# Existence Theorems and Approximation Algorithms for Generalized Network Security Games

V.S. Kumar<sup>1</sup>

R. Rajaraman<sup>2</sup> Z. Sun<sup>2</sup> R. Sundaram<sup>2</sup>

イロト イ理ト イヨト イヨト

<sup>1</sup>Virginia Bioinformatics Institute Virginia Tech

<sup>2</sup>Department of Computer Science Northeastern University

V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram Existence Thm and Approx Algo for Gen Netwk Security Games

## Outline



- Motivation and examples
- Model and definitions

### 2 Our results

- Existence of pure NE
- Approximating the social optimum
- Simulation study

### 3 Concluding remarks

Future work

▲ 글 ▶ ▲ 글

Motivation and examples Model and definitions

# Outline

### Introduction

- Motivation and examples
- Model and definitions

### 2 Our results

- Existence of pure NE
- Approximating the social optimum
- Simulation study

# 3 Concluding remarks

Future work

< 回 > < 三 > < 三

Introduction Our results

Motivation and examples

### **Motivation**

#### Computer network



V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram

イロン イロン イヨン イヨン Existence Thm and Approx Algo for Gen Netwk Security Games

æ

Introduction Our results

Motivation and examples

### **Motivation**

#### Human contact network



V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram

イロン イロン イヨン イヨン Existence Thm and Approx Algo for Gen Netwk Security Games

æ

Motivation and examples Model and definitions

# Outline

#### Introduction

- Motivation and examples
- Model and definitions

### 2 Our results

- Existence of pure NE
- Approximating the social optimum
- Simulation study

# 3 Concluding remarks

Future work

< 回 > < 三 > < 三

Motivation and examples Model and definitions

### Game-theoretic model

- Contact graph: G(V,E).
- Strategies: install anti-virus software or not,  $a_i \in \{0, 1\}$ .
- Security cost/infection cost: *C<sub>i</sub>*, *L<sub>i</sub>*.
- Individual cost:  $cost_i(\bar{a}) = a_iC_i + (1 a_i)L_ip_i(\bar{a})$ .
- Social cost:  $\sum_i cost_i(\bar{a})$ .
- Infection model: we assume infection is initiated at a node (picked with probability propotional to its weight *w<sub>i</sub>*), and transmits over at most *d* (which is a parameter) hops in the contact graph.
- Generalized Network Security Game: GNS(d).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Existence of pure NE Approximating the social optimum Simulation study

# Outline

#### Introduction

- Motivation and examples
- Model and definitions

### Our results

### Existence of pure NE

- Approximating the social optimum
- Simulation study

# 3 Concluding remarks

Future work

Existence of pure NE Approximating the social optimum Simulation study

# List of results

|                      | <i>d</i> = 1 | $1 < d < \infty$ | $d = \infty$             |
|----------------------|--------------|------------------|--------------------------|
| existence of pure NE | Yes          | No/NP-complete   | Yes                      |
| price of anarchy     | $\Delta + 1$ |                  | $O(1/\alpha(G))$         |
| approximating social | 2            | 2d               | <i>O</i> (log <i>n</i> ) |

- Δ is the max degree in the contact graph.
- $\alpha(G)$  is the vertex expansion of the contact graph.

イロト イポト イヨト イヨト

æ

# **Related work**

- Aspnes et al 2006 introduced a basic model for  $d = \infty$  case that we have generalized here.
  - Show existence of pure NE in a uniform version.
  - Give an  $O(\log^{3/2} n)$ -approximation for social optimum.
- Interdependent security games [Kearns-Ortiz 2004].
  - Similar to our model for special case of d = 1.
  - Crucial difference in assumption about initial infection.
- *n*-intertwined games [Omic et al 2009].
  - Based on SIS model for worm spread.
- Considerable work in SIR and SIS models in epidemiology.

Existence of pure NE Approximating the social optimum Simulation study

### Existence of pure NE when $d = \infty$

#### Theorem

Every  $GNS(\infty)$  instance has a pure NE.

- The existence proof is a potential function argument.
- Define Threshold of a node, t<sub>i</sub>: Bound on number of reachable nodes that would make the node want to secure itself.
- w.l.o.g., assume  $t_1 \ge t_2 \ge \cdots \ge t_m$ .
- Define potential function:  $\hat{\Phi}(\vec{a}) = (\Phi_1(\vec{a}), \Phi_2(\vec{a}), \dots, \Phi_m(\vec{a}))$ where  $\Phi_i(\vec{a})$  is 0 if *i* is secure, -1 if *i* is insecure and happy, and 1 otherwise.

イロト 不得 とくほ とくほとう

э.

Existence of pure NE Approximating the social optimum Simulation study

### Example of potential function



- $t_1 = 5, t_2 = 4, t_3 = 3, t_4 = 2, t_5 = 1, t_6 = 1, t_7 = 0.$
- 5 is secured.
- Potential function for this configuration is

(-1, -1, -1, 1, 0, -1, 1).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Existence of pure NE Approximating the social optimum Simulation study

### $\hat{\Phi}(\vec{a})$ lexicographically decreases

- Case 1: unhappy insecure → happy secure. One component decreases by 1, while none of the other components increases.
- Case 2: unhappy secure → happy insecure. All the happy insecure nodes with bigger thresholds are still happy. Happy insecure nodes with smaller thresholds may become unhappy. But the function still decreases lexicographically.

### Outline

#### Introduction

- Motivation and examples
- Model and definitions

### 2 Our results

- Existence of pure NE
- Approximating the social optimum
- Simulation study

### 3 Concluding remarks

Future work

### Approximation algorithm for social optimum

#### LP formulation

- Let P<sup>d</sup><sub>ij</sub> denote the set of all simple paths from i to j of length at most d.
- $\forall v \in V, x_v = 1$  if v is secure;  $x_v = 0$  otherwise.
- ∀*i*, *j* ∈ *V*, *y<sub>ij</sub>* = 1 is there is no *p* ∈ *P<sup>d</sup><sub>ij</sub>* consisting entirely of insecured nodes.

$$\begin{array}{ll} \min & \sum_{v} C_{v} \cdot x_{v} + \sum_{j \in V} L_{j} \sum_{i \in V} w_{i}(1 - y_{ij}) \\ \text{s.t.} & \sum_{v \in p} x_{v} \geq y_{ij} \ p \in P_{ij}^{d} \\ & x_{v} \in \{0, 1\} \ \forall v \in V \\ & y_{ij} \in \{0, 1\} \ \forall i, j \in V \end{array}$$

イロト イポト イヨト イヨト

ъ

Existence of pure NE Approximating the social optimum Simulation study

# Objective function of LP

$$\begin{array}{ll} \min & \sum_{v} C_{v} \cdot x_{v} + \sum_{j \in V} L_{j} \sum_{i \in V} w_{i}(1 - y_{ij}) \\ \text{s.t.} & \sum_{v \in p} x_{v} \geq y_{ij} \ p \in P_{ij}^{d} \\ & x_{v} \in \{0, 1\} \ \forall v \in V \\ & y_{ij} \in \{0, 1\} \ \forall i, j \in V \end{array}$$

- First part of the objective function corresponds to the cost of securing nodes.
- Second part corresponds to the infection cost. For node *j*, its infection cost is L<sub>j</sub> times the sum of the probabilities of all nodes that have a path to *j* of length at most *d* consisting entirely of insecure nodes.

ヘロト ヘワト ヘビト ヘビト

### Constraints of LP

$$\begin{array}{ll} \min & \sum_{v} C_{v} \cdot x_{v} + \sum_{j \in V} L_{j} \sum_{i \in V} w_{i}(1 - y_{ij}) \\ \text{s.t.} & \sum_{v \in p} x_{v} \geq y_{ij} \ p \in P_{ij}^{d} \\ & x_{v} \in \{0, 1\} \ \forall v \in V \\ & y_{ij} \in \{0, 1\} \ \forall i, j \in V \end{array}$$

• Constraint says, in order to separate a pair of nodes *i* and *j*, we need to secure at least one node in every path between these two.

イロト イポト イヨト イヨト

æ

# Solving LP

- *d* is a constant:
  - Number of paths of length at most *d* is polynomial.
  - So LP is poly-size and can be solved in poly-time.
- *d* is not a constant:
  - Number of paths superpolynomial; still LP solvable using ellipsoid method.
  - Can also solve an equivalent LP of polynomial size.

# Partial rounding

#### LP objective

min 
$$\sum_{v} C_{v} \cdot x_{v} + \sum_{j \in V} L_{j} \sum_{i \in V} w_{i}(1 - y_{ij})$$

- Let (*x*, *y*) denote an optimal solution.
- Round each y<sub>ij</sub> to nearest integer.
  - So values at least 1/2 are rounded up to 1 and less than 1/2 rounded down to 0.
- Scale up each  $x_{ij}$  by a factor of 2.
  - If scaled value exceeds 1, set it to 1.
- New solution (x, y) is still feasible and new cost at most twice that before.

イロト イポト イヨト イヨト

æ

# Final rounding

$$\sum_{v\in p} x_v \geq y_{ij} \ p \in P^d_{ij}$$

- It remains to round the *x*-values.
- Simple approach: Each *x<sub>ij</sub>* that is at least 1/*d* is rounded up to 1, other *x<sub>ij</sub>*s rounded down to 0.
  - Yields 2*d*-approximation.
  - Perhaps acceptable for small d.
- For  $d = \infty$ :
  - Need to select a set of nodes to secure such that all pairs of nodes i, j with  $y_{ij} = 1$  are separated.
  - This is precisely a vertex multicut problem for which *x*-values give a fractional optimum.
  - Use algorithm of Garg-Vazirani-Yannakakis to round the *x*-values and obtain an *O*(log *n*)-approximation.

★ E → ★ E →

## Outline

#### Introduction

- Motivation and examples
- Model and definitions

### Our results

- Existence of pure NE
- Approximating the social optimum
- Simulation study

# Concluding remarks

Future work

- Study the convergence time for best response strategies.
- Study the performance of our approximation algorithms.
- Simulate on 2 types of graphs.
  - Random geometric graphs: distributing  $n^2$  nodes uniformly at random in an  $n \times n$  square, and add an edge between a pair of nodes if there distance is no more than 1.
  - Preferential attachment graphs.

Introduction Existence of Our results Approximat Concluding remarks Simulation

Existence of pure NE Approximating the social optimum Simulation study

### Convergence time



V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram Existence Thm and Approx Algo for Gen Netwk Security Games

### Performance of approx algorithms

Results for preferential attachment graphs.



V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram Existence Thm and Approx Algo for Gen Netwk Security Games

### Performance of approx algorithms

#### Results for random geometric graphs.



V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram Existence Thm and Approx Algo for Gen Netwk Security Games

Future work

# Outline

#### Introduction

- Motivation and examples
- Model and definitions

### 2 Our results

- Existence of pure NE
- Approximating the social optimum
- Simulation study

# Concluding remarks Euture work

→ E > < E</p>

< 🗇 🕨

Future work

### Future work

- Incorporate unreliable anti-virus software/vaccination.
  - For a natural probabilistic model, we can show pure NE may not exist.
- Consider other virus/disease transmission models.
  - Again, pure NE may not exist in a probabilistic transmission model.
- In probabilistic models, approximating social optimum is challenging since even estimating the epidemic size given secure nodes is #P-hard.
- Stackelberg equilibrium: Given a budget of k secure nodes, find low-cost pure NE
- For *d* = ∞, bridge gap between upper (*O*(*logn*)) and lower bound (*O*(1)) on approximation ratio achievable in poly-time.