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Introduction

Diffusion process

Diffusion is the spread of information or commodities in the
network through local transmissions.
Harmful/Negative diffusions:

Diffuse harmful information (e.g. diseases, viruses).
Analyze the converging time and the extend of diffusion
processes
Design good intervention strategies.

Positive diffusions:
Diffuse useful information (e.g. innovations, ideas).
Analyze the converging time of diffusion processes.
Design efficient algorithms for fast diffusion.
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Introduction

Motivation

Innovations, ideas, gossip.
Diseases.
Friendship.

Resource discovery.
Computer viruses.
Also sensor networks,
mobile networks, etc.

3 / 46



Enabling and Controlling Diffusion Processes in Networks

Introduction

Thesis concentration

What is the optimal intervention strategy for a given
contact network?
How effective are interventions of individual choices and
behaviors.

Individuals make their own intervention strategies.
Individuals exhibit risk behavior changes.

Analyze positive diffusions on dynamic networks.
Resource discovery in the networks of gossip.
Information dissemination in adversarial networks.
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Controlling harmful diffusions

Models for harmful diffusions

Model

Contact graph: G = (V ,E).
Intervention: ai ∈ {0,1}

ai = 1: node i takes intervention.
ai = 0: node i dosen’t take intervention.

Intervention vector: ā = (a1,a2, . . . ,an).
Intervention cost and infection cost: Ci ,Li .
Individual cost: cost (ā) = aiCi + (1− ai)pi(ā)Li , where
pi(ā) is the probability that node i gets infected given ā.
Social cost:

∑
i cost (ā).

We assume the infection is initialized at a node randomly
picked according to an arbitrary probability distribution
w̄ = (w1,w2, . . . ,wn).
Disease transmission locality parameter d : how far the
disease can transmit from the source node.
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Controlling harmful diffusions

Models for harmful diffusions

Example (d = 2)

Original graph A and F take interventions
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Controlling harmful diffusions

Models for harmful diffusions

Example (d = 2)

B started infection Spread distance d
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Controlling harmful diffusions

Centralized intervention strategies

Centralized strategies

Problem definition:
Given any contact graph, find intervention vector ā to
minimize the social cost∑

i cost (ā) =
∑

i [aiCi + (1− ai)pi(ā)Li ].
Our results:

Computing the social optimum is NP-complete for all d .
Give an LP based approximation algorithm.

d <∞: 2d-approximation.
d =∞: O(log n)-approximation.

Results published in [Kumar-Rajaraman-Sun-Sundaram
2010].
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Controlling harmful diffusions

Centralized intervention strategies

Related work

[Aspnes-Chang-Yampolsky 2006] introduced a basic
model for d =∞ case with uniform intervention and
infection costs which we have generalized here.

Give an O(log1.5 n)-approximation for social optimum.

[Chen-David-Kempe 2010] independently gave an
O(log n)-approximation algorithm.
[Dezsö-Barabási 2002] studied how to control virus
transmission on scale-free networks.
[Borgs-Chayes-Ganesh 2010] studied how to distribute
antidotes to control epidemics.
Considerable work in SIR and SIS models in epidemiology.
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Controlling harmful diffusions

Centralized intervention strategies

Example for calculating pi(ā)

Initial infection probability
is 1/8 for all nodes.
d = 2: pB(ā) = 5/8, and
pG(ā) = 3/8.
d =∞:
pB(ā) = pG(ā) = 6/8.
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Controlling harmful diffusions

Centralized intervention strategies

Approximation algorithm for social optimum

LP formulation

Let Pd
ij denote the set of all simple paths from i to j of

length at most d .
∀v ∈ V , xv = 1 if v is secure; xv = 0 otherwise.
∀i , j ∈ V , yij = 1 is there is no p ∈ Pd

ij consisting entirely of
insecure nodes.

min
∑

v Cv · xv +
∑

j∈V Lj
∑

i∈V wi(1− yij)

s.t.
∑

v∈p xv ≥ yij ∀p ∈ Pd
ij

xv ∈ {0,1} ∀v ∈ V
yij ∈ {0,1} ∀i , j ∈ V
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Controlling harmful diffusions

Centralized intervention strategies

LP in details

min
∑

v Cv · xv +
∑

j∈V Lj
∑

i∈V wi(1− yij)

s.t.
∑

v∈p xv ≥ yij ∀p ∈ Pd
ij

First part of the objective function corresponds to the cost
of securing nodes.
Second part corresponds to the infection cost. For node j ,
its infection cost is Lj times the sum of the probabilities of
all nodes that have a path to j of length at most d
consisting entirely of insecure nodes.
Constraint says, in order to separate a pair of nodes i and
j , we need to secure at least one node in every path
between these two.
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Controlling harmful diffusions

Centralized intervention strategies

Example of LP constraints

d = 2.
Look at the constraints for
A, D pair.

xA + xB + xD ≥ yAD
xA + xC + xD ≥ yAD

16 / 46



Enabling and Controlling Diffusion Processes in Networks

Controlling harmful diffusions

Centralized intervention strategies

Algorithm overview

Solve the LP, and obtain fractional solutions (x , y).
d is a constant:

Number of paths of length at most d is polynomial.
d is not a constant:

Number of paths superpolynomial; still LP solvable using
ellipsoid method.

Partial rounding to obtain integral y values.
Final rounding to obtain integral x values.
Show the cost of integral solution is within 2d or O(log n)
factor of the optimal LP solution.
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Controlling harmful diffusions

Centralized intervention strategies

Partial rounding

min
∑

v Cv · xv +
∑

j∈V Lj
∑

i∈V wi(1− yij)

s.t.
∑

v∈p xv ≥ yij ∀p ∈ Pd
ij

Let (x , y) denote an optimal solution.
Round each yij to nearest integer.

So values at least 1/2 are rounded up to 1 and less than 1/2
rounded down to 0.

Scale up each xv by a factor of 2.
If scaled value exceeds 1, set it to 1.

New solution (x , y) is still feasible and new cost at most
twice that before.
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Controlling harmful diffusions

Centralized intervention strategies

Final rounding

∑
v∈p

xv ≥ yij p ∈ Pd
ij

It remains to round the x-values.
Simple approach: Each xv that is at least 1/d is rounded
up to 1, other xv s rounded down to 0.

Yields 2d-approximation.
Perhaps acceptable for small d .

For d =∞:
Need to select a set of nodes to secure such that all pairs
of nodes i , j with yij = 1 are separated.
This is precisely a vertex multicut problem for which
x-values give a fractional optimum.
Use algorithm of Garg-Vazirani-Yannakakis to round the
x-values and obtain an O(log n)-approximation.
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Controlling harmful diffusions

Decentralized intervention strategies

Models:
We use game theoretic analysis.
Strategy for each node is either taking the intervention
(ai = 1) or not (ai = 0).
Utility for each node is the cost function
cost (ā) = aiCi + (1− ai)pi(ā)Li

Our results (published in [Kumar et al 2010]):
d = 1 1 < d <∞ d =∞

existence of pure NE Yes No/NP-complete Yes
price of anarchy ∆ + 1 O(1/α(G))

∆ is the max degree in the contact graph.
α(G) is the vertex expansion of the contact graph.
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Controlling harmful diffusions

Decentralized intervention strategies

Related work

[Aspnes et al 2006] introduced a basic model for d =∞
case that we have generalized here.

Show existence of pure NE in a uniform version.
[Kearns-Ortiz 2004] introduced interdependent security
games.

Similar to our model for special case of d = 1.

[Bauch-Earn 2004] used game theory to analyze
vaccination uptake level to eradicate diseases.
[Omic et al 2009] introduced n-intertwined games.

Based on SIS model for worm spread.

[Grossklags-Christin-Chuang 2008] introduced information
security games.
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Controlling harmful diffusions

Decentralized intervention strategies

Existence of pure NE when d =∞

Theorem

There is a pure NE when d =∞.

The existence proof is a potential function argument.
Define Threshold of a node, ti : Bound on number of
reachable nodes that would make the node want to secure
itself.

Ci vs Li(ti + 1)/n =⇒ ti = nCi/Li − 1

w.l.o.g., assume t1 ≥ t2 ≥ · · · ≥ tm.
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Controlling harmful diffusions

Decentralized intervention strategies

Potential function

Define potential function: Φ̂(~a) =
(
Φ1(~a),Φ2(~a), . . . ,Φn(~a)

)
where Φi(~a) is 0 if i is secure, −1 if i is insecure and happy,
and 1 otherwise.

t1 = 7, t2 = 7, t3 = 6, t4 =
2, t5 = 1, t6 = 1.
3 is secured.
Potential function for this
configuration is
(−1,−1,0,−1,1,1).
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Controlling harmful diffusions

Decentralized intervention strategies

Proof overview

Start with an arbitrary strategy vector ā.
Show potential function Φ̂(~a) decreases lexicographically
when everyone does best response.
There is a lower bound on the potential function, thus will
reach a stable value.
Everyone is satisfied with current strategy (pure NE).
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Controlling harmful diffusions

Decentralized intervention strategies

Φ̂(~a) lexicographically decreases

Case 1: unhappy insecure→ happy secure. One
component decreases by 1, while none of the other
components increases.
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Controlling harmful diffusions

Decentralized intervention strategies

Φ̂(~a) lexicographically decreases

Φ̂(~a) : (−1,−1,0,−1,1,1)→ (−1,−1,0,−1,−1,0)
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Controlling harmful diffusions

Decentralized intervention strategies

Φ̂(~a) lexicographically decreases

Case 2: unhappy secure→ happy insecure. All the happy
insecure nodes with bigger thresholds are still happy.
Happy insecure nodes with smaller thresholds may
become unhappy. But the function still decreases
lexicographically.
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Controlling harmful diffusions

Decentralized intervention strategies

Φ̂(~a) lexicographically decreases

Φ̂(~a) : (−1,−1,0,−1,−1,0)→ (−1,−1,−1,1,1,0)
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Proposed research

Intervention strategies with the existence of risk behaviors

Motivation:
Drive faster with seat belt on.
Have more contact when vaccinated.
Take more risk with government bailout.
How risk behavior is going to affect intervention strategies?

Model:
Contact graph G = (V ,E).
Each node either applies intervention or not.
Intervention succeeds with probability ps.

If succeeds, the node is immune.
If fails, the node is still susceptible.

Disease transmission probability p.
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Proposed research

Intervention strategies with the existence of risk behaviors

Risk behavior change models

1-sided: disease transmission probability on (u, v) is pm if
either u or v is intervention failed node.
2-sided: disease transmission probability on (u, v) is pm if
both u and v are intervention failed nodes.
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Proposed research

Intervention strategies with the existence of risk behaviors

Epidemic size calculation

Discrete time SIR (susceptible-infected-recovered) model.
An infected node is assume to recover in one unit of time.
Each infected node infects its neighbors independently
with probability p or pm.
Epidemic size is the number of nodes that ever get
infected.
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Proposed research

Intervention strategies with the existence of risk behaviors

Less is more and non-monotonicity

For both 1-sided and 2-sided risk behavior models, less
interventions may be more effective.
True for both randomized and targeted strategies.
Simulated on scale-free graphs and Erdös-Rényi random
graphs.
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Proposed research

Intervention strategies with the existence of risk behaviors

Random “may be” better than targeted

Intervention strategies:
Apply interventions to each node uniformly at random.
Apply interventions to nodes with high degrees.

In both 1-sided and 2-sided models, random intervention
strategy can be better than targeted strategy.
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Proposed research

Intervention strategies with the existence of risk behaviors

Ongoing research

Have rigorous proofs for “less is more” and “random better
than targeted” observations.
Have rigorous proofs on special families of graphs (e.g.
Erdös-Rényi random graphs, locally-finite infinite graphs).
Run simulations on real data sets.
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Proposed research
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Proposed research

Enabling positive diffusions in dynamic networks

Resource discovery

In peer-to-peer networks, nodes can only communicate
with those whose IP addresses are known.
Design efficient distributed algorithm to discover IP
addresses on the network.
The network is altered dynamically by the diffusion process
itself.
Also applies to friendship discovery in social networks.
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Proposed research

Enabling positive diffusions in dynamic networks

Related work

[Harchol-balter et al 1999] studied this process with
message size Ω(n), and showed an O(log2 n) bound.
[Law-Siu 2000] gave an O(log n) randomized algorithm for
resource discovery where the message size is Ω(n).
[Kutten-Peleg-Vishkin 2003] proposed a deterministic
algorithm which solves resource discovery in O(log n) time
but the message size is still Ω(n).
[Kutten-Peleg 2002] and [Abraham-Dolev 2006] studied
asynchronous resource discovery.
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Proposed research

Enabling positive diffusions in dynamic networks

Our algorithms

Push discovery
(triangulation): In each
round, each node chooses
two random neighbors and
connects them by
“pushing” their mutual
information to each other.
Notice the message size
here is O(log n).

Triangulation process
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Proposed research

Enabling positive diffusions in dynamic networks

Our algorithms

Pull discovery (two-hop
walk): In each round, each
node connects itself to a
random neighbor of one of
its randomly chosen
neighbors, by “pulling” a
random neighboring ID
from a random neighbor.
Notice the message size
here is O(log n).

Two-hop walk process
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Proposed research

Enabling positive diffusions in dynamic networks

Ongoing research

We are interested in the converging time.
In undirected graphs, we showed the upper bound for both
triangulation process and two-hop walk process is
O(n log2 n), while Ω(n log n) is the lower bound.
In directed graphs, we showed the upper bound for
two-hop walk process is O(n2 log n), while the lower bound
is Ω(n2 log n) for weakly connected graphs and Ω(n2) for
strongly connected graphs.
We conjecture that both processes complete in O(n log n)
time in undirected graphs.
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Proposed research

Enabling positive diffusions in dynamic networks

Information dissemination in adversarial networks

k different pieces of information assigned to a set of nodes.
Goal is to diffuse all k pieces of information to every node
on the network.
We consider adversarial network.
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Proposed research

Enabling positive diffusions in dynamic networks

Related work

[Kuhn et al 2010] studied information dissemination
problem in adversarial networks, and showed a tight bound
O(kn) in the “shout-out” model with message size O(log n).
[Haeupler-Karger 2011] studied the same problem using
network encoding.
[Karp-Schindelhauer-Shenker-Vöcking 2000] introduced
pull and push models.
[Boyd-Ghosh-Prabhakar-Shah 2006] studied randomized
gossip algorithms.
[Mosk-Aoyama-Shah 2006] studied how to compute
separable functions via gossip.
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Proposed research

Enabling positive diffusions in dynamic networks

Proposed research

Design efficient algorithms for information dissemination
problems in other models.
Randomized vs deterministic.
Centralized vs distributed.
Broadcast vs unicast.
Resilience of the communication links.
Power of the adversary.
RandomizedTokenForwarding: In each round, node u
sends a piece of information to each of its neighbors which
they don’t have yet.
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Conclusion

Conclusion

Controlling harmful diffusions.
Give a 2d (or O(log n)) approximation algorithm for
centralized intervention strategies.
Show the existence (or non-existence) for decentralized
intervention strategies, and give performance bound on the
decentralized solutions with respect to optimal centralized
solutions.
With the existence of risk behaviors, observe interesting
phenomena and propose to give rigorous proofs.

Enabling positive diffusions in dynamic networks.
Resource discovery: give almost tight bounds on
converging time for both triangulation and two-hop walk
processes.
Information dissemination in adversarial network: propose
to devise efficient algorithms.
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