pute : " .
. est response dynamics have low cost relative to the social
NE. However, for everyd in the range(l, ), there

exists an instance of GN8) that does not have a pureomlmum’ espec!ally in the case af= 1. Add|t|onaII_y, our
o . results on the price of anarchy suggest natural heurigtiagit
equilibrium. The price of anarchy for a GNB game

is at most the maximum degree of the contact gralo%’network planner in enforcing efficient equilibria, as dssed

while that for GNSo) is inversely proportional to the n Sect_lon .V”' Flnal_ly, the approximations achieved by our
) approximation algorithms, both in theory and experiments,
vertex expansion of the contact graph.

Complexity of computing pure NE: While there is a indicate that our proposed algorithms are viable candidate

. . : o . wherever centralized decisions can be made on network pro-
simple combinatorial characterization for the emstencte

of pure NE in GN$d) for all d, we show that forl < ection mechanisms.
d < oo, deciding if an arbitrary instance of GN§ Il. RELATED WORK

has a pure NE is NP-complete. For GN we show Non-cooperative game theory has been used in analyzing a
that finding a pure NE of least cost is NP-complete; a P 9 Y yzing

. g number of problems in traffic and communication networks,
corresponding result for GNSo) is in [2]. e routing [26], topology control and network formation
Approximating the social optimum: We show that 9. g » fopology

computing the social optimum is NP-complete for r£12], [23] and security [17], [25]. The basic questions of

) interest have usually been about the existence and theistuc
GNS(d) game, for anyl; the case ofl = co was shown . . o
. - of Nash equilibria and the price of anarchy, which is the wors
by [2]. We design a general framework for finding a

. L case cost of a Nash equilibrium to the social optimum, as
strategy vector for the players in polynomial time, whos

cost is at mosd times that of the optimal, for any fixed Gefined formally 'a‘ef- See [2.4] for a good mtr(_)ducnon_ oe_th
. Lo -~ use of game theoretic techniques for networking applioatio
d. In particular, this implies that fod = 1, we obtain . :
A . ; Several formulations have been proposed for analyzing
a 2-approximation. Foxl = oc, we provide a different network security problems and the spread of epidemics in
algorithm within the framework that yields an(log n)- y P n P

approximation, wherey is the number of nodes in thenetworks [2], 18], [9], [15], [17], [22], [27]. Our paper dctly

e o uilds on the formulation of Aspnes et al. [2], who model the
network; this improves on the approximation bound o} : . ) .

1.5 - . risk of infection for an insecure nodeas the probability that
O(log™”n) of [2] achieved for a special case of th

GNS(0). She initial infection, which is assumed to originate at a @od

A ) - chosen uniformly at random, starts in the same component as
Empirical results: We study the characteristics of NE . . .
empirically in two distinct classes of graphs: rando y In the subgraph mdupgd byand the other insecure nodgs:
. ' rTfhey show the surprising result that pure Nash equilibria
geometric graphs and power law graphs. Hoe 1,

we find that the convergence time for best responsealways exist in such games. They also establish a high price

sub-linear in the number of nodes in both the classes f(()())ﬁra:(?rrr::hgtiindtr?évioa::?;(llzg tinzlgrspwr?;ggl(:ﬂeafs;rer?
graphs, while it is linear foel = oo. Also, ford = 1, puting P ’

we find that the cost of the pure NE obtained is verOf nodes in the network. Their approximation algorithm uses

close to that of the social optimum, indicating that thén.o( V.log n)—approxmatpn fqr .the sparsest ?Ut p“’b'e”f‘ [1],
Which is based on a semidefinite programming relaxation of

pure NE obtained in real-world networks approxmat&e problem. In this paper, we are able to give a much simpler

social optimum very well. Ford = oo, we observe S . : .
that there may be a significant gap between the COLSE[’ based approximation algorithm using the vertex multi-c

of the pure NE and that of the social optimum, even f rroblem, Whlc.h improves the approximation ratiolog ?”" .
; nd also applies to a more general model. Another direction
small networks. Finally, we study the performance ot

o . . . of work is based on SIS models for the worm spread, e.g.,
our approximation algorithms for the social optimum . : . .
! o . .the n-intertwined model [25]. In this model, nodes are in two
and find that the approximation guarantees in practi

are much smaller than our theoretical bounds Sates - susceptible or infected. Each infected node spread
' the infection to its neighbors with some probability. Aneth

Pure NE represent stable operating points for a system witlosely related class of models is that of Interdependent
selfish users. Therefore, for a network planner, undersigndSecurity games (IDS) [19], which is similar to our model for



the special case of = 1. One crucial technical differencethe vectora. SinceG is fixed andd is clear from the context,
between the two models, which leads to two different gamedgnoteS, (@) the set of nodes that are withihhops ofv in
is the assumption about the initial infection: in IDS, it isGg(, /0.
assumed to originate independently at different nodedgvifii - Generalized Network Security Game GNS(d). We now
our GNS1) model, we assume an initial location is selectefresent our model for a generalized network security game
according to a given probability distribution. GNS(d), parameterized by the hop-limit in the infection
Our formulation of generalized network security games igodel. The game GN@) is specified by a contact grah,
largely motivated by mechanisms to protect communicatigftial infection probability distributionw, and two costs per
networks. Some of our model and results, especially thedowgetwork node. LetC, denote the security cost (installing an
bound results, however, also apply equally well to the spregnti-virus software) of user; we assume the software is fool-
of diseases and the protection of communities through vacgioof so that secure nodes do not get attacked IL.edenote
nations. The pure Nash equilibria correspond to stabletoifne infection cost of user (recovering from a worm attack in
in the space of vaccination decisions made by individualgase an insecure nodegets attacked). For a given strategy
and our approximation algorithms yield public policies foyector g, therefore, the probability that nodegets attacked

vaccination that well-approximate the social welfare. fEhejn this model (denoted by, (@)) is w(S,(@)). Then, the cost
is considerable work in epidemiology, both from a gamggy nodew is defined as

theoretic perspective, as well as on the analysis of disease

spreads through SIR and SIS models [7], [8], [20], [5], [6]. cost, (a) = ayCy + (1 = ay) Ly - py (@) -
The game-theoretic models adopted in these studies, hqweveA
do not consider the impact of the underlying contact networ\l;ect
Furthermore, there is little work on quantifying the effeft
locality (in disease spread or in information availabllity

pure Nash equilibrium (henceforth, pure NE) is a strategy
or @ such that no node has any incentive to switch
his strategy, if all other nodes’ strategies are fixédis a
Nash equilibrium if cost(d[v/x]) > cost,(@) for = € {0,1}.
1. M ODEL AND DEEINITIONS Therefore, a pure NE is a r_1atura| configgration to aim for_ in
, ) , a non-cooperative game. It is easy to verify that the foliayvi
In this section, we present our game-theoretic model f@p4racterization of a pure NE (shown in [2] for the special
network security. case wherg? is the complete graph) holds.
Contact Graph. Let V' denote the set.of u_sers/dewces (henci_emma 1. For v € V, lett, = Cy/L,. A strategy vector
forth, referred to asode$, each of which is assumed to be ary, : . . . o
. d € {0,1}" is a pure NE if the following conditions hold: (i)
autonomous player. L&t denote the underlying contact grap _ - .
. L or all 7 such thata, = 0, w(S,(a)) < t,, and (ii) for all v
over the node se¥’; an edge(u, v) € G indicates that nodesS ch thata. — 1. w(S. (s /0 ;
u andv are directly connected, so that if nodes infected by u v =1, w(Sy(alv/0])) > to.
a Wﬁrm_ 'rt] can p.otenttl)ally sEre(%d fto nor(]i.e\t/]Ve will freéquentlr)]/ Social cost The total social cost of a strategy profile is the sum
¥Vc|’|r with certain subgraphs ,d_orw (;C we mtrod uc%t € of the individual costs, which is cogt) = Y, cost, (a).
ollowing notation. For any undirected grapi and subset a gocially optimum strategy is a vectarthat minimizes this
S5 of vertices of i, we let I/[S] denote the subgraph df ot - this is not necessarily (and is not usually) a pure NE.
induced by the vertices ify. Therefore, the cost of a pure NE relative to the social cost is
Strategies The strategy for each nodeis the decision of an important measure; the maximum such ratio (i.e., over all
whether to install an anti-virus software or not; we use ossible pure NE) is also known as thece of anarchy[21].
variable a, € [0,1] to denote the probability of securing For convenience, Table | summarizes our notations.
the device. In this paper, we focus qure strategies, i.e., V. N
a, € {0,1}. Let @ denote the strategy vector of all nodes. _ o ASH EQUILIBRIA
Following [2], the attack graph G4, is the subgraph of the A. The local infection model = 1

contact graph induced by the set of insecure nodes accordingor the local infection model, we show that a pure NE
to a. always exists. Our proof is by a reduction to a result of
Infection model. We assume that the infection is initiated aBorodin et al. [10] on existence of subgraphs with restdcte
a node chosen frony according to an arbitrary probability degree sequences; their result is based on a potentialdanct
distribution. Letw, denote the probability that node is argument. LetV(v) denote the set of neighbors ofin G.
chosen as the initial infection point; for convenience,
introduce the notation(S) to denote the sum af,, over allv
in S. We parameterize the infection model #ythe maximum Proof: We first define two functions : V' — R and
number of hops over which an infection can be transmitteb; V' — R: for eachv € V, a(v) = w(N(v))—£=+w(v) and
Thus, for a given contact grapfl and strategy vecto#, an b(v) = %—w(v). We argue next, using a generalization of an
infection originating at node infects nodeu if and only u argumenvt due to [10], that there exists a partition= AU B

is within d hops ofv in Gz. For notational convenience, Letsuch that for each € A, we havew(A N N(v)) < a(v) and

d[v/x] be the strategy vector obtained by replacingoy = in  for eachv € B, we havew(B N N(v)) < b(v). Consider the

Weheorem 2. Every GNS(1) instance has a pure NE.



TABLE |
A LIST OF NOTATIONS.

Notations | Explanation
G Contact graph.
G[9] Subgraph ofG induced by the vertices if§.
Cy Security cost for node
Ly Infection cost for nodey

a Strategy vector of nodes.

Gz Attack graph, i.e. the subgraph of the contact grgph
induced by the set of insecure nodes according.td
alv/x) Strategy vector obtained by replacing by x in the
vector a.
Sy (@) Set of nodes that are withig hops ofv in G|, /0
Wy Probability that nodev is chosen as the initia
infection point.
w(S) Sum ofw, over allv in S.
cost,(@) | Cost to nodev given strategy vectod.
GNS(d) | Generalized network security game parameterized by

the disease hop limid.

following function that defines a potential for each paotiti

(A, B).
R(A,B) = ) ,caw(v) (w(ANN(v)) - 2a(v))

+ Y pep () (w(B N N(v)) - 2b(v))

Among all the partitions, we take a partitidel*, B*) min-

imizing R and assert thatA*, B*) is the partition we need.

Assume that a vertex belongs toA*, andw(A* N N(z)) >
a(x). Now we movez from A* to B* to obtain the par-
tition (A’, B’). Becausea(z) + b(z) > w(N(x)), we have
w(N(x) N B') < b(x). By setting A’ to be A* — {z}, R
decreases by(z) (w(N(z) N A*) — 2a(x))+w(z)w(N(x)N
A*) = 2w(z) (w(N(z) N A*) —a(z)), which is a posi-
tive value. By settingB’ to be B* + {z}, R increases
by w(z) (w(N(z) N B*) — 2b(z)) + w(x)w(N(x) N B*)

degree.

Lemma 3. When security and infection costs are uniform, the
price of anarchy inGNS(1) is at mostA + 1, whereA is the
maximum degree of the contact graph.

Proof: Let C' and L denote the security and infection
costs, respectively. Suppoéé> L(A + 1)/n. Then no node
is secured in any pure NE and therefore, the cost of any pure
NE is at mostL(A + 1). In the optimum strategy, each node
has a cost ofC if it is secured, or at least./n otherwise.
Therefore the optimal cost is at ledstand the lemma follows
in this case.

Next, consider the case < L(A +1)/n. In any pure NE,
any node has cost at mast and therefore the cost of a pure
NE is at mostCn. In an optimum solution, each node has
cost at least /n, and therefore, the optimal cost is at leAst
Therefore, the price of anarchy in this case is at mbst 1.

[ |

B. The global infection modeli = ~

In this section, we consider the global modék oo); thus,
any nodev is capable of infecting any other nodeas long
there is a path of insecure nodes betweamdw in the contact
graphG. In this special case, our model is a generalization
of the model of [2] in that we allow different security costs,
infection costs, and initial infection probabilities.

Theorem 4. Every GNS(cc) instance has a pure NE

Proof: Let ¢, = C,/L,; we refer tot, as the threshold
for v. We relabel then nodes so that; > t, > ... > ¢,,
where we break ties arbitrarily. Given a strategy veétowe
say that a secure nodeis happyif w(S,(@[v/0])) > t,, and
unhappyotherwise. Similarly, an insecure nodeis happy

2w(z) (w(N(x) N B*) — b(x)), which is a negative value or 0. (s, (g)) < t,, andunhappyotherwise. Recall that when

This meansk(A*, B*) > R(A’, B’), which is a contradiction.

So such a vertex doesn't exist implying thatA*, B*) is the
desired partition.

Given such a partitior{4, B), we establish the existence

of pure NE. Letd be a strategy vector witlu, = 1 for
all v € A and a, 0 for all v € B; i.e., A denotes
the set of secure nodes. Then, we argue théd indeed a
pure NE. First consider the case wharec A. Thenw is

d = 00, Sy(a@) is the set of nodes that can reaetin G;.
Consider the following potential function.

b(@) = (21(a), P2(@), - ., P (@)

where @, (a) is 0 if v is secure,—1 if v is insecure and
happy, andl otherwise. We next show this potential always
lexicographically decreases. There are two cases:

secure and pays cost,. If v changes strategy, its expected 1) Some node switches from being an insecure unhappy

infection cost isL, (w(N(v) N B) 4+ w(v)). Sincev € A, we
have w(N(v) N A) < a(v) = w(N(w)) — Cy/Ly + w(v).
Therefore,C, < L, (w(N(v)NB)+w(v)), i.e. v won't
change its strategy. Next considee B. Thenwv is not secure
and its expected infection cost 15, (w(N(v) N B) + w(v)).
If v changes strategy, its cost §,. Sincev € B, we
have w(N(v) N B) < b(v) = Cy/L, — w(v). Therefore,
L, (w(N(v)NB)+w()) < C,, i.e. v won't change its
strategy. Thus it follows thai is a Nash equilibrium.

[ |

When the security and infection costs are uniform, we show,
that for the case of = 1, the maximum ratio of the cost of ay,

node to being a secure happy node, changing the strategy
vector froma to b. In this casew(S,(@)) > t,. Since
the set of secure nodes fis a superset of the set
of secure nodes i, it follows that for any nodeu,
w(S, (b)) < w(S,(a)); it thus follows that no insecure
happy node ini can become unhappy in Therefore,
thevth component of the potential decreases bwhile
none of the other components increases.
2) Some node» switches from being secure to not being
secure, changing the strategy vector fraro b. In this

1in fact, our proof of existence of pure NE even extends to #seavhere
initial infection may originate at multiple attack ptinsimultaneously,

pure NE to the social optimum is bounded by the maximusven in an arbitrarily correlated manner; we defer the tetaithe full paper.



case,w(S, (b)) < t,. We thus have theth component to be insecure,L|S;|/2 < C. Therefore, we have

of the potential changing fromi to —1. Consider any > LISi|?/n+Cn < Y, C|S;|+ Cn < 2Cn. The ratio
nodeu # v. If u is secure, then theth component of the between NE and the social optimum is no more than
potential is unchanged. Otherwise, consider two cases. max{4,32,8/a(G)}.

If v andu are in different connected components, thepytting these 2 cases together completes the proof of this
w(Sy (b)) = w(S,(d)), implying that theuth component |emma. m

of the potential is unchanged.dfandwu are in the same ) ) _

connected component, thﬁr(Su(l;)) — w(Sv(g)); thus, C. Thed-neighborhood infection modeit > 1

if « is happy in@ but unhappy in, then it must be the  Having established the existence of a pure NE for every
case that, < t,, implying thatu > v. Thus, the only instance of the generalized network security game in bagh th
components of the potential that can increase are tloeal and the global models, a natural question is whether
components greater than implying that the potential pure NE exist for the entire spectrum @fin between these
decreases lexicographically. two extremes. In this section, we show that for any d <

Since the value of each column in the potential vector . there exist instances of GN& for which there are no
between—1 and1, and this potential vector lexicographicallyPure NE. Furthermore, it is NP-complete to determine whethe

decreases, we conclude that this process converges to a uRdire NE exists for a given instance. We first present the
Nash equilibrium (in fact, in at most® steps). m nhon-existence result which also provides the basis for the N

Even when the security and infection costs are uniform, [Prdness reduction.
showed that the price of anarchy i&n). We give a more | emma 6. For any fixedd, 1 < d < oo, there exists an
precise characterization in terms of the vertex expansitine instance ofGNS(d) in which no pure NE exists.
contact graph. For any grapt over vertex sel/, the vertex ) ) )
expansiom(H) is defined as the largest numhesuch that ~ Proof: We first consider the casé¢ = 2. Consider the
for any subsel/’ of the vertices such thdi”’| < |[V|/2, the instance defined by the contact graph in Figure 1. We set the

set of vertices i/ \ V' that are adjacent to a vertex iff is infection cost to be identical, sa¥, for all nodes. For nodes D
at leastc|V’|. through I, we set the security cost to be high enough so that

) ) _ ) in any equilibrium they are all insecure. That leaves nodes

Lemma 5. When security and infection costs are uniform, thg B and C, for whom we set the security cost such that
price of anarchy in anyGNS(co) game isO(1/a(G)). 9C,/L = 7 for v in {A,B,C}; thus, in any pure NE, node
Proof: First we calculate the lower bound for social I" {A, B, C} is secure if and only ifS, (a[v/0])| > 7. We

optimum. Leta be the strategy vector of a social optimumnoW consider four cases. If all of A, B, and C are insecure

and S, Ss, . .., S, denote the connected componentgip. N @ then we do not have a pure NE sincg (afv/0])| = 9

Without loss of generality, we can assupSg| < |So| < ... < for eachuv in {A, B, C}. If exactly one of A, B, or C,_ Ssay
|S,.|. We consider the following 3 cases: A — is secure, as shown in Figure 2, then B won't change

‘ . ._its strategy sincéSp(d)| = 7, but C will change its strategy
1) 2. [Si| <n/2, wheren is the total number of nodes Insince|Sc(d)| = 8 (Notice C' can reachl, but B cannot). If

G. In this case more than half of the nodes are secure, .
Thus, social optimal cost is at least/2. eXactly two of A, B, C — say A and B — are secure, then B will

2) .15, = n/2 and|S,.| > n/4. Then social optimal change its strategy sin¢8p(a[B/0])| = 7._F|na_\lly, if a_ll three
tis at leash cost (3) > npn/t _ Ln/16 are secure, then none of A, B, or C will .st|ck to its current
3 COSS > /9 ﬁefgm i ?’h4 R — b _strategy sincgS,(@[v/0])] = 5 for eachwv in {A,B,C}. We
) 2i|5i| = n/2 and[Sp| < n/4. Then there must be A have thus established that there is no pure NE in the instance
such that) .. |S;| > n/4. Let S = U;<;S;. Then the -
ber of neighbors of st in G is at least(G)[s| > O Fi9ure 1
nugn er4o 'Phe'lg' orl_s ors 'ml |st_a leas t(' ) t| least It is easy to extend the above non-existence proof to larger
o(G)n/4. This implies social optimal cost is a easy by replacing selected edges in the instance of Figure 1 by

Ca(G)n/4. two-hop paths. Similarly, one can also extend the proof é th
Therefore, the lower bound for social optimum igase of uniform security costs and uniform infection costs b
min{Cn/2, Ln/16, Ca(G)n/4}. inserting additional nodes in the proximity of those nodes i

Next we calculate the upper bound for NE cost. iebe the above instance that have lower security costs. We defer
the strategy vector of a NE. Again, 18, 53, ..., S, denote the details of these extensions to the full paper. ]
the connected components @#. [S1] < [S2| < ... < [Swm|.  We next show that it is, in fact, NP-complete to determine
We consider the following 2 cases. whether a given instance of the generalized network securit

1) L < C. In this case no one is going to be securgame withl < d < co has a pure NE. It is easy to argue that
in NE, which implies its cost isnL. The ratio be- the problem is in NP since one can efficiently verify whether
tween NE and the social optimum is no more thaa given strategy vectaf is a pure NE. In the remainder of
max{2,16,4/a(G)}. this section, we focus on the hardness reduction.

2) L > C. The cost of NE is no more thaw; L|S;|?/n+ Our starting point is the non-existence instance defined in
Cn. Because this is a NE, for those who chooste preceding lemma. We observe that if the security cost of



are as before. The costs of literal nodes are set such thiat the
“threshold” — the number of insecure nodes that can tolerate
without securing themselves — is 1. And the thresholdXas

set to beu+ 1 wherea is the number of adjacent literal nodes;
the threshold forX is set to beb+ 1 whereb is the number of
adjacent literal nodes. We add padding nodes between edges
(X,X), (X,1), (X,I),and(C, I). We set their security costs

to be 0, so they always wish to be secure.

We first show if¢ is satisfiable, then there is a pure NE in
this game. For variable nodg, if its assignment is true, then
make it secure. For literal nodg if its assignment is false,
then make it secure. If a clause is true, then make it secllre. A
the other nodes are insecure. We now argue that the defined
strategy vector is a pure NE. If a variable noHeis secure,
then all the literal nodes connected to it are not secie,
is not secure, while all the literal nodes connectedtaare
secure. Since the formula is satisfiable, all the clause sxode
are secure. It is clear thaX is happy, since its threshold is
b+1 and X is secure. SimilarlyX is happy since if it were to
be insecure, it will be in a component with siaet 2 which
is bigger than its threshold. All the literal nodes connddte
X are happy, because for each of them, the only two adjacent
nodes are secure. And all the literal nodes connected to
are happy, because if any of them does not secure itself, it
will be in a component with size 2, which is bigger than its
threshold. All the clause nodes are happy because the farmul
is satisfiable, at least one of its literal is true, which neah
least one of its literal nodes is insecure, hence this claoge
has to secure itself because its threshold is 6. And withih ea
gadget, we can make node C to secure itself (together with
the nodes D, E, and F) to make all the nodes in the gadget
happy. We thus have a pure NE in the game instance.

Fig. 2. Residual graph wher chooses to secure itself. Next, we argue if the game has a pure NE, then the formula
is satisfiable. Suppose we have a pure NE strategy veéctor
For each variable nodg&, if X is secure, we assigiX to
) be true for the SAT formula; and false otherwise. We know
exactly one of the three nodes {&, H, I}, say G, is reduced yhat in any pure NE, the clause node in each gadget has to

so that G always secures itself, then we do have a pure NE gecyre. Furthermore, exactly only &f and X is secure.
in which C secures itself, while A and B are insecure. Thug, x is secure, theri¥ and all the literal nodes connected to

if we can control the decision of G through an external inpul pave to be insecure, while all the literal nodes connected
then we can use the above instance as a gadget which Pag have to be secure. Since all the clause nodes are happy,
the property: it has a pure NE if and only if G is secure. Wg; 045t one of its literal nodes is not secure, implying that
now show how to use this gadget to obtain an NP-hardngsgh clause at least one of the literals is true. This estesi

Fig. 1. An instance of a contact graph that has no pure NE.

reduction. that the formula is satisfiable.
Theorem 7. The problem of determining if &NS(d) in- In sum, the formula is satisfiable if and only if the security
stance,l < d < oo, has a pure NE is NP-complete. game has Nash equilibrium. It is easy to see that the above
reduction can be carried out in polynomial time, thus yiegdi
Proof: We reduce 3SAT problem to a GNJ instance, the NP-hardness of the problem. ]

and show that a given formula is satisfiable if and only

if the corresponding game has a pure NE. The reduction i8/. OPTIMIZING SOCIAL WELFARE: NP-COMPLETENESS
shown in Figure 3. For each variabk in the formula, we AND APPROXIMATION ALGORITHMS

create two nodes in the contact graph,and X, which are
connected to each other. For each litdrat the formula, we
create a node, and connect it with corresponding varialole. F We show that computing the social optimum is NP-complete
each claus€’, we create a gadget, treat node G as clause node,GNS(d) games for alld. The result ford = oo follows
and connect it to its 3 literal nodes. The costs for gadgeesodrom Aspnes et al. [2], even for the special case where all

A. NP-completeness of computing the social optimum



X1 X4 X8

with the edges(i,j), for all i € V andj € A(i). The
security and infection costs for all nodes ¥ are identical,
C and L, respectively. SeC = (tf;l,)lL + 1. For nodes in
V'\ V, these corresponding costs aré = L'(1 + €)/|V’|
and L’ = 1/M, respectively, wheré/ > |V’|*t. We assume
that the initial infection probability distribution is ufiorm.
Therefore, the contribution, cegt) of a nodev € V' \ V

to the total cost coéi) for any strategy vecto# is at most
max{C’,2L'/|[V’|}, and the total contribution of all such
nodes is at most. We show that the least cost NE has cost
very close to the social optimum.

Let A be a vertex cover fo€, with |A| = a. Consider the
following strategy vectod: for eachi € A, we havea; = 1
anda,, ; = 0 for all j, and fori ¢ A, we havea; = 0 and
Fig. 3. Reduction from 3SAT to GN@). Xi's refer to variable§ in the ay, ; =1 for all j. Following Lemma 1, this vector is a NE
tbooi)rl]iaglggrsrgslalij refers to thejth literal in thesth clause. AndC;’s refer because: (i) for each nodec A, there are at leastinsecure

neighbors (namely, the nodes;), (ii) for eachi ¢ A, the
number of insecure neighbors is at mdstG) < C|V’|/L,
whereA(G) is the maximum degree @, (iii) if i € A, each
nodewv; ; has no insecure neighbor, and sinCgV’|/L" =
1+ ¢, such a node won’t change its strategy, and (iv) ¢ A,
Lemma 8. Computing the social optimum for an instance ofach node; ; has an insecure neighbor and it will stay being
GNS(d) is NP-complete for alll. secure. As in the proof of Lemma 8, co8t < L + |A| + 1.
Therefore, ifG has a vertex cover of sizg the reduced game

Proof: We construct a reduction from vertex cover Ori]nstance has a pure NE of cost at mést k + 1.

regular graphs, which is also NP-complete [14]. Con5|der|:0r the converse. let be the strategy vector of a NE, and

an instance of vertex cover specified by anregular , .
- . A={i:a; =1}NV. Asin the proof of Lemma 8, cogt) =
graph G = (V,FE). We construct an instanc& of the L+|A]+ %H(u,v) a4y = ay = 0, w,0 € V1|, which

GNS(d) problem as follows. Letd = (V'.E') be a implies if A is not a vertex cover fot7, costd) > L + |A]
raph obtained by splitting each edge = , € ’ a )
grap I y SPitting ge (u,v) Therefore, the lemma follows. [ |

by d — 1 auxiliary nodes vci,...,veq—1, SO that
V' =VUUeeg{ve 1, ..,vea—1}, andE’ consists of the edges
Ue:(u,v)EE{(uv Ue,l)a (1), ve,dfl)a (ve,la Ue,Q)a ey (ve,d72a Ve,d—1 . . . .
For all nodesv € V, let them have the same secure cost We describe a general framework to derive approximation
C' and infection cost,. And we setC = % + 1. algorithms for GN%d) games for alld. For fixed d, we
For eachu ¢ V' \ V, we haveL, = 1/|V/] and achieve an approximation ratio atl. Ford = oo, we obtain
C. = (C + L)[V’|. This ensures all nodes i’ \ V are an approximation ratio 0B (logn). Our framework involves
insecure, ang_, . Cost,(@) < e for small constant, for the following three steps.
any strategyi. 1) Formulate a linear programming relaxation.

Let B={v €V :a, =1} for a pure strategyi, and let ~ 2) Letx be the optimum LP solution. Partially round and

I11

C1=X1v-XavXs

security costs, infection costs, and initial infectionlpabilities
are uniform. We now establish NP-completeness fod all 0.

)E}. Approximating the social optimum

b = |B|. It is easy to verify that coi) = W T filter the variables. Lex’ be the resulting solution.
b+e+ %He = (u,v) : u,v € V,ay = a, = 0}]. Therefore, 3) .Round thed splution gppropriatel_y - for constadit this
when we setL > [V| - |[V'|, B is a vertex cover inG of involves solving a suitable covering problem, while for
size k, if and only if the social optimum irZ is at most d = oo this reduces to a vertex separator problem.
%ﬁ‘l)“) +k+e m 1) AnLP Formulation:Let P denote the set of all simple
Ford = 1, we also show that while a pure NE always exist)aths fromi to j of length at mostl. Let x, be the indicator
finding the least cost one is NP-complete. variable for nodev that is 1 if v is secured. Let;; be the

. . _ _ indicator variable for nodes and j that is 1 if there is no

Lemma 9. I_:|nd|ng the least cost pure NE in a given InStanCﬁathP € Pi‘j- consisting entirely of insecure nodes. By abuse

of GNS(1) is NP-complete. of notation, for: = j, we assumey;; = 1 if node i has
Proof: Our proof is a reduction from Vertex Cover. Letbeen secured, i.ex; = 1. We start with the following integer

G be an instance of vertex cover. We construct an instangeogramming formulatiorP of the social optimum.

7 of the game in the following manner. We set the contact

graph to beH = (V' E’) with V' = V U U,cv A(4), where .

the setA(:) = {vi1,...,vi+}, for t > A(G), where A(G) min 35, Co o + 35y L Xiey will — i)

is the maximum degree @f. The setE’ consists ofE along s.t. Y vep o = Yij P E Pfj’- (2)



x, €{0,1} Yo eV would like to determine the minimum weight of vertices that
yi; €{0,1} Vi, jeV can separate all th_e paifs j) for _vvhich y;j. =1.The ele_gant
LP rounding algorithm of [16] yields an integral solutiorr fo
The objective function can be interpreted in the followinghe vertex multi-cut problem, whose costglog n) times the
manner: the first part corresponds to the cost of securings)ocost of fractional solution. We can thus find a $eof vertices
and the second part corresponds to the infection cost, whigh secure such that all pairs of vertices for Whiﬁp =1 are
for nodej is L; times the sum of the probabilities of all nodeseparated and, . x Cy is at mostO((logn) 3=, Cal,).

that have a path tg of length at most consisting entirely  putting the above analyses together, we have the following.
of insecure nodes. The first constraint says that in order to

separate a pair of nodésand j, we need to secure at least! "eorem 10. For any fixedd, the social optimum for an
one node in every patk € P between these two. For= instance ofGNS(d) can be approximated to within a factor
] N ’

we define the only pati# in P to consist of the node of 2d in polynomial time. Ford = co, we obtain anO(log n)-

We relax the IP to a linear program (LP) by changing th@pproxmgtlon to the social optimum, wheteis the number
last two constraints t0 < z,, < 1 and0 < y,; < 1. of nodes in the contact graph.

2) Solving the LP and partial rounding and filteringiVe VI
now perform the following steps. . )
(1) Solve the LP: for any fixedi, the number of paths of e now empirically study the properties of NE and the
length at mostd, |P| is at mostn®D), and therefore, the performance of our_algonthms. We use two classes of graphs:
above program can be solved in polynomial time. Wiieis 0] _random geometric graphs formed by distributinty nodes
not a constant, the program cannot be written down effigienffniformly at random in am x n square and add an edge
but we can solve it in polynomial time using the eIIipsoiﬂPetW?en a pair of nodes if there distance is no more than 1,
method. This requires the construction of a polynomial tim@"d (ii) power law graphs generated by preferential attaitm
separation oracle, which, given a candidate solutiéyy), can Process [4]. These two graph classes are very differeni, wit
decide if it is feasible, or finds a constraint that is infesi he former being a model for wireless networks, while the
Such a separation oracle can be designed as follows: defféer suited for the Internet [13], World Wide Web [4],
the cost of a path to be the sum of the weightf the nodes and err_1ai| networks [11]. Also, they have very contrasting
on the path. For each pairj, compute the shortest path fromProperties, e.g., the latter class has larger separatodsya
i to j in the graph restricted to thé-hop neighborhood of expect to see eff_ects of these differenc_es. We set the iofect
nodei. If this distance exceeds;, the constraints for all the COStS to be identical for every node (this can be done without
pathsp € Pyt are satisfied. Else, the constraint correspondingss of generality for the pure NE analysis) and the security
to the shortest such path is violated. costs are chosen uniformly at random between 0 and the

Ellipsoid-based methods are, however, expensive to implBfection cost.
ment in practice. For the cage= oo, we address this draw- Our main experimental observations are the following.
back by solving an equivalent polynomial-sized LP in which 1) Convergence time for best response strategiés find
we introduce a “distance variable” for each pair of nodes and that best response works pretty well in practice. For

. EXPERIMENTAL RESULTS

replace the exponentially-many path constraints givenlin ( d = oo, we find the convergence time to be linear in
with polynomially-many triangle inequality constraintand the number of nodes for both graph classes, while it
linear number of lower bounds on the distances. It is thisemor seems to be sub-linear in the casedof= 1. For the
compact LP that we solve in our experiments. d-neighborhood model, with < d < oo, best response
(2) Construct a new vectay’ in the following manner: for does not converge to a NE quite often, suggesting that
eachi, j, y;; = 0 if y;; < 1/2 andy;; = 1if y;; > 1/2. Next, even on average, these games do not have NE.
let 2/, = min{2z,,1}, forallv € V. 2) Structural properties of NE and the quality of NB&/e

3) Final rounding: We now round the vectoi’ to an find that high degree nodes tend to be secured in the NE
integral solution. Forl = 1, it is easy to see that' is already for the local game. Additionally, we find that the cost
integral, since each constraint only has two variables. dve n of NE is very low ford = 1 in both the graph classes,
consider general. Consider a pair of nodesand;j such that but it is somewhat high fod = co.
y;; = 1. By constraint (1), along every path of length at ~ 3) Performance of our approximation algorithms for the
mostd between; andj, the sum, ovep € p, of 2, is at least social optimumWhile we show a worst case bound of
1. It follows that along every such path there exists at least O(log n) for approximating the social optimum (Section
one vertexv € p with =/, > 1/d. Consider now the following V), we find that our algorithms perform much better in
filtering procedure: ifz!, < 1/d, we setz!| = 0; otherwise, practice. Ford = 1, the approximation bound is very

we setz!, = 1. It is clear that all the constraints of the LP are close to 1; while ford = oo, it seems to be a constant.
satisfied, and the cost of’ is at mostd times the cost of’,
yielding a final2d approximation.

We finally consider the = co case. In this case, we are left We implement best response in a round robin fashion on
with a minimum weighted vertex multi-cut problem, where wéoth the graph classes and study the convergence time; note

A. Convergence times for best response strategies



that the results of Section IV imply that this converges toka N the global model, about 7 in both graph classes. We note that
Figure 4 shows that the convergence time of the global modkis ratio is for the case of non-uniform costs; we expect the
for random geometric and power law graphs grows lineartatio to be smaller with uniform costs, especially for power
with the number of nodes. Figure 5 shows the correspondilagv graphs owing to their high vertex expansion.

plots for the local model and they seem to grow much slower

than in thed = oo case. Also, for thel-neighborhood model, 450
we find that best response often does not converge to a NE.
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Fig. 4. Convergence time in the global modél= o) for random geometric o . ) .
graphs and power law graphs. C. Empirical performance of approximation algorithms

We now study the empirical performance of the algorithms
we design in Section V for approximating the social optimum.

900 Since computing social optimum is very expensive, we use

random S&‘S@ﬁibﬁ 8:2522 T&X X, XXXX XXXX LP optimallvalu_es as |OYV6F bound. _Figure 7 and 8 show that

850 | x % ><><><X X et X our approximation algorithm’s cost is almost the same as the
LR T LP lower bound for the local model. For the global model,

800 | >< 1 Figure 9 and 10 show that the approximation algorithm’s cost

is within a constant of the LP lower bound, in contrast to the
worst cas&)(log n) bound we prove. Additionally, we observe
that our approximation algorithm has a much better guaeante
for power law graphs than for random geometric graphs.
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Fig. 5. Convergence time in the local modél-€ 1) for random geometric g 500
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B. Structural properties of NE 200

In Figure 6, we examine the degrees of secured nodes in
the NE computed by best response on power law graph with "
5000 vert|ce§, a_nd we find that they tend to be high. In fgct, 0 0 100 200 300 400 500 600 700 800 900 1000
the degree distribution of the secured nodes seems to mirror # of vertices
the overall degree distribution in the graph. We also stiny t
quality of NE in the local and global models. Figure 7 and Big- 7. The costs of the LP solution, our approximation &tar, and the

. . Nash equilibrium computed by best response, for the localehim random

show that the cost of NE is very low for the local model inyemetic graphs.
both graph classes. The ratio to optimal value is at most 1.3.

In contrast, Figure 9 and 10 show that this ratio is larger for
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VIl. CONCLUSION

Non-cooperative games have been recognized as a useful
paradigm for studying decentralized network security prob
lems; however, the resources needed for individual detisio
making are important issues for the implementability offsuc
games. In this paper, we have developed a framework for
network security games parametrized by the amount of local
information available for individual decision making. Waedi
this parameter plays an important role in the structure ef th
equilibria, and needs to be taken into account in such aisalys

NE are considered as natural operating configurations in
such systems with selfish users. Therefore, ensuring tleat th
system has efficient NE is desirable (equivalently, a loweeri
of anarchy (PoA)) for network planners. Specifically, if the
network planner has a limited budget to seckraodes, an
important design problem is to choose a subset of nodes to
secure so that the graph restricted to the remaining nodes ha
low PoA; such a strategy is also referred to aStackelberg
strategy for the network planner [24]. Lemmas 3 and 5,
which bound the PoA in terms of the network parameters,
suggest natural heuristics to design stackelberg stestdgr
the network planner. We discuss this briefly below. Because
of limited space, we omit the proofs of the results mentioned
below.

In the neighborhood model, Lemma 3 shows that PoA is
bounded byA + 1. Therefore, given a budget to secute
nodes, the Stackelberg question is to choose a subset of node
to secure, so that the maximum degree of the residual graph
is minimized. An analogous question, dual to this, is the
following: for a given target maximum degre&’, choose
the smallest set of nodes to secure so that the maximum
degree in the residual graph4s. Both these versions are NP-
complete to solve optimally, but greedy heuristics arelyike
to perform well. In the global model, Lemma 5 shows that
the PoA is bounded by /«(G). The analogous question of
finding an optimal Stackelberg strategy is NP-complete is th
case also. We can use the spectral clustering algorithmBpf [1
which finds an(«, €) clustering of low cost using at most an
e fraction of the edges, while ensuring that each cluster has
expansion at least, as a natural heuristic for this problem.

Finally, there are a number of other possible infection
models which are interesting, and could be more useful in
specific settings. We mention two of them here. In the first
model, we modify the infection model so thatinfects j if
they are within distancé in the original graphg, and remain
connected irg[d] - this models settings in which even secure
nodes can spread the infection, though they themselve®tann
get infected. In the second model, we have a probability for
disease transmission on each edge, which captures SIS/SIR
worm propagation models. Other extensions of our models
include directed and weighted graphs. Many of our results,
especially the lower bounds, extend to these models as well,
though they present new challenges.
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