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Abstract
We study the fundamental problem of information spreading (also known as gossip) in dynamic
networks. In gossip, or more generally, k-gossip, there are k pieces of information (or tokens) that
are initially present in some nodes and the problem is to disseminate the k tokens to all nodes.
The goal is to accomplish the task in as few rounds of distributed computation as possible. The
problem is especially challenging in dynamic networks where the network topology can change
from round to round and can be controlled by an on-line adversary.

The focus of this paper is on the power of token-forwarding algorithms, which do not manip-
ulate tokens in any way other than storing and forwarding them. We first consider a worst-case
adversarial model first studied by Kuhn, Lynch, and Oshman [33] in which the communication
links for each round are chosen by an adversary, and nodes do not know who their neighbors for
the current round are before they broadcast their messages. Our main result is an Ω(nk/ logn)
lower bound on the number of rounds needed for any deterministic token-forwarding algorithm
to solve k-gossip. This resolves an open problem raised in [33], improving their lower bound of
Ω(n log k), and matching their upper bound of O(nk) to within a logarithmic factor.

Our result shows that one cannot obtain significantly efficient (i.e., subquadratic) token-
forwarding algorithms for gossip in the adversarial model of [33]. We next show that token-
forwarding algorithms can achieve subquadratic time in the offline version of the problem, where
the adversary has to commit all the topology changes in advance at the beginning of the compu-
tation. We present two polynomial-time offline token-forwarding algorithms to solve k-gossip: (1)
an O(min{nk, n1.5√logn}) round algorithm, and (2) an (O(nε), logn) bicriteria approximation
algorithm, for any ε > 0, which means that if L is the number of rounds needed by an optimal
algorithm, then our approximation algorithm will complete in O(nεL) rounds and the number
of tokens transmitted on any edge is O(logn) in each round. Our results are a step towards
understanding the power and limitation of token-forwarding algorithms in dynamic networks.
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1 Introduction

In a dynamic network, nodes (processors/end hosts) and communication links can appear
and disappear at will over time. Emerging networking technologies such as ad hoc wireless,
sensor, and mobile networks, overlay and peer-to-peer (P2P) networks are inherently dynamic,
resource-constrained, and unreliable. This necessitates the development of a solid theoretical
foundation to design efficient, robust, and scalable distributed algorithms and to understand
the power and limitations of distributed computing on such networks. Such a foundation is
critical to realize the full potential of these large-scale dynamic communication networks.

As a step towards understanding the fundamental computation power of dynamic networks,
we investigate dynamic networks in which the network topology changes arbitrarily from
round to round. We first consider a worst-case model that was introduced by Kuhn, Lynch,
and Oshman [33] in which the communication links for each round are chosen by an online
adversary, and nodes do not know who their neighbors for the current round are before
they broadcast their messages. (Note that in this model, only edges change and nodes are
assumed to be fixed.) The only constraint on the adversary is that the network should be
connected at each round. Unlike prior models on dynamic networks, the model of [33] does
not assume that the network eventually stops changing and requires that the algorithms
work correctly and terminate even in networks that change continually over time.

In this paper, we study the fundamental problem of information spreading (also known as
gossip). In gossip, or more generally, k-gossip, there are k pieces of information (or tokens)
that are initially present in some nodes and the problem is to disseminate the k tokens to
all nodes. (By just gossip, we mean n-gossip, where n is the network size.) Information
spreading is a fundamental primitive in networks which can be used to solve other problem
such as broadcasting and leader election. Indeed, solving n-gossip, where the number of
tokens is equal to the number of nodes in the network, and each node starts with exactly
one token, allows any function of the initial states of the nodes to be computed, assuming
that the nodes know n [33].

1.1 Our results

The focus of this paper is on the power of token-forwarding algorithms, which do not
manipulate tokens in any way other than storing and forwarding them. Token-forwarding
algorithms are simple, often easy to implement, and typically incur low overhead. In a key
result, [33] showed that under their adversarial model, k-gossip can be solved by token-
forwarding in O(nk) rounds, but that any deterministic online token-forwarding algorithm
needs Ω(n log k) rounds. They also proved an Ω(nk) lower bound for a special class of
token-forwarding algorithms, called knowledge-based algorithms. Our main result is a new
lower bound on any deterministic online token-forwarding algorithm for k-gossip.

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
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We show that every deterministic online token-forwarding algorithm for the k-gossip
problem takes Ω(nk/ logn) rounds. Our result applies even to centralized (deterministic)
token-forwarding algorithms that have a global knowledge of the token distribution.

This result resolves an open problem raised in [33], significantly improving their lower bound,
and matching their upper bound to within a logarithmic factor. Our lower bound also enables
a better comparison of token-forwarding with an alternative approach based on network
coding due to [27, 28], which achieves a O(nk/ logn) rounds using O(logn)-bit messages
(which is not significantly better than the O(nk) bound using token-forwarding), and O(n+k)
rounds with large message sizes (e.g., Θ(n logn) bits). It thus follows that for large token
and message sizes there is a factor Ω(min{n, k}/ logn) gap between token-forwarding and
network coding. We note that in our model we allow only one token per edge per round and
thus our bounds hold regardless of the token size.

Our lower bound indicates that one cannot obtain efficient (i.e., subquadratic) token-
forwarding algorithms for gossip in the adversarial model of [33]. Furthermore, for arbitrary
token sizes, we do not know of any algorithm that is significantly faster than quadratic time.
This motivates considering other weaker (and perhaps, more realistic) models of dynamic
networks. In fact, it is not clear whether one can solve the problem significantly faster
even in an offline setting, in which the network can change arbitrarily each round, but the
entire evolution is known to the algorithm in advance. Our next contribution takes a step in
resolving this basic question for token-forwarding algorithms.

We present a polynomial-time offline token-forwarding algorithm that solves the k-gossip
problem on an n-node dynamic network in O(min{nk, n1.5√logn}) rounds.
We also present a polynomial-time offline token-forwarding algorithm that solves the
k-gossip problem in a number of rounds within an O(nε) factor of the optimal, for any
ε > 0, assuming the algorithm is allowed to transmit O(logn) tokens per round.

The above upper bounds show that in the offline setting, token-forwarding algorithms can
achieve a time bound that is within O(

√
n logn) of the information-theoretic lower bound

of Ω(n+ k), and that we can approximate the best token-forwarding algorithm to within a
O(nε) factor, given logarithmic extra bandwidth per edge.

1.2 Related work
Information spreading (or dissemination) in networks is one of the most basic problems
in computing and has a rich literature. The problem is generally well-understood on
static networks, both for interconnection networks [34] as well as general networks [35, 6]. In
particular, the k-gossip problem can be solved in O(n+k) rounds on any n-static network [38].
There also have been several papers on broadcasting, multicasting, and related problems in
static heterogeneous and wireless networks (e.g., see [5, 15, 14, 22]).

Dynamic networks have been studied extensively over the past three decades. Some of
the early studies focused on dynamics that arise out of faults, i.e., when edges or nodes
fail. A number of fault models, varying according to extent and nature (e.g., probabilistic
vs. worst-case) and the resulting dynamic networks have been analyzed (e.g., see [6, 35]).
There have been several studies on models that constrain the rate at which changes occur, or
assume that the network eventually stabilizes (e.g., see [1, 25, 26]).

There also has been considerable work on general dynamic networks. Some of the earliest
studies in this area include [2, 13] which introduce general building blocks for communication
protocols on dynamic networks. Another notable work is the local balancing approach of [11]
for solving routing and multicommodity flow problems on dynamic networks. Algorithms
based on the local balancing approach continually balance the packet queues across each edge
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of the network and drain packets that have reached their destination. The local balancing
approach has been applied to achieve near-optimal throughput for multicast, anycast, and
broadcast problems on dynamic networks as well as for mobile ad hoc networks [10, 12, 29].

Modeling general dynamic networks has gained renewed attention with the recent advent
of heterogeneous networks composed out of ad hoc, and mobile devices. To address the
unpredictable and often unknown nature of network dynamics, [33] introduce a model in
which the communication graph can change completely from one round to another, with the
only constraint being that the network is connected at each round. The model of [33] allows
for a much stronger adversary than the ones considered in past work on general dynamic
networks [11, 10, 12]. In addition to results on the k-gossip problem that we have discussed
earlier, [33] consider the related problem of counting, and generalize their results to the
T -interval connectivity model, which includes an additional constraint that any interval of
T rounds has a stable connected spanning subgraph. The survey of [32] summarizes recent
work on dynamic networks.

We note that the model of [33], as well as ours, allow only edge changes from round to
round while the nodes remain fixed. Recently, the work of [7] introduced a dynamic network
model (motivated by P2P networks) where both nodes and edges can change by a large
amount (up to a linear fraction of the network size). They show that stable amost-everywhere
agreement can be efficiently solved in such networks even in adversarial dynamic settings.

Recent work of [27, 28] presents information spreading algorithms based on network
coding [4]. As mentioned earlier, one of their important results is that the k-gossip problem
on the adversarial model of [33] can be solved using network coding in O(n + k) rounds
assuming the token sizes are sufficiently large (Ω(n logn) bits). For further references to
using network coding for gossip and related problems, we refer to the recent works of
[27, 28, 8, 17, 23, 36] and the references therein.

Our offline approximation algorithm makes use of results on the Steiner tree packing
problem for directed graphs [21]. This problem is closely related to the directed Steiner tree
problem (a major open problem in approximation algorithms) [19, 39] and the gap between
network coding and flow-based solutions for multicast in arbitrary directed networks [3, 37].

Finally, we note that there are also a number of studies that solve k-gossip and related
problems using gossip-based processes. In a local gossip-based algorithm, each node exchanges
information with a small number of randomly chosen neighbors in each round. Gossip-
based processes have recently received significant attention because of their simplicity of
implementation, scalability to large network size, and their use in aggregate computations,
e.g., [16, 24, 31, 20, 30, 36, 18] and the references therein. All these studies assume an
underlying static communication network, and do not apply directly to the models considered
in this paper. A related recent work on dynamic networks is [9] which analyzes the cover
time of random walks on dynamic networks.

2 Model and problem statement

In this section, we formally define the k-gossip problem, the online and offline models, and
token-forwarding algorithms.
The k-gossip problem. In this problem, k different tokens are assigned to a set V of n ≥ k
nodes, where each node may have any subset of the tokens, and the goal is to disseminate all
the k tokens to all the nodes.
The online model. Our online model is the worst-case adversarial model of [33]. Nodes
communicate with each other using anonymous broadcast. We assume a synchronized
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communication. At the beginning of round r, each node in V decides what message to
broadcast based on its internal state and coin tosses (for a randomized algorithm); at the same
time and independently, the adversary chooses the set of edges that forms the communication
network Gr over V for round r. The only constraint on Gr is that it be connected; this
is the same as the 1-interval connectivity model of [33]. As observed in [33], deterministic
algorithms choose a message based only on their internal state, so this is equivalent to the
adversary knowing the messages to be sent in round r before choosing the edges for round r.
We do not place any bound on the size of the messages, but require for our lower bound that
each message contains at most one token.
The offline model. In the offline model, we are given a sequence of networks 〈Gr〉 where Gr
is a connected communication network for round r. As in the online model, we assume that
in each round at most one token is broadcast by any node. It can be easily seen that the
k-gossip problem can be solved in nk rounds in the offline model; so we may assume that
the given sequence of networks is of length at most nk.
Token-forwarding algorithms. Informally, a token-forwarding algorithm is one that does not
combine or alter tokens, only stores and forwards them. Formally, we call an algorithm for
k-gossip a token-forwarding algorithm if for every node v, token t, and round r, v contains
t at the start of round r of the algorithm if and only if either v has t at the start of the
algorithm or v received a message containing t prior to round r.

Finally, several of our arguments are probabilistic. We use the term “with high probability”
to mean with probability at least 1− 1/nc, for a constant c that can be made sufficiently
high by adjusting related constant parameters.

3 Lower bound for deterministic online token-forwarding algorithms

In this section, we give an Ω(kn/ logn) lower bound on the number of rounds needed by any
deterministic online token-forwarding algorithm for the k-gossip problem. Our lower bound
applies to even centralized algorithms and a large class of initial token distributions. We first
describe the adversary strategy.
Adversary: The strategy of the adversary is simple. We use the notion of free edge introduced
in [33]. In a given round r, we call an edge (u, v) to be a free edge if at the start of round
r, u has the token that v broadcasts in the round and v has the token that u broadcasts
in the round1; an edge that is not free is called non-free. Thus, if (u, v) is a free edge in a
particular round, neither u nor v can gain any new token through this edge in the round.
Since we are considering deterministic token-forwarding algorithms, at the start of each
round, the adversary knows for each node v, the token (if any) that v will broadcast in
that round. In round r, the adversary constructs the communication graph Gr as follows.
First, the adversary adds all the free edges to Gr. Let C1, C2, . . . , Cl denote the connected
components thus formed. The adversary then guarantees the connectivity of the graph by
selecting an arbitrary node in each connected component and connecting them in a line.
Figure 1 illustrates the construction.

The network Gr thus constructed has exactly l − 1 non-free edges, where l is the number
of connected components formed by the free edges of Gr. If (u, v) is a non-free edge in Gr,
then u, v, or both will gain at most new token through this edge. We refer to such a token
exchange on a non-free edge as a useful token exchange.

1 For convenience, when a node does not broadcast any token we will view it as broadcasting a special
empty token that every node has. This allows us to avoid treating the empty broadcast as a special case.



6 Information Spreading in Dynamic Networks

We bound the running-time of any token-forwarding algorithm by identifying a critical
structure that quantifies the progress made in each round. We say that a sequence of nodes
v1, v2, . . . , vk is half-empty in round r with respect to a sequence of tokens t1, t2, . . . , tk if
the following condition holds at the start of round r: for all 1 ≤ i, j ≤ k, i 6= j, either vi is
missing tj or vj is missing ti. We then say that 〈vi〉 is half-empty with respect to 〈ti〉 and
refer to the pair (〈vi〉, 〈ti〉) as a half-empty configuration of size k.

Figure 1 The network constructed by the adversary in a particular round. Note that if node vi

broadcasts token ti, then the 〈vi〉 forms a half-empty configuration with respect to 〈ti〉 at the start
of this round.

I Lemma 1. If m useful token exchanges occur in round r, then there exists a half-empty
configuration of size at least m/2 + 1 at the start of round r.

Proof. Consider the network Gr in round r. Each non-free edge can contribute at most 2
useful token exchanges. Thus, there are at least m/2 non-free edges in the communication
graph. Based on the adversary we consider, no useful token exchange takes place within the
connected components induced by the free edges. Useful token exchanges can only happen
over the non-free edges between connected components. This implies there are at least
m/2 + 1 connected components in the subgraph of Gr induced by the free edges. Let vi
denote an arbitrary node in the ith connected component in this subgraph, and let ti be
the token broadcast by vi in round r. For i 6= j, since vi and vj are in different connected
components, (vi, vj) is a non-free edge in round r; hence, at the start of round r, either vi is
missing tj or vj is missing ti. Thus, the sequence 〈vi〉 of nodes of size at least m/2 + 1 is
half-empty with respect to the sequence 〈ti〉 at the start of round r. J

An important point to note about the definition of a semi-anti-clique is that it only depends
on the token distribution; it is independent of the broadcast in any round. This allows us to
prove the following easy lemma.

I Lemma 2. If a sequence 〈vi〉 of nodes is half-empty with respect to 〈ti〉 at the start of
round r, then 〈vi〉 is half-empty with respect to 〈ti〉 at the start of round r′ for any r′ ≤ r.

Proof. The lemma follows immediately from the fact that if a node vi is missing a token tj
at the start of round r, then vi is missing token tj at the start of every round r′ < r. J

Lemmas 1 and 2 suggest that if we can identify a token distribution in which all half-empty
configuration are small, we can guarantee small progress in each round. We now show that
there are many token distributions with this property, thus yielding the desired lower bound.
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I Theorem 3. From an initial token distribution in which each node has each token inde-
pendently with probability 3/4, any deterministic online token-forwarding algorithm will need
Ω(kn/ logn) rounds to complete with high probability.

Proof. We first note that if the number of tokens k is less than 5 logn, then the number of
rounds needed is at least Ω(n) because even to disseminate one token will take Ω(n) rounds
in the worst-case. The Ω(kn/ logn) lower bound is trivially true in this case. Thus, in the
following proof, we focus on the case where k ≥ 5 logn.

Let El denote the event that there exists a half-empty configuration of size l at the start
of the first round. For El to hold, we need l nodes v1, v2, . . . , vl and l tokens t1, t2, . . . , tl such
that for all i 6= j either vi is missing tj or vj is missing ti. For a pair of nodes u and v, by
union bound, the probability that u is missing tv or v is missing tu is at most 1/4+1/4 = 1/2.
Thus, the probability of El can be bounded as follows.

Pr [El] ≤
(
n

l

)
· k!

(k − l)! ·
(

1
2

)(l2)
≤ nl · kl 1

2l(l−1)/2 ≤
22l logn

2l(l−1)/2

When l ≥ 5 logn, Pr [El] ≤ 1/n2. Thus, the largest semi-anti-clique at the start of the first
round is of size at most 5 logn. It follows that the largest half-empty configuration at the
start of any round is of size at most 5 logn. By Lemma 1, we thus obtain that the number of
useful token exchanges in each round is at most 10 logn, with probability at least 1− 1/n2.

Let Mi be the number of tokens that node i is missing in the initial distribution. Then
Mi is a binomial random variable with E [Mi] = 3k/4. By a straightforward Chernoff bound,
we have the probability that node i misses less than k/8 tokens is

Pr
[
Mi ≥

3k
4 + k

8

]
= Pr

[
Mi ≥

(
1 + 1

6

)
· E [Mi]

]
≤ e−E[Mi]( 1

6 )2 1
2 = e−

3k
4 ( 1

6 )2 1
2 = 1

e96k

Therefore, the total number of tokens missing in the initial distribution is at least n · k/8 =
Ω(kn) with probability at least 1 − n/e96k ≥ 1 − 1/n2 (k ≥ 5 logn). Since the number of
useful tokens exchanged in each round is at most 10 logn, the number of rounds needed to
complete k-gossip is Ω(kn/ logn) with high probability. J

Theorem 3 does not apply to certain natural initial distributions, such as one in which
each token resides at exactly one node. While this class of token distributions has far fewer
tokens distributed initially, the argument of Theorem 3 does not rule out the possibility
that an algorithm, when starting from a distribution in this class, avoids the problematic
configurations that arise in the proof. The following theorem extends the lower bound to
this class of distributions.

I Theorem 4. From any distribution in which each token starts at exactly one node, any
deterministic online token-forwarding algorithm for k-gossip needs Ω(kn/ logn) rounds.

Proof. We consider an initial distribution C where each token is at exactly one node, and
no node has more than one token. Our argument can be easily extended to the case where
nodes may have multiple tokens (we defer its proof to the full paper). Let C∗ be an initial
token distribution from which any deterministic online algorithm needs Ω(kn/ logn) rounds.
The existence of C∗ follows from Theorem 3. We construct a bipartite graph on two copies
of V , V1 and V2. A node v ∈ V1 is connected to a node u ∈ V2 if in C∗ u has all the tokens
that v has in C. We will show below that this bipartite graph has a perfect matching.

Given a perfect matching M , we can complete the proof as follows. For v ∈ V2, let M(v)
denote the node in V1 that got matched to v. If there is an algorithm A that runs in T
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rounds from starting state C, then we can construct an algorithm A∗ that runs in the same
number of rounds from starting state C∗ as follows. First every node v deletes all its tokens
except for those which M(v) has in C. Then algorithm A∗ runs exactly as A. Thus, the
lower bound of Theorem 3, which applies to A∗, also applies to A.

It remains to prove that the above bipartite graph has a perfect matching. This follows
from an application of Hall’s Theorem. Consider a set of m nodes in V2. We want to show
their neighborhood in the bipartite graph is of size at least m. We show this condition holds
by the following 2 cases. If m < 3n/5, let Xi denote the neighborhood size of node i. We
know E [Xi] ≥ 3n/4. Then by Chernoff bound

Pr [Xi < m] ≤ Pr [Xi < 3n/5] ≤ e−
(1/5)2E[Xi]

2 = e−
3n
200

By union bound with probability at least 1 − n · e−3n/200 the neighborhood size of every
node is at least m. Therefore, the condition holds in the first case. If m ≥ 3n/5, we
argue the neighborhood size of any set of m nodes is V1 with high probability. Consider
a set of m nodes, the probability that a given token t is missing in all these m nodes
is (1/4)m. Thus the probability that any token is missing in all these nodes is at most
n(1/4)m ≤ n(1/4)3n/5. There are at most 2n such sets. By union bound, with probability at
least 1− 2n · n(1/4)3n/5 = 1− n/2n/5, the condition holds in the second case. J

4 Subquadratic time offline token-forwarding algorithms

In this section, we give two centralized algorithms for the k-gossip problem in the offline
model. We present an O(min{n1.5√logn, nk}) round algorithm in Section 4.1. Then we
present a bicriteria (O(nε), logn)-approximation algorithm in Section 4.2, which means if L
is the number of rounds needed by an optimal algorithm where one token is broadcast by
every node per round, then our approximation algorithm will complete in O(nεL) rounds
and the number of tokens broadcast by any node is O(logn) in any given round. Both of
these algorithms uses a directed capacitated leveled graph constructed from the sequence of
communication graphs which we call the evolution graph.

Evolution graph: Let V be the set of nodes. Consider a dynamic network of l rounds
numbered 1 through l and let Gi be the communication graph for round i. The evolution
graph for this network is a directed capacitated graph G with 2l + 1 levels constructed as
follows. We create 2l + 1 copies of V and call them V0, V2, . . . , V2l. Vi is the set of nodes at
level i and for each node v in V , we call its copy in Vi as vi. For i = 1, . . . , l, level 2i − 1
corresponds to the beginning of round i and level 2i corresponds to the end of round i. Level
0 corresponds to the network at the start. Note that the end of a particular round and the
start of the next round are represented by different levels. There are three kinds of edges in
the graph. First, for every round i and every edge (u, v) ∈ Gi, we place two directed edges
with unit capacity each, one from u2i−1 to v2i and another from v2i−1 to u2i. We call these
edges broadcast edges as they will correspond to broadcasting of tokens; the unit capacity
on each such edge will ensure that only one token can be sent from a node to a neighbor in
one round. Second, for every node v in V and every round i, we place an edge with infinite
capacity from v2(i−1) to v2i. We call these edges buffer edges as they ensure tokens can be
stored at a node from the end of one round to the end of the next. Finally, for every node
v ∈ V and every round i, we also place an edge with unit capacity from v2(i−1) to v2i−1. We
call these edges as selection edges as they correspond to every node selecting a token out
of those it has to broadcast in round i; the unit capacity ensures that in a given round a
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node must send the same token to all its neighbors. Figure 2 illustrates our construction,
and Lemma 10 (moved to the appendix due to space constraints) explains its usefulness.

Figure 2 An example of how to construct the evolution graph from a sequence of communication
graphs.

4.1 An O(min{n1.5√log n, nk}) round algorithm
Our algorithm is given in Algorithm 1 and analyzed in Lemma 5 and 6, whose proofs are
deferred to the appendix due to space constraints.

I Lemma 5. Let there be k ≤ n tokens at given source nodes and let v be an arbitrary node.
Then, all the tokens can be sent to v using broadcasts in O(n) rounds.

Algorithm 1 O(min{n1.5√logn, nk}) round algorithm in the offline model
1: if k ≤

√
n logn then

2: for each token t do
3: For the next n rounds, let every node who has token t broadcast the token.
4: end for
5: else
6: Choose a set S of

√
n logn random nodes.

7: for each vertex in v ∈ S do
8: Send each of the k tokens to vertex v in O(n) rounds.
9: end for
10: for each token t do
11: For the next

√
n logn rounds, let every node who has token t broadcast the token.

12: end for
13: end if

I Theorem 6. Algorithm 1 solves the k-gossip problem using O(min{n1.5√logn, nk}) rounds
with high probability in the offline model.
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Algorithm 1 can be derandomized using the standard technique of conditional expectations.
We defer the proof of this claim to the full paper.

4.2 An (O(nε), log n)-approximation algorithm
Here we introduce an (O(nε), logn)-approximation algorithm for the k-gossip problem in the
offline model. This means, if the k-gossip problem can be solved on any n-node dynamic
network in L rounds, then our algorithm will solve the k-gossip problem on any dynamic
network in O(nεL) rounds, assuming each node is allowed to broadcast O(logn) tokens,
instead of one, in each round. Our algorithm is an LP based one, which makes use of the
evolution graph defined earlier. The following is a straightforward corollary of Lemma 10.

I Corollary 7. The k-gossip problem can be solved in l rounds if k directed Steiner trees can
be packed in the corresponding evolution graph, where for each token, the root of its Steiner
tree is a source node at level 0, and the terminals are all the nodes at level 2l.

Packing Steiner trees in general directed graphs is NP-hard to approximate even within
Ω(m1/3−ε) for any ε > 0 [21], where m is the number of edges in the graph. Thus, our
algorithm focuses on solving Steiner tree packing problem with relaxation on edge capacities,
allowing the capacity to blow up by a factor of O(logn). First, we write down the LP for the
Steiner tree packing problem (maximizing the number of Steiner trees packed with respect to
edge capacities). Let T be the set of all possible Steiner trees, and ce be the capacity of edge
e. For each Steiner tree T ∈ T , we associate a variable xT with it. If xT = 1, then Steiner
tree T is in the optimal solution; if xT = 0, it’s not. After relaxing the integral constraints
on xT ’s, we have the following LP, referred to as P henceforth. Let F (P) denote the optimal
fractional solution for P.

max
∑
T∈T xT

s.t.
∑
T :e∈T xT ≤ ce ∀e ∈ E

xT ≥ 0 ∀T ∈ T

I Lemma 8 ([21]). There is an O(nε)-approximation algorithm for the fractional maximum
Steiner tree packing problem in directed graphs.

Let L be the number of rounds that an optimal algorithm uses with every node broadcast-
ing at most one token per round. We give an algorithm that takes O(nεL) rounds with every
node broadcasting O(logn) tokens per round. Thus ours is an (O(nε), O(logn)) bicriteria
approximation algorithm, shown in Algorithm 2.

I Theorem 9. Algorithm 2 achieves an O(nε) approximation to the k-gossip problem while
broadcasting O(logn) tokens per round per node, with high probability.

5 Conclusion and open questions

In this paper, we studied the power of token-forwarding algorithms for gossip in dynamic
networks. We showed a lower bound of Ω(nk/ logn) rounds for any deterministic online token
forwarding algorithm which matches the known upper bound of O(nk) up to a logarithmic
factor. This leaves us with an important open question: what is the complexity of randomized
online token-forwarding algorithms? In fact, for small token sizes (e.g., O(logn) bits) even
the best online algorithm we know based on network coding takes O(nk/ logn) rounds [28].
In contrast, we show that in the offline setting there exist centralized token-forwarding
algorithms that run in O(n1.5√logn) time. An interesting open problem is to obtain tight
bounds on offline token-forwarding algorithms.
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Algorithm 2 (O(nε), O(logn))-approximation algorithm
1: Initialize the set of Steiner trees S = ∅.
2: for i = 1→ 2nε do
3: Find L∗ such that with the evolution graph G constructed from level 0 to level 2L∗,

the approximate value for F (P) is k/nε. In this step, we use the algorithm of [21] to
approximate F (P).

4: Let x∗T be the value of the variable xT in the solution from step 3. The number of
non-zero x∗T ’s is polynomial with respect to k. Using randomized rounding, with
probability x∗T include T in the solution, S = S ∪ {T}. Otherwise, don’t include T .

5: Remove communication graphs G1, G2, . . . , GL∗ from the sequence, and reduce the
remaining graphs’ indices by L∗.

6: end for
7: Use Corollary 7 to convert the set of Steiner trees S into a token dissemination schedule.
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A Proofs for the offline model

I Lemma 10. Let there be k tokens, each with a source node where it is present in the
beginning and a set of destination nodes to whom we want to send it. It is feasible to send
all the tokens to all of their destination nodes in a dynamic network using l rounds, where in
each round a node can broadcast only one token to all its neighbors, if and only if k directed
Steiner trees can be packed in the corresponding evolution graph with 2l + 1 levels respecting
the edge capacities, one for each token with its root being the copy of the source node at level
0 and its terminals being the copies of the destination nodes at level 2l.

Proof. Assume that k tokens can be sent to all of their destinations in l rounds and fix one
broadcast schedule that achieves this. We will construct k directed Steiner trees as required
by the lemma based on how the tokens reach their destinations and then argue that they
all can be packed in the evolution graph respecting the edge capacities. For a token i, we
construct a Steiner tree T i as follows. For each level j ∈ {0, . . . , 2l}, we define a set Sij of
nodes at level j inductively starting from level 2l backwards. Si2l is simply the copies of the
destination nodes for token i at level 2l. Once Si2(j+1) is defined, we define Si2j (respectively
Si2j+1) as: for each v2(j+1) ∈ Si2(j+1), include v2j (respectively nothing) if token i has reached
node v after round j, or include a node u2j (respectively u2j+1) such that u has token i at
the end of round j which it broadcasts in round j + 1 and (u, v) is an edge of Gj+1. Such
a node u can always be found because whenever v2j is included in Si2j , node v has token i
by the end of round j which can be proved by backward induction staring from j = l. It
is easy to see that Si0 simply consists of the copy of the source node of token i at level 0.
T i is constructed on the nodes in ∪j=2l

j=0 S
i
j . If for a vertex v, v2(j+1) ∈ Si2(j+1) and v2j ∈ Si2j ,

we add the buffer edge (v2j , v2(j+1)) in T i. Otherwise, if v2(j+1) ∈ Si2(j+1) but v2j /∈ Si2j ,
we add the selection edge (u2j , u2j+1) and broadcast edge (u2j+1, v2(j+1)) in T i, where u
was the node chosen as described above. It is straightforward to see that these edges form
a directed Steiner tree for token i as required by the lemma which can be packed in the
evolution graph. The argument is completed by noting that any unit capacity edge cannot
be included in two different Steiner trees as we started with a broadcast schedule where each
node broadcasts a single token to all its neighbors in one round, and thus all the k Steiner
trees can be simultaneously packed in the evolution graph respecting the edge capacities.

Next assume that k Steiner trees as in the lemma can be packed in the evolution graph
respecting the edge capacities. We construct a broadcast schedule for each token from its
Steiner tree in the natural way: whenever the Steiner tree Ti corresponding to token i uses a
broadcast edge (u2j−1, v2j) for some j, we let the node u broadcast token i in round j. We
need to show that this is a feasible broadcast schedule. First we observe that two different
Steiner trees cannot use two broadcast edges starting from the same node because every
selection edge has unit capacity, thus there are no conflicts in the schedule and each node
is asked to broadcast at most one token in each round. Next we claim by induction that
if node v2j is in T i, then node v has token i by the end of round j. For j = 0, it is trivial
since only the copy of the source node for token i can be included in T i from level 0. For
j > 0, if v2j is in T i, we must reach there by following the buffer edge (v2(j−1), v2j) or a
broadcast edge (u2j−1, v2j). In the former case, by induction node v has token i after round
j − 1 itself. In the latter case, node u which had token i after round j − 1 by induction was
the neighbor of node v in Gj and u broadcast token i in round j, thus implying node v has
token i after round j. From the above claim, we conclude that whenever a node is asked to
broadcast a token in round j, it has the token by the end of round j − 1. Thus the schedule
we constructed is a feasible broadcast schedule. Since the copies of all the destination nodes
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of a token at level 2l are the terminals of its Steiner tree, we conclude all the tokens reach all
of their destination nodes after round l. J

Figure 3 An example of building directed Steiner tree in the evolution graph G based on token
dissemination process. Token t starts from node B. Thus, the Steiner tree is rooted at B0 in G.
Since B0 has token t, we include the infinite capacity buffer edge (B0, B2). In the first round, node
B broadcasts token t, and hence we include the selection edge (B0, B1). Nodes A and C receive
token t from B in the first round, so we include edges (B1, A2), (B1, C2). Now A2, B2, and C2 all
have token t. Therefore we include the edges (A2, A4), (B2, B4), and (C2, C4). In the second round,
all of A, B, and C broadcast token t, we include edges (A2, A3), (B2, B3), (C2, C3). Nodes D and
E receive token t from C. So we include edges (C3, D4) and (C3, E4). Notice that nodes A and B

also receive token t from C, but they already have token t. Thus, we don’t include edges (C3, B4) or
(C3, A4).

Proof of Lemma 5: By lemma 10, we will be done in n+ k rounds if we can show that k
paths, one from every source vertex at level 0 to v2(n+k), can be packed in the corresponding
evolution graph with 2(n+ k) + 1 levels respecting the edge capacities. For this, we consider
the evolution graph and add to it a special vertex v−1 at level −1 and connect it to every
source at level 0 by an edge of capacity 1. (Multiple edges get fused with corresponding
increase in capacity if multiple tokens have the same source.) We claim that the value of the
min-cut between v−1 and v2(n+k) is at least k. Before proving this, we complete the proof of
the claim assuming this. By the max flow min cut theorem, the max flow between v−1 and
v2(n+k) is at least k. Since we connected v−1 with each of the k token sources at level 0 by a
unit capacity edge, it follows that unit flow can be routed from each of these sources at level
0 to v2(n+k) respecting the edge capacities. It is easy to see that this implies we can pack k
paths, one from every source vertex at level 0 to v2(n+k), respecting the edge capacities.

To prove our claimed bound on the min cut, consider any cut of the evolution graph
separating v−1 from v2(n+k) and let S be the set of the cut containing v−1. If S includes no
vertex from level 0, we are immediately done. Otherwise, observe that if v2j ∈ S for some
0 ≤ j < (n + k) and v2(j+1) /∈ S, then the value of the cut is infinite as it cuts the buffer
edge of infinite capacity out of v2j . Thus we may assume that if v2j ∈ S, then v2(j+1) ∈ S.
Also observe that since each of the communication graphs G1, . . . , Gn+k are connected, if



Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, and Zhifeng Sun 15

the number of vertices in S from level 2(j + 1) is no more than the number of vertices from
level 2j and not all vertices from level 2(j + 1) are in S, we get at least a contribution of 1 in
the value of the cut. But since the total number of nodes is n and v2(n+k) /∈ S, there must
be at least k such levels, which proves the claim. J

Proof of Theorem 6: It is trivial to see that if k ≤
√
n logn, then the algorithm will end

in nk rounds and each node receives all the k tokens. Assume k >
√
n logn. By Lemma 5,

all the tokens can be sent to all the nodes in S using O(n1.5√logn) rounds. Now fix a a
node v and a token t. Since token t is broadcast for

√
n logn rounds, there is a set Stv of

at least
√
n logn nodes from which v is reachable within those rounds. It is clear that if S

intersects Stv, v will receive token t. Since the set S was picked uniformly at random, the
probability that S does not intersect Stv is at most

(n−2
√
n logn

2
√
n logn

)
( n

2
√
n logn

) <

(
n− 2

√
n logn
n

)2
√
n logn

= o( 1
n2 ).

Thus every node receives every token with probability 1 − o(1). It is also clear that the
algorithm finishes in O(n1.5√logn) rounds. J

Proof of Theorem 9: We show the following three claims: (i) In Step 7, |S| ≥ k with
probability at least 1− 1/ek/4. This is the correctness of Algorithm 2, saying it can find the
schedule to disseminate all k tokens. (ii) The number of rounds in the schedule produced by
Algorithm 2 is at most O(nε) times the optimal one. (iii) In the token dissemination schedule,
the number of tokens sent over an edge is O(logn) in any round with high probability.

First, we prove claim (i). Let Xi denote the sum of non-zero x∗T ’s in iteration i. X =∑2nε
i=1 Xi. We know E [Xi] = k/nε. Thus, E [X] = 2nεk/nε = 2k, which is the expected

number of Steiner trees in set S. By Chernoff bound, we have

Pr [X ≤ k] = Pr
[
X ≤

(
1− 1

2

)
E [X]

]
≤ e−

(1/2)2E[X]
2 = e−

(1/2)2·2k
2 = 1

ek/4

Thus, |S| ≥ k with probability at least 1− 1/ek/4 in Step 7.
Next we prove claim (ii). Let L denote the number of rounds needed by an optimal

algorithm. Since in Step 3 we used the O(nε)-approximation algorithm in [21] to solve F (P),
we know L∗ ≤ L. There are 2nε iterations. Thus, the number of rounds needed by Algorithm
2 is at most 2nεL∗ ≤ 2nεL, which is an O(nε)-approximation on the number of rounds.

Lastly we prove claim (iii). When Algorithm 2 does randomized rounding in Step 4, some
constraint

∑
T :e∈T xT ≤ ce in P may be violated. In the evolution graph, ce = 1. Let Y

denote the sum of x∗T ’s in this constraint. We have E [Y ] ≤ ce = 1. By Chernoff bound,

Pr [Y ≥ E [Y ] + logn] = Pr
[
Y ≥

(
1 + logn

E [Y ]

)
E [Y ]

]
≤ e

−E[Y ]
[(

1+ logn
E[Y ]

)
ln
(

1+ logn
E[Y ]

)
− logn

E[Y ]

]
≤ 1
nlog logn

Thus, the number of tokens sent over a given edge is O(logn) with probability at least
1− 1/nlog logn. Since there are only polynomial number of edges, no edge will carry more
than O(logn) tokens in a single round with high probability. J
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