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Abstract

Diffusion processes are important models for many real-world phenomena, such as the spread of
disease or rumors. We propose to study different aspects of diffusion processes in networks, focusing on
designing efficient distributed algorithms for positive diffusion processes and good intervention strategies
to control harmful diffusions.

First, we design and analyze various distributed algorithms for diffusion processes. We want to devise
efficient distributed algorithms, which are easy to implement, to help the spreading of positive/useful
information. We refer to these processes as positive diffusions. Earlier work has studied this for a variety
of models, mainly based on static networks. The major point that separates our research with previous
work is that we consider dynamically changing networks, which extends previous models to a larger range
of real-life situations. Depending on the ways that networks are altered, we propose to study diffusion
processes over the following two types of dynamic networks: (1) networks are changed due to individuals’
decisions or behaviors; (2) networks are controlled by an adversary.

Secondly, we study how to devise good intervention strategies to control diffusion processes. This
problem is crucial when we deal with harmful information like human diseases or computer viruses.
We refer to these processes as harmful diffusions. We distinguish between centralized and decentralized
intervention strategies. In centralized intervention strategies, there is a controller who has a limited
amount of intervention resources (e.g. vaccinations or antidotes in the case of diseases). We study the
problem of allocating these limited resources among the network agents so that the spread of the diffusion
process is minimized. In decentralized intervention strategies, each individual in the network makes their
own decision on protecting themselves, based on their individual utility and local knowledge. In such
settings, we are interested in questions such as: is there a stable set of intervention strategies? What’s
the cost of decentralized solutions compared with an optimal centralized one? Lastly, we augment our
studies of intervention strategies with the consideration about individual behavior changes which would
lead to a new kind of network dynamics. Earlier work has shown that the combination of behavior change
and intervention failure (e.g. failed vaccination) can lead to perverse outcomes where less (intervention
resources) is more (effective). However, the extent of the perversity and its dependence on network
structure as well as the precise nature of the behavior change has remained largely unknown.

1 Introduction

A number of real world applications can be modeled as diffusion processes over networks. Some prominent
examples include diseases transmitted among humans, viruses transmitted over computer networks, infor-
mation/ideas spread over contact networks, and creation of friendships through social networks. Despite the
diversity among these applications, there are lots of fundamental similarities in the mathematical models.
Understanding the dynamics of these mathematical models can help us anticipate, exploit, and control the
propagation processes.

A lot of interesting questions could be asked about the dynamics. Consider human disease or computer
virus transmission for example. Will it become an epidemic? How much time does it take to become an
epidemic? Who will get infected? What’s the social cost of the epidemic? Once we understand all these,
we could design interventions to control the dynamics. For instance, how do we vaccinate or quarantine
the population so that the epidemic is controlled? How do we secure computers to enhance the network
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resilience? What polices should be applied with budget constraints (limited vaccines or anti-virus software
licenses), how should we distribute resources, and how much can we reduce the social cost? Often these
interventions can be translated into voluntary directives from government, like take vaccines or stay at
home. However, people usually don’t adhere to such recommendations. Instead, they make decisions based
on their specific utilities and objectives. Such decisions happen in a decentralized manner, which makes game
theory a natural approach to study these problems. Moreover, people alter their contacts dynamically. For
example, a vaccinated person may increase his/her contacts with friends, due to perceived secure feelings.
These behavioral changes have a huge impact on the dynamics and the effectiveness of these interventions,
so that “good” intervention strategies might be ineffective, depending on the behavioral changes. All these
make the analysis of dynamically changing networks more interesting and challenging.

We classify our research work into the following two categories. First, we design and analyze efficient
distributed algorithms for positive diffusion processes over dynamically changing networks. We introduce
our work in Section 1.1, and state detailed results and proposed research in Section 3. Secondly, we study
intervention strategies for harmful diffusion processes. This is extremely important when we deal with
diseases, viruses, or other harmful information. Not only do we need to know when there is an epidemic,
but also we should be able to design good intervention strategies to reduce our loss. We introduce this line
of work in Section 1.2, and state detailed results and proposed research in Section 4.

1.1 Distributed algorithms for positive diffusions

In peer-to-peer (P2P), wireless, and sensor networks, how to spread information efficiently in a distributed
manner is an important problem. Thus, designing simple (easy to implement and deploy) distributed al-
gorithms, that provide a good guarantee on the spreading time, is crucial for the success of such systems.
Indeed, a huge body of research work has been devoted to this area [57, 39, 89, 23, 35, 59, 43, 98]. How-
ever, the vast majority study and analyze the diffusion processes defined on static networks. In many P2P,
wireless, and sensor networks, however, the underlying communication links may be broken temporarily, and
users/nodes may join and leave over time. Only recently has there been some work considering diffusion over
dynamic adversarial networks [4, 67]. Therefore, we propose and analyze several distributed algorithms over
different kinds of dynamically changing networks. First we consider the case where networks are changed
by the diffusion process itself. A canonical example of such a network is resource discovery problem, which
is introduced in Section 1.1.1. The second dynamic model we consider is the adversary networks. We study
token dissemination problem under such dynamics, which is introduced in Section 1.1.2.

1.1.1 Resource discovery

When a P2P network is formed, the first task for a node is to discover all the other available nodes on the
network. We refer such problem as resource discovery. Designing good distributed algorithms for resource
discovery can improve the efficiency and scalability of these P2P systems.

We model the network as a graph. Each node represents a computer/user in the network. If node u
knows the existence of node v (namely node u discovered node v), then there is an edge between u and v.
Each node can only discover new nodes through the nodes he already knows. Every time u discovers a new
node in the network, he creates an edge to this node. We want to understand how much time it takes for
every node in the network to discover all the nodes.

We propose two “simple” distributed algorithms for the resource discovery problem, triangulation and
2-hop random walk. We run simulations for both algorithms on various families of graphs, and observe that
both of them have good running time (nearly linear time). Thus, in Section 3.1, we focus on proving the
following conjecture: the running time for triangulation and 2-hop random walk algorithms is O(n log n) on
graphs with n nodes.
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1.1.2 Token dissemination

The token dissemination problem is one of the most popular and well studied problems in distributed
computing. At a high level, it can be stated as follows. Every node in the network has a piece of information
she wants to spread. The goal is to design an distributed algorithm that spreads each piece of information
to all the other nodes as efficiently as possible. Most of the studies on the token dissemination problem have
been restricted to static networks, which do not model the real world very well, especially in the case of
wireless and sensor networks, where the underlying links are not reliable and nodes can join and leave over
time.

Inspired by the works [4, 67], we propose several efficient distributed algorithms for adversary networks.
If the adversary can disconnect the graph, then it is imposible to disseminate tokens to all nodes. Thus, we
require the graph to be connected at each round of communication. The adversary can decide how the nodes
are connected. Our adversary model is very general; if we can devise good distributed algorithms under
such a dynamic model, then we can apply them to more restricted dynamic models. We conjecture that the
randomized token forwarding algorithm completes in O(n log n) time on all graphs.

1.2 Intervention strategies to prevent diffusions

When studying diffusion processes of harmful information (such as human diseases, computer viruses, gossips,
etc.), an important task is to design good intervention strategies to prevent the diffusion. In the rest of
this proposal, we often use human disease as an example of harmful information, and vaccination as an
intervention example. Thus, when we talk about diseases and vaccinations, they refer to general harmful
information and interventions.

We propose to study intervention strategies in three different settings. First, we look at centralized
intervention strategies, where there is a centralized entity that is in charge of distributing vaccinations to
control diseases. Second, we study decentralized intervention strategies, where individuals decide whether
to vaccinate themselves in a decentralized manner. Lastly, we augment our models with behavior changes;
when an individual is vaccinated, he may apply certain behavior changes due to the perceived secure feelings,
which will alter the structure of the underlying contact network and hence have an impact on the diffusion
process. We take into account the impact of change in the behavior of vaccinated individuals in conjunction
with potential failure of the vaccines.

1.2.1 Centralized intervention strategies

For many diseases, such as influenza, vaccinations are a commonly used strategy in controlling the spread.
A fundamental question in mathematical epidemiology is to determine what fraction of the population needs
to be vaccinated in order to eradicate the disease, and how to allocate a limited supply of vaccines. The key
point here is to identify a set of critical vertices in the graph and secure them, which could in turn cut the
transmission path of diseases. However, such problems are often NP-hard to solve. Thus, finding efficient
algorithms with good approximation ratios is desired. A lot of research work has been devoted to solving
this problem [3, 12, 69, 102, 91, 66].

We generalize the mathematical model proposed in [3]. Undirected graph G represents the contact
network between people/computers. For each node in G, there is an intervention cost and infection cost.
These costs can vary between nodes. When a node takes intervention, it cannot be infected any more. Thus,
we remove this node from G. A node is chosen randomly according to some arbitrary distribution to start
the infection. Every other nodes that are in the same connected component will be infected. The goal is to
minimize the sum of each individual’s cost. We improve [3]’s O(log1.5 n) approximation ratio to O(log n).
We also back up our theoretical results with comprehensive simulations over a number of families of graphs,
which shows that, in practice, our approximation algorithm gives a much better guarantee. These results
can provide guidance for government and network administrators to optimize resource allocation.
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1.2.2 A game-theoretic study of decentralized intervention decisions

Often times, individuals make decisions based on their specific utilities and objectives in a decentralized
manner. For example, in the case of disease transmission, individuals decide whether to secure themselves
based on information including perceived infection cost, prices of vaccines (or antidotes), and decisions of
other people. We use a game theoretic framework for analyzing decentralized intervention.

In our research, we found out that the spread of a disease and the intervention strategies crucially depend
on the amount and quality of information available to the individuals. The amount of information available
can be characterized by its locality: the distance d within the network up to which information is available
to the vertex (d-local). Our results in [68] suggest that d has a big influence on the existence and structure of
Nash equilibria [82]. More specifically, our research answers the following questions. Under what conditions
do pure Nash equilibria exist for intervention games in which the information available to each node is d-
local? What is the complexity of finding these equilibria? How good are these equilibria compared with
social optimum in terms of costs (a.k.a. price of anarchy [65])?

1.2.3 Impact of behavioral changes

Most vaccines have very limited efficacy (typically 30% in the case of influenza). However, people are not
very well aware of this limitation, and often over-estimate the efficacy of vaccines. Indeed, the perceived
protection from infection might cause behavior changes, leading to an increase in contact by a vaccinated
individual. In a series of important papers [17, 16], Sally Blower and her collaborators demonstrated risk
behavior change, in the context of HIV vaccination, could lead to perverse outcomes.

We study the impact of behavior changes on disease dynamics in networks and observe (through simula-
tion) a rich and complex behavior dependent both on the underlying network characteristics as well as the
“sidedness” of the risk behavior change. The contact network is an undirected graph with each edge having
a certain probability of disease transmission. We consider both uniform random vaccination (where each
node is vaccinated independently with the same probability) as well as targeted vaccination (where nodes are
vaccinated based on their degree of connectivity). Vaccines are assumed to fail uniformly and randomly. We
model risk behavior change by an increase in the disease transmission probability. A significant aspect of our
work is the consideration of “sidedness” of risk behavior change. We classify diseases as 1-sided or 2-sided
based on whether the increase of disease transmission probability requires an increase in risk behavior of both
the infector and the infectee or just the infector. As example: influenza (H1N1) may be modeled as 1-sided
disease since a vaccinated individual may be motivated to behave more riskily (going to crowded places,
traveling on planes, etc.), thus increasing the chance of infecting all he comes in contact with; whereas AIDS
(HIV) may be modeled as 2-sided disease since the increase in disease transmission probability requires both
the individuals participating in the interaction to engage in risky behavior. Of course, these examples are
simplistic and most diseases have elements of both 1-sided and 2-sided risk behaviors.

With the existence of risk behavior, what would be good intervention strategies? Is targeted vaccination
alway better than random vaccination? With more intervention resources, are we guaranteed to have less
people infected? In Section 4.4, we present our findings, and propose to prove rigorously what we observed
in the simulation.

2 Related work

In this section, we review related work that is most relevant to our research. We have classified previous
related work into areas of interests (epidemiology, social networks, economics, and network security). We
also give a brief overview of some of the mathematical and computational techniques and models that have
been developed in previous work.
Epidemiology. The study of spread of diseases and the ways to control them has been a major research topic
for centuries. One of the earliest documented scientific studies of vaccination policy was due to Bernoulli,
who analyzed smallpox morbidity and mortality data to demonstrate the effectiveness of vaccination [15]. He
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presented a mathematical model for calculating the cost and benefits of smallpox vaccination, and presented a
convincing mathematical analysis for universal vaccination. Modern epidemiological analysis is largely based
on an elegant class of models, called SIR (susceptible-infected-recovered). This model was first formulated
by Reed and Frost in 1920s, and has been developed over the decades. In the SIR model, the population
is divided into three groups: susceptible (S), infected (I), and recovered (R), as shown in Figure 1. A
susceptible individual becomes infected at a certain rate, β, when contacting with other infected individuals.
Once infected, an individual may either recover and receive lifelong immunity or die at a certain rate, ν.
In either case, it moves to recovered group. The lifelong immunity assumption is suitable for most common
childhood diseases (measles, mumps, rubella, etc.). Another well studied model is the SIS (susceptible-
infected-susceptible) model, shown in Figure 2. In SIS model, when an individual recovers from an infection,
it moves back to the susceptible group [99]. Because recovered individuals can be infected again, this model
is good to model fast mutated diseases, like seasonal flu.

Figure 1: SIR model.

Figure 2: SIS model.

The SIR model and its variants have been highly influential in the study of epidemics [102, 73, 75, 56,
49, 74]. These models, however, do not attempt to capture the rich and structure of the contact network,
along which interactions occur. Network structure has a direct effect on both the spread of diseases as
well as the nature of interactions, which has been observed by a number of researchers, e.g. [83, 53]. In
the emerging area of contact network epidemiology, an underlying contact graph captures the patterns of
interactions which leads to the transmission of a disease [72, 77, 78, 84]. Many studies have predicted the
spread of diseases through networks using mathematical analysis or simulations, e.g. estimating the size of
an epidemic, or determining the basic reproductive rate (see [77] for some pointers).

Over the past decade, a number of researchers have analyzed the effectiveness of control strategies in a
game-theoretic setting [10, 11, 9, 30]. Such studies enable the comparison between Nash equilibria strategies
driven by self-interest [3, 42] and those centralized strategies proposed by health agencies.

A major focus of the thesis is on how intervention strategies may in turn cause risky behavior and affect
network dynamics, which significantly affect the equilibrium and resulting perverse social outcomes. The
counterintuitive impact of vaccination owing to risky behavior was first discovered by Blower and McLean
[17, 16] in the case of HIV. Subsequently, several independent studies have confirmed this phenomenon and
have offered potential explanations [94, 13, 100, 97]. However, no formal models have been proposed for
studying the interplay between interventions, network dynamics, and individual behaviors.
Computer viruses and networking. Several researchers have analyzed network security problems and
the spread of viruses in computer networks [3, 12, 43, 50, 69, 98]. Another direction of work is based on
SIS models for the worm spread, e.g. the n-intertwined model [87]. In this model, nodes are in two states:
susceptible or infected. Each infected node spreads the infection to its neighbors with some probability.
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Non-cooperative game theory has been used in analyzing a number of problems in traffic and commu-
nication networks, e.g. routing [92], topology control and network formation [34, 81], and security [50, 87].
The basic question of interest have usually been about the existence, the structure of Nash equilibria, and
the price of anarchy, which is the worst case cost of Nash equilibrium to the social optimum [65]. See [86]
for a good introduction on the use of game theoretic techniques for networking applications.
Social networks and economics. The spread of contagion, influence, or behavior, in social networks has
been extensively studied. This has spawned the research area of network games, starting from the seminal
work of Jackson and Wolinsky [54], and Bala and Goyal [5] on how networks are formed when individuals
choose to add or sever links so as to maximize their influence. A variety of game-theoretic models have been
developed to study diverse applications including the very formation of networks [54, 5, 55, 37], provision of
public goods [25], and research collaboration among firms [48]. (See [51, 47, 40] for excellent overviews of this
research area.) Most relevant to this project is prior work on the diffusion of social and economic behavior
in networks, e.g., purchase of a product or adoption of a technology [41], decision to undertake criminal
activity [6]. While much of prior research has assumed that perfect information is available to all players,
more recent work has developed models for incomplete information [40, 52]. There are several fundamental
differences between our proposed project and this line of previous research. First, the focus of our work is
on the impact of intervention strategies on the spread of contagion, rather than analyzing how contagions
spread. Second, we take into account changes in the network in the course of the diffusion process. Third,
we consider a much richer strategy space which takes into account temporal issues (when an intervention is
adopted) and the strength of the interventions; in contrast, previous work assumes binary strategy spaces.

There is a huge body of work on gossiping, applied to both the spread of ideas in a social network as
well as routing or broadcast of data in a communication network [57, 39, 89, 23]. Several analyses have
been given for gossip-based routing protocols [24, 35, 59]. Gossiping has also proved effective in aggregate
computations in distributed networks [58, 32]. Recent work has considered gossiping in dynamic adversarial
networks [4, 67]. Combinatorial optimization aspects of influence spread are explored in [60, 61] where the
goal is to pick an initial set in a stochastic model with maximal expected influence. This model is extended
further in [14] to a competitive setting within the stochastic framework where different players compete
(sequentially) to maximize their expected influence.
Models and techniques. The SIR, SIS, and related models in epidemiology can be characterized in
terms of differential equations, which captures the rate of change of the susceptible, infected, and recovered
individuals.

Contact network epidemiology enhance these models with contact graphs. Contact graphs are also
important aspects of models in network security and social networks. A number of random graph models
have been considered for modeling contacts (e.g. [78, 46, 76]). The most basic random graph model is due
to Erdös and Rényi [36] and Gilbert [45], who defined the G(n,m) and G(n, p) models. In the former, a
graph is chosen uniformly at random from all n-vertex m-edge graphs, while the latter is an n-vertex graph
in which each edge appears independently at random with probability p. A number of alternative random
graph models have been suggested in an attempt to yield random graphs with more general type of degree
distribution. Molloy and Reed’s model is based on considering random graphs of fixed order with a given
arbitrary degree distribution [79, 80, 85]. Later, Chung and Lu proposed a model to generate random graphs
with expected degree distribution [28, 29]. Other models motivated by specific real-world networks include
Kleinberg’s small world random graphs [62, 63], and Barabási-Albert preferential attachment graph [7]. The
preferential attachment model is a mechanism for generating random scale-free graphs [7, 21], which have
been observed to capture important properties of several real world networks, including the Internet AS-level
graph [38], the Worldwide Web [1, 64], human sexual contact network [71], scientific collaborations network
[8].

The spread of diseases/viruses in networks has been analyzed by a variety of methods: model-based
simulations [2, 88, 31]; percolation theory techniques using differential equations and generating functions
that yield asymptotic analysis [95, 84, 101]; rigorous probabilistic techniques that apply to finite random
graph models [19, 20, 12]; and game-theoretic analysis that studies uniqueness, complexity, and the structure
of equilibria [26, 86, 52, 40].
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3 Distributed algorithms for positive diffusions

Designing efficient distributed algorithms for positive diffusions is crucial for the success of P2P, wireless,
and sensor networked systems. Indeed, a lot of research work has been devoted to this problem [57, 39, 89,
23, 35, 59, 44, 98, 22, 70]. A major limitation in this line of work, however, is they only consider diffusion
processes defined on static networks. Only recently, has there been some work on diffusion over dynamic
adversarial networks [4, 67].

In our proposed research, we focus on dynamically changing networks. We consider the following two
types of dynamics. First, in Section 3.1, we look at the resource discovery problem, where the underlying
dynamic network is changed by the diffusion process itself. Second, in Section 3.2, we look at the token
dissemination problem, where the underlying dynamic network is controlled by an adversary.

3.1 Resource discovery

When a node joins a P2P system, it first discovers all the other available nodes on the network. Such
a problem is referred as resource discovery problem. We model the P2P system by a graph. Each node
represents a resource (or a computer) in the network. If node u knows node v, we assume that u can
communicate with v, and hence there is an edge between u and v. For example, if u knows v’s IP address, u
can send packages to v. Thus, as a node discovers more and more other nodes, the graph changes dynamically.
Such dynamic is induced by the diffusion process itself.

We designed two distributed algorithms for resource discovery problem, which are very easy to implement
and deploy. The first algorithm is the following: in each round, every node in the graph chooses two of its
neighbors randomly and “introduces” them to each other. This algorithm can be analyzed by the follow
triangulation process.
Triangulation process. Given a connected graph G = (V,E), in each round, for all v ∈ V , vertex v picks
2 random neighbors u and w, add an edge (u,w) to graph G. The question is how many rounds this process
needs to take in order to make G a complete graph Kn.

The second algorithm is, in each round, every node in the graph choose a random neighbor, and ask this
neighbor to tell him a random node that he knows. This algorithm can be analyzed by the following 2-hop
random walk process.
2-hop random walk process. Given a connected graph G = (V,E), in each round, for all v ∈ V , vertex
v takes a 2-hop random walk and reaches vertex u. We add an edge (v, u) to graph G. The question is how
many rounds this process needs to take in order to make G a complete graph Kn.

3.1.1 Our results

We have done a comprehensive simulations for both triangulation process and 2-hop random walk process,
over different families of graphs. We observe that both processes complete quickly, in nearly linear time.
Thus, we conjecture that this is true across all families of graphs. We will focus on proving this conjecture
in future research.

3.1.2 Proposed research

We plan to address the following open questions. We mainly focus on proving rigorously what we observed
in the simulation.

1. We conjecture that the completion time for the triangulation process and 2-hop random walk process
is O(n log n) in undirected graphs. We will work on resolving this conjecture.

2. We conjecture that the completion time for the 2-hop random walk process in directed graphs is O(n2).
We also conjecture that it is lower bounded by Ω(n2). We will work on resolving these conjectures.
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3.2 Token dissemination

Inspired by [4, 67], we study the token dissemination problem in adversarial networks. The adversary model
is important for many applications in wireless and P2P networks. Such networks are highly dynamic, as
nodes join, leave, and move around, and as links appear and disappear. Such dynamic changes are not under
the control of users in the network.

3.2.1 Definition

Let V be the set of users in the contact/communication network, and let |V | = n. There are k different
pieces of information assigned to a set of users, which we will refer as tokens. Each user can hold different
tokens. The goal is to diffuse all k tokens to all the users on the network. This information diffusion problem
is often refereed to as the k-token dissemination problem.

We consider synchronous communication in this model. The diffusion process is divided into rounds.
At the beginning of each round, the adversary constructs the edges/links in the contact/communication
network. Namely, he decides which users can talk to whom directly. Then, every user is allowed to exchange
1 token (or constant number of tokens) with each of its neighbors in the contact network. In our model,
we assume the message size to be Θ(log n). Observe that, if the adversary is allowed to make the contact
network disconnected, then diffusing all k tokens to all users is impossible to complete. Therefore, we enforce
the connectivity constraint on the adversary. This means the adversary can arrange edges whichever way he
wants, but he has to make sure the contact network is connected in each round.

3.2.2 Our results

Based on the model stated in Section 3.2.1, we proposed 2 distributed algorithms. One is PriorityFor-
ward, shown in Algorithm 1. The other is RandomForward, shown in Algorithm 2. We have shown the
running time lower bound for PriorityForward is Ω(kn).

Algorithm 1 PriorityForward (G)
Require: Dynamic network G = (V,E).
Ensure: Nodes receive all k tokens.

Each node v executes the following procedure:
1: for all u such that u is v’s neighbor in G do
2: v sends u a token with lowest possible priority such that u doesn’t have this token yet.
3: end for

Algorithm 2 RandomForward (G)
Require: Dynamic network G = (V,E).
Ensure: Nodes receive all k tokens.

Each node v executes the following procedure:
1: for all u such that u is v’s neighbor in G do
2: v sends u a token randomly chosen from the tokens that v has and u doesn’t have yet.
3: end for

3.2.3 Proposed research

We propose the following research problems in the adversarial network domain.

1. We conjecture that RandomForward algorithm completes in O(n log k) time. We will work on
resolving the conjecture.
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2. In RandomForward algorithm line 2, we didn’t state the time complexity for v to choose a token
which u doesn’t have at random. This problem can be formulated as follows. Nodes A and B both
have an n-bit vector. A doesn’t know the values of B’s bit vector, and vice versa. Each time one can
send the other a message of size O(log n), to query the values of its bit vector. How many messages
have to be exchanged for A to identify a random bit position among all positions that are set in B’s
vector but not in A’s vector.

4 Intervention strategies to prevent diffusions

In this section, we study how to design good intervention strategies to control harmful diffusion processes.
We characterize intervention strategies into two categories, centralized and decentralized. Both kinds of
strategies share a common mathematical framework, which we define formally in Section 4.1. Then we state
our results and propose research for centralized and decentralized intervention strategies in Section 4.2 and
4.3, respectively. Lastly, in Section 4.4, we enrich our intervention strategy designs with the consideration
of individual behavior changes.

4.1 Definition and framework

All three areas of our research on intervention strategies (centralized intervention strategy, decentralized
intervention strategy, behavior changes) have a common model framework. Thus, we briefly present the
framework first, and then state our results and proposed research in subsequent sections.

Let V denote the set of users/individuals/computers (henceforth, referred to as nodes). Let G = (V,E)
denote the underlying contact graph over V ; an edge e = (u, v) ∈ E indicates that the diffusion can spread
from u to v. We let p(e) or p(u, v) denote the probability that diffusion spread from node u to node v.
For S ⊂ V , we let G [S] denote the subgraph of G induced by set S. We assume infection is initiated at
a node chosen from V according to some arbitrary probability distribution. Let wv denote the probability
that node v is chosen as the initial infection point, and let w(S) =

∑
v∈S wv for S ⊂ V . In most of

this proposal, we use the SIR model for epidemics, in which each infected node u infects each susceptible
neighbor v independently with probability p(u, v) (see [33, 84, 83] for additional information). But, our
framework and associated questions are relevant for a broader class of diffusion processes. Nodes which are
successfully vaccinated are assumed not to spread the infection. An important aspect of our framework is
that interventions, like vaccines, are only partially efficacious, and succeed only with probability ps. However,
nodes do not know whether the intervention has succeeded, and might alter their behaviors.

The strategy for each node v consists of two decisions:

1. Whether to adopt an intervention, such as vaccination or quarantine (modeled node deletion). Let
av ∈ [0, 1] denote the probability that node v gets vaccinated. Let ~a denote the strategy vector for all
nodes. We need the notation of attack graph, denoted by G~a, which is the subgraph of G in which each
node is deleted with probability av [3].

2. Behavioral changes that alter connections: such behavior changes could happen in many ways, and
we abstract it by considering pb(u, v), which denotes the modified transmission probability on edge
(u, v). While the behavior changes can be manifested as fairly general vectors ~pb, we focus on an
important special case where these changes occur only when applied interventions. We consider two
specific models. In the 1-sided model, vertex u after vaccination (if failed) increases the transmission
probability to pb on all incident edges (u, v), while in the 2-sided model, vertex u after vaccination (if
failed) increases the transmission probability only on edges (u, v) for which vertex v is also vaccinated.

The rationale behind the behavioral change models is that after vaccination, it makes sense for an
individual to take advantage of the social contact network to enhance their economic value. We formalize
this aspect below. The 1- and 2-sided models signify two potential ways in which the contagion spread could
be affected: whether it requires increased contact from any one endpoint, or both endpoints. There are a
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number of natural hybrid models that we will also consider in our study. Since increased contact comes with
increased risks, we sometimes refer to this behavior change as “risky behavior”.

The information used by nodes is an important aspect of the decision making process, and we quantify
this in terms of a parameter d, which denotes the maximum number of hops to which a node can get
information about infections and/or vaccinations. Now we consider a generalized non-cooperative game
formulation G(G, d) by defining individual costs, which involve the following components: (i) Cv denotes the
cost of node v getting vaccinated. We assume this is independent of the disease dynamics; (ii) Bv denotes
the “benefit” of increased contact (e.g., in the form of information and centrality of the node in the social
organization); and (iii) Lv denotes the cost for node v resulting from an infection. We assume that node v
only has information about the graph within its d-neighborhood; let pv(~a, ~pb, d) denote the probability that
node v becomes infected, given the decision vectors ~a and ~pb. Then, the cost to node v is defined as

costv (ā, ~pb, d) = Cvav +Bvpb(v) + (1− av)Lv · pv (ā, ~pb, d) . (1)

A Nash equilibrium [82] (henceforth, NE) is a strategy vector ~a such that no node v has any incentive
to switch his strategy, if all other nodes’ strategies are fixed. In most of the proposal, we focus on pure
NE. We consider variants in which the term pv(~a, ~pb, d) using only partial information about the graph and
individual decisions within the d-neighborhood; as we discuss later, information has a significant impact on
the dynamics and structure of NE in these games.

The total social cost of a strategy profile is the sum of the individual costs, which is cost (ā, ~pb, d) =∑n
v=1 costv (ā, ~pb, d). A socially optimal strategy is a pair of vectors ~a, ~pb that minimizes this cost - this is

not necessarily (and is not usually) a pure NE. Therefore, the cost of a pure NE relative to the social cost is
an important measure; the maximum of this ratio (i.e., over all possible pure NE) is also known as the price
of anarchy [65].

4.2 Centralized intervention strategies

In this section, we study centralized intervention strategies. The goal is to minimize the social cost define
in Section 4.1. Here we restrict our graphs to be static, and assume there is no behavior change. Therefore,
the problem boils down to find a strategy vector ~a such that∑

v

costv (ā, d) =
∑

v

[Cvav + (1− av)Lv · pv (ā, d)]

is minimized.

4.2.1 Our results

In [68], we have designed an algorithm that is an O(log n)-approximation for the d = ∞ case (recall d is
locality parameter), and a 2d-approximation for d < ∞. A logarithmic-approximation for the d = ∞ case
was also obtained independently by [26].

4.2.2 Proposed research

If time permits, I’d like to try the following problem.

• Consider the same problem in the setting where arbitrary disease transmission probability and behavior
change are allowed. One hurdle for such problem is, with arbitrary disease transmission probability,
even calculating the cost of an individual is hard. We plan to pursue two directions. One is by
using the notion of cut-based decompositions of networks. Thanks to an elegant result of Räcke that
approximates arbitrary networks by trees [90] (note that vaccination strategy is equivalent to vertex
cut in graphs). The other is by building on work of [27] for percolation in arbitrary finite graphs. Their
results imply that for constant-degree networks, the cost of an intervention strategy is asymptotically
dominated by those clusters (obtained after applying the intervention) that have high second order
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average degree, defined as
∑

v d(v)2/(
∑

v d(v)), where d(v) denotes the degree of node v in the cluster.
It is still challenging to extend these ideas to derive efficient approximation algorithms.

4.3 Decentralized intervention decisions

In this section, we analyze diffusion processes using the non-cooperative game model defined in Section
4.1. More specifically, we consider the games with static connections, which means we assume there are no
behavioral changes. Therefore, by Equation 1, the cost function for v can be simplified as

costv (ā, d) = Cvav + (1− av)Lv · pv (ā, d)

As defined in Section 4.1, pv (ā, d) denotes the probability that v gets infected, if the disease starts at a
random initial node in the d-neighborhood of v.

Under the non-cooperative game model, we are interested in answering the following questions:

1. Under what conditions do NE exist, when information (about the individual strategies and disease
states) is available only within the d-neighborhood? If NE exist, when are they unique and how
robust are they to perturbations in the network or locality of information? What is the computational
complexity of finding NE or reaching NE via best-response dynamics? What is the effect of the
underlying network (e.g., the degree sequence and conductance)? Can we characterize the kinds of
nodes that tend to get vaccinated in any NE?

2. Price of anarchy: Find a vaccination strategy ~a that minimizes the total cost. What is the maximum
ratio of the cost of a social optimum and cost of NE (referred to as the price of anarchy)? What are
practical strategies that cause convergence to a socially desirable NE?

4.3.1 Our results

The results in this section are published in [68]. There we have considered the special case where p(e) = 1
for all e and intervention are perfect. We find that the parameter d has a significant role in the structure of
the resulting games.

1. For d = 1, a pure NE always exists and can be found by best response dynamics; that is, every sequence
of best response steps by the individual players converges to a pure NE. Finding the NE with least
cost is NP-complete. The price of anarchy is ∆ + 1, where ∆ is the maximum degree in the contact
graph.

2. For d =∞, a pure NE always exists and can be found by best response dynamics. The price of anarchy
is O(1/α(G)), where α(G) is the vertex expansion of graph G.

3. For d ∈ (1,∞), there always exist instances which have no pure NE. Further, deciding if a pure NE
exists is NP-complete.

4.3.2 Open problems

I may try to think about the following open problems if time allows.

1. Solve the general model with arbitrary disease transmission probability. This problem is much more
challenging to handle. One of the difficulties we face in terms of best response function is that with
probabilistic transmission, even the calculation of the cost for an individual node can be shown to be
#P-hard [96]. Efficient approximations (using Monte Carlo simulations) can be computed, however,
leading to the question: do “approximate” NE exist and can they be efficiently found?

2. Explore more on the structures of NE and its implications on public policy. In the simulation using
the preferential attachment graph model [68], we have observed that high degree nodes tend to get
vaccinated in NE (when they exist). It would be nice to have some theoretical proofs about such
observations.
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3. Analyze Stackelberg strategies, in which the choices of some nodes can be control by the policy planer,
and the goal would be to design low cost strategies that cause the remaining nodes to reach a “good”
NE.

4.4 Behavioral changes

In this section, we study non-cooperative games with connection-altering interventions (a.k.a. behavior
changes). As before, locality is parameterized by d. Among all possible models for behavior changes, we
focus on the 1-sided and 2-sided model (defined in Section 4.1). We are interested in studying the following
questions. How are the properties of NE affected by the behavior change parameter pb and the vaccine
efficacy? Are there threshold phenomena involving these parameters, so that an increase in pb beyond the
threshold value p∗b changes the dynamic significantly? How does price of anarchy change? Furthermore,
what kind of nodes tend to choose to get vaccinated? Can we achieve equilibria that are close to the social
optimum through a public policy that provides certain amount of vaccines (subject to a budget) and provides
appropriate local and global information to individual players?

4.4.1 Our results

As a first step, we will focus on symmetric strategies, in which the intervention strategy av and pb are the
same for all nodes. We want to understand how diffusion dynamics (e.g. the average outbreak size, and the
time to peak), and the total utility as defined in Equation 1 vary as a function of av and pb. Furthermore
in order to answer the public policy issues would require understanding the interplay between the locality
parameter d and the behavior change parameter pb, which may depend significantly on the vaccine efficacy
and could be very different in the 1-sided and 2-sided models.

In our preliminary work, we have studied the social cost and differences between 1-sided and 2-sided
models. We assume that interventions failed with probability pf . Through simulations, we found that both
forms of behavior changes would lead to perverse outcomes across a wide range of contact networks. 1-sided
behavior change leads to perverse outcomes at low levels of intervention, in which the average outbreak
increases with av, up to a point, as shown in Figure 3. 2-sided behavior change leads to perverse outcomes
at high levels of intervention, in which the average outbreak size starts increasing beyond a threshold value
of av.

Figure 3: Variation in the giant component size with av for the 1-sided and 2-sided models of behavior
changes in scale-free graphs. On the left is the comparison of uniform vaccination with two kinds of degree-
preferred vaccination policies in the 1-sided model, for p = 0.2, pb = 0.9, pf = 0.4. On the right are the
curves for different values of behavior change probability pb in the 2-sided model, for p = 0.1, pf = 0.2. The
giant component size is a good estimate for the expected epidemic size.
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To answer those questions in which we are interested, a significant fraction of our efforts will be devoted
to developing analytical tools. Our initial foray has been on Erdös-Rényi networks that have formed the
basic underlying network in traditional SIR models. A major technical hurdle we face is that when the
behavioral models are incorporated, even homogeneous Erdös-Rényi networks are transformed to heteroge-
neous networks. One powerful tool for analyzing percolation on heterogeneous networks is that of multi-type
branching processes. We plan to build on recent results of Söderberg [95] and Bollobás et al [19] in this
regard.

Consider a random graph model denoted by G(N,K, r, c), where (i) K is a positive integer, (ii) r =
{r1, . . . , rK} is a probability vector, (iii) c = (cij) is a K × K matrix, (iv) each node j = 1, . . . , N , is
assigned a type i ∈ {1, . . . ,K} with probability ri, and (v) each pair of nodes i, j are connected by an edge
with probability p(i, j) = cij/N . Söderberg [95] and Bollobás et al. [19] establish the following: (i) if the
eigenvalues of the matrix {cijrj} are all less than 1, it is sub-critical (i.e., has no giant component), and
(ii) if some eigenvalue is larger than 1, it is super-critical (i.e., has a giant component) with asymptotically
ri(1−fi)N nodes of type i, where fi satisfies the coupled set of equations: fi = exp

(∑
j cijrj(fj − 1)

)
. Using

the above threshold result, we have given a rigorous proofs for the diverse non-monotonicity phenomena of
Figure 3 in the case of Erdös-Rényi random graphs.

Empirically, we have observed that the phenomenon is widespread across a range of networks including
preferential attachment networks. We are also applying traditional percolation theory techniques to the class
of locally-finite infinite networks [18] as a proof of concept. Our findings have implications for public policy
and the distribution of vaccines. More surprisingly we observe that targeted vaccination can be strictly
worse than random vaccination for the same level of vaccine coverage and this phenomenon occurs both for
one-sided as well as two-sided risk behavior change (as shown in Figure 3). Given the prior work on targeting
vaccine distributions this finding flies in the face of intuition that expects that vaccinating highly connected
individuals would always confer greater benefits.

4.4.2 Proposed research

We propose to study the following open problems.

1. We have a rigorous proof for the existence of non-monotonicity in Erdös-Rényi random graphs. Can
we capture more detailed features of the non-monotonicity curves shown in Figure 3 (e.g. do the curves
have unique maximum/minimum point)?.

2. Extend rigorous proofs of Erdös-Rényi random graphs to more general networks, like preferential
attachment graphs or locally-finite infinite graphs, to explain the diverse non-monotonicity phenomena
shown in Figure 3.

3. In the simulation, we observe targeted vaccination can be strictly worse than random vaccination for
some levels of vaccine coverage. Can we mathematically prove this?

4. Develop simulations to cover more families of graphs to confirm our findings.

5 Proposed timeline and plan

May-July, 2011 Proposal defense, work on open problems in Section 3.1 and 3.2 .
June-August, 2011 Work on open problems in Section 4.4. If time permits, I will try open

problems in Section 4.2 and Section 4.3.
August-November, 2011 Consider any manageable open questions that come up while writing the

final thesis.
December Tentative defense date.
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5.1 Plan

Existing, published results (the majority of which are listed in the “Our results” sections of this proposal)
will make up the core of my thesis. There are some open problems in Section 3.1 and 3.2 that I think I can
solve between May and July. I plan to first work on proving both triangulation process and 2-hop random
walk process complete in O(n log n) time. Then I will work on proving RandomForward algorithm (defined
in Section 3.2) can complete in O(n log n) time. Along with the analysis on PriorityForward algorithm
(also defined in Section 3.2), this will give us some insight on the role of randomness in adversary networks.
If time permits, I’d like to try some other open problems in the same section, like communication complexity
lower bound for Line 2 in Algorithm 2.

Next, I’d like to spend some time focusing on open problems in Section 4.4. We have some game theoretic
results on intervention strategies (in Section 4.2 and 4.3), but little has been done on the effects of behavior
changes. We already observed that the perverse outcome (shown in Figure 3) is widespread across a range
of networks; it would be nice if we can nail down the rigorous proofs for some general families of graphs,
e.g. preferential attachment graphs and locally-finite infinite graphs. We also observe in the simulation that
randomly picked intervention can be better than targeted strategies in preferential attachment graphs. I
will think about how to mathematically prove our observations. And I will take some time to develop more
simulations to cover a wider range of parameters and different families of graphs, to confirm our findings in
more broader settings. If I still have time left, I will look at the open problems in Section 4.2 and 4.3.

Finally, I’ve left three months for following up on loose ends and assembling the thesis by the end of
November.
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[35] Robert Elsässer and Thomas Sauerwald. On the runtime and robustness of randomized broadcasting.
Theor. Comput. Sci., 410(36):3414–3427, 2009.
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