
CSG399: Gems of Theoretical Computer Science. Lecs. 15-18. Feb. 27-Mar. 17, 2009.
Instructor: Emanuele Viola Scribe: Zhifeng Sun

Undirected reachability

In this lecture we study algorithms that solve the undirected reachability problem in
O(log n)-space. The undirected reachability problem is defined as follows.

Problem 1. Given an undirected graph G with n vertices and two special vertices in the
graph, s and t, decide whether s and t are connected or not.

If we don’t consider the space constraint, we can solve this problem using standard DFS
or BFS algorithms, which have running time O(|V | + |E|), but take space O(|V |). We are
interested in algorithms that use space O(log n) and run in time poly(n). In particular, we
can only store Θ(1) vertices, since each vertex description takes O(log n) bits where n is the
total number of vertices.

This lecture note is organized as follows. In Section 1, we are going to cover mathemat-
ical preliminaries. In Section 2 we give a randomized algorithm. In Section 3 we give a
deterministic algorithm.

1 Preliminaries

In this section we cover some preliminaries. First, we list some basic definitions and proper-
ties from linear algebra.

• A vector v = (v1, v2, . . . , vn) ∈ Rn.

• Inner product < v,w >=
∑

i vi · wi.

• Two vectors are orthogonal, denoted v⊥w, if < v,w >= 0.

• The length of a vector is ‖v‖ :=
√∑

i v
2
i =
√
< v, v >.

• ‖v + w‖ ≤ ‖v‖+ ‖w‖.

• If v1, v2, . . . , vn are pairwise orthogonal, then they are independent, i.e. @(a1, a2, . . . , an) 6=
0 such that

∑
i aivi = 0.

Lemma 1. If v⊥w, then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

Proof.

‖v + w‖2 = < v + w, v + w >

=
∑
i

(vi + wi)
2

1

=
∑
i

(
v2
i + 2viwi + w2

i

)
=

∑
i

v2
i +

∑
i

w2
i + 2

∑
i

viwi

= ‖v‖2 + ‖w‖2 + 2 · 0
= ‖v‖2 + ‖w‖2.

Now we view a vector as a probability distribution over the n vertices of G. For example,
u = (1/n, . . . , 1/n) is the uniform distribution over all the vertices. For now, we assume that
the graph G is regular, i.e. each vertex has degree d, and also that each vertex has a self-loop.
We justify this assumption later. For each graph G, we have a normalized adjacency matrix
A, where “normalized” means each entry is divided by the degree d. The following matrix
is the adjacency matrix of the graph in Figure 1.

A =

 1/3 1/3 1/3
1/3 2/3 0
1/3 0 2/3

 .

Figure 1: Graph example.

Let v = (1, 0, 0). Then Av = (1/3, 1/3, 1/3) is the probability distribution after doing
one random step starting at v. Naturally, we are interested in A`v for large `. It would be
great if the act of multiplying by A corresponded to some simple behavior, like Av = λ ·v for
some scalar λ. Such λ and v are called eigenvalue and eigenvector respectively. Although
every matrix has them, in general they need to be complex, as for example is needed if A
corresponds to a rotation of the space. However, the matrices that arise from graphs have a
special structure, in particular they are symmetric. One can show that in this case there are

2

n eigenvectors with corresponding eigenvalues all of which (both the eigenvectors and the
eigenvalues) are real. Moreover, we can choose the eigenvectors to be orthonormal, i.e. length-
1 vectors that have zero inner product. In particular, these vectors form a basis of the whole
space. This allows us to write any vector v in this basis and see the act of multiplying the
vector by the matrix A as simply multiplying each coordinate of v (w.r.t. the basis given by
the eigenvectors) by the corresponding eigenvalues. We now state without proof this central
fact from linear algebra, together with some other useful facts.

Theorem 2. Let A be the normalized adjacency matrix of a connected, regular graph G on
n vertices with a self-loop at each vertex. Then

1. there exist real vectors v1, v2 . . . , vn ∈ Rn such that ∀i ‖vi‖ = 1, and vi⊥vj if i 6= j,

2. there exist real numbers λ1, . . . , λn ∈ R such that Avi = λivi,

3. v1 = (1/
√
n, . . . , 1/

√
n), λ1 = 1, and ∀i > 1, |λi| ≤ 1− 1

nc for some constant c. We let
1 = |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

The fact that (1/
√
n, . . . , 1/

√
n) is an eigenvector with eigenvalue 1 is not hard to see

using the fact that the graph is regular. That the other eigenvalues are bounded away from
1 by an inverse polynomial in n can be shown using the fact that the graph is connected.

The next lemma gives a useful characterization of the second largest eigenvalue.

Lemma 3. |λ2| = maxv⊥u
‖Av‖
‖v‖ where u is uniform distribution, (1/n, . . . , 1/n).

Proof. Take any vector v ∈ Rn. Write v = c1v1 + . . . + cnvn (v1, . . . , vn are the eigenvectors
of the matrix A, from Theorem 2). If v⊥u, then c1 = 0 (note v1 =

√
n · u). So v =

c2v2 + . . .+ cnvn.

‖Av‖2 = ‖λ2 · c2v2 + . . .+ λn · cnvn‖2

= ‖λ2c2v2‖2 + . . .+ ‖λncnvn‖2 (By Lemma 1)

≤ λ2
2

(
c22‖v2‖2 + . . .+ c2n‖vn‖2

)
= λ2

2

(
c22 + . . .+ c2n

)
= λ2

2‖v‖2.

The equality is met for v = v2. And this completes the proof of the lemma.

The next useful lemma shows that any probability distribution v gets closer to uniform
after multiplying by A.

Lemma 4. Let v be a probability distribution, then ‖Av − u‖ ≤ λ2‖v − u‖, where u is the
uniform distribution, (1/n, . . . , 1/n).

3

Proof. ‖Av − u‖ = ‖A(v − u)‖. And we observe that (v − u)⊥u, because

< v − u, u > =
∑
i

(vi − ui)ui

=
1

n

∑
i

(vi − ui)

=
1

n

(∑
i

vi −
∑
i

ui

)
=

1

n
(1− 1)

= 0.

Then by Lemma 3, we have ‖Av − u‖ ≤ λ2‖v − u‖.

2 Random walk algorithm

In this section we use the machinery from the previous section to give a randomized O(log n)-
space algorithm to solve the undirected reachability problem. The random walk algorithm
is described in Algorithm 1.

input : Graph G = (V,E), and vertices s and t.
output: Whether s and t are connected or not.

v ← s repeat1

if v = t then2

return “connected”3

end4

v ← random neighbor of v5

until l = n100 times ;6

return “not connected”7

Algorithm 1: Random walk algorithm.

Theorem 5. Random walk algorithm uses space O(log n), time poly(n) and satisfies ∀G, s, t,
if s is connected to t, then Pr [algorithm returns “connected”] ≥ 1/2; if s is not connected to
t, then Pr [algorithm returns “not connected”] = 1.

Proof. If s and t are not connected, then the random walk algorithm always returns “not
connected.” So we only need to show that when s and t are connected, the random walk
algorithm returns “connected” with probability more than 1/2. Let G be the connected
graph that contains s and t. Take l := nc for some constant c.

Claim 1. For any probability distribution v, a random walk of length
√
l starting at v will

end up in t with probability no less than 1/2n.

4

Proof.

‖A
√
lv − u‖ ≤ λ

√
l

2 ‖v − u‖ (By Lemma 4)

≤ O
(
λ
√
l

2

)
≤ O

((
1− 1

nc′

)√l)
(By Theorem 2)

≤ 1

n2
. (for l = nc large enough)

Therefore, A
√
lv puts mass at least 1/2n on t, because otherwise

‖A
√
lv − u‖ ≥

√(
1

2n
− 1

n

)2

=
1

2n
� 1

n2

which is a contradiction. This completes the proof of the claim.

Now consider the random walk after j
√
l steps, j = 1, 2, . . . ,

√
l.

Pr [walk never touches t]

≤ Pr
[
don’t touch t after j

√
l steps ∀j = 1, . . . ,

√
l
]

≤
(

1− 1

2n

)√l
(By Claim 1)

≤ 1

2
. (for sufficiently large l = n2)

And this completes the proof of this theorem.

3 Deterministic algorithm

In this section we give a deterministic O(log n)-space algorithm. Before we get into the de-
terministic algorithm for undirected reachability problem, we define a more “robust” version
of the problem. The following claim also justifies our assumption that graphs are regular,
which we used in Section 2.

Claim 2. The problem of determining whether s is connected to t on an undirected graph
G with n nodes and maximum degree n is O(log n)-space reducible to the following problem:
given (1) a graph G′ on poly(n) nodes which is 4-regular, and each node has a self-loop; (2)
sets of nodes S and T (S is connected and T is connected), and |S| ≥ |G′|/3, |T | ≥ |G′|/3;
decide whether S and T are in the same connected component.

5

Figure 2: Duplicate s and add cycles.

Proof. Given the graph G, we construct G′ in the following way. Add n copies of s and n
copies of t. Let S = {s} ∪ {extra copies of s} and T = {t} ∪ {extra copies of t}. Put n/2
copies of cycles on S, and similarly on T , as shown in Figure 2, so that the extra copies of s
and t have degree n.

So far, this graph satisfies everything except the degree bound. Observe that the degree
of each node is ≤ n except for s and t which may have degree as large as 2n. To reduce
the degree, replace each node of degree d with a 4-regular graph on d nodes, as shown in
Figure 3. And call this final graph G′.

Figure 3: Replace each node with a 4-regular graph.

It is easy to observe that the number of nodes in G′ is poly(n), that G′ is 4-regular, and
that |S| ≥ |G′|/3, |T | ≥ |G′|/3. The bound on |S|, |T | follows because (1) this bound holds

6

before reducing the degree, (2) the degree reduction blows up a node by its degree, and (3)
every node in S ∪ T has degree at least as large as that of any other node in the graph.

We now show that this more “robust” versions is “easy” when the second eigenvalue
is small. We do not restrict the degree: we will apply the following claim to graphs of
polynomial degree. Jumping ahead, these will arise by modifying the 4-regular graphs given
by Claim 2 using appropriate operations that reduce the eigenvalue bound.

Claim 3. Let G be any graph where neighbors are log-space computable. Let S and T be
connected sets and |S| ≥ |G| /3, |T | ≥ |G| /3. If λ2 (G) ≤ 1/10, then

some node in S is connected to some node in T

⇐⇒ some node in S is adjacent to some node in T

Therefore, the problem of deciding whether S and T are in the same connected component
can be solved deterministically in O(log n)-space.

Proof. The “moreover” part follows easily from the first part of the claim by cycling over
all nodes in S and their neighbors using logarithmic space. We now prove the first part of
the claim. The “⇐=” direction is obvious. So in the following we focus on “=⇒” direction.
The basic idea is: since S is large and λ2 is small, S has many neighbors (> 2n/3), and one
of them must be in T .

Let n be the number of nodes in the graphG, u represent the uniform distribution (i.e. u =
(1/n, 1/n, . . . , 1/n)), v represent the uniform distribution on S (i.e. v = (3/n, . . . , 3/n, 0, . . . , 0)
where the coordinates with mass 3/n are exactly those in S). And let w = A · v where A is
the normalized adjacency matrix of G. Our goal is to show w has non-zero weight on some
coordinate in T .

‖w − u‖ = ‖A · v − u‖
≤ λ2‖v − u‖ (by lemma 4)

=
1

10

√
n

3

(
3

n
− 1

n

)2

+
2n

3

(
0− 1

n

)2

=
1

10

√
2

n
.

Now assume that w has zero in every coordinate in T , then

‖w − u‖ =

√∑
i

(wi − ui)2 ≥
√∑

i∈T

1

n2
≥
√
n

3
· 1

n2
=

√
1

3n
>

1

10

√
2

n
.

which is a contradiction that completes the proof of the claim.

We are now left with the task of reducing the eigenvalue bound of our graph. Before
discussing this, let us make a remark on the notion of degree of a graph. It is convenient to
work with the following definition of degree:

7

Definition 6. The degree of a graph G is D if the graph can be specified by a neighbor
function

f : V × {1, 2, . . . , D} → V,

which given a node and an edge index returns the corresponding neighbor.

Note the degree in this definition can be arbitrarily large, in particular larger than n.

3.1 An attempt to reduce the eigenvalue bound

One attempt to reduce the eigenvalue of a graph is by squaring. The squared graph is the
graph in which edges correspond to paths of length 2 in the original graph; Figure 4 shows
an example.

Figure 4: Squaring a graph.

Claim 4. If G (with self-loop on each node) has n nodes, degree d, and λ2 (G) = α, then G2

has n nodes, degree d2, and λ2 (G2) = α2.

Proof. It is easy to see G2 has n nodes and degree d2. So the following proof focuses on
the eigenvalue. Let M be the normalized adjacency matrix of G, then M2 is the normalized
adjacency matrix of G2. To bound λ2 (G2), let v⊥u where u is the vector which represents
the uniform distribution. Notice that Mv⊥u.

λ2

(
G2
)

= max
v⊥u

‖M2v‖
‖v‖

= max
v⊥u

‖M2v‖
‖Mv‖

· ‖Mv‖
‖v‖

= α2.

The following is an attempt to show undirected reachability is in O(log n)-space: given
graph G and sets S, T , square the graph l = O(log n) times to obtain G2l

, so that λ2 becomes
1/10.

λ2

(
G2l
)

= λ2 (G)2l

≤
(

1− 1

nc

)2l

=
1

10
.

8

Although we obtain the desired eigenvalue bound, the degree of the graph G2l
is D2l

=
Dpoly(n), which is exponential in n. This means we cannot apply Claim 3 to determine
connectivity in logarithmic space, since the idea there was to cycle over all neighbors of
nodes in S. So in order to apply claim 3, we need to give another operation that can
decrease the value of λ2 while at the same time keeping the degree small.

Note that an edge in G2l
corresponds to a path of length poly(n) in G. With the new

operation we will still have that an edge in the final graph corresponds to a path of that
length in G. But the crucial difference is this: whereas in G2l

we consider all, exponentially
many paths, in the new graph we only consider a sparse, polynomial-size collection of paths.
We will prove that this sparse collection has the same hitting properties of the collection of
all paths, as measured by the eigenvalue bound.

3.2 Reducing the eigenvalue via derandomized graph squaring

Definition 7 (derandomized graph squaring). Let X be a k-regular graph on n nodes, and
G be a d-regular graph on k nodes. XsG is a graph on n nodes with degree k · d. The
neighbors of v in XsG are v[a][b] where b is a neighbor of a in graph G, i.e. v[a][a[e]] where
a ∈ {1, 2, . . . , k} and e ∈ {1, 2, . . . , d}.

Note that in the above definition we see a as both an edge index for X and a node in
G. Whereas in graph squaring the neighbors of v are v[a][b] for every a, b, in derandomized
graph squaring the neighbors are v[a][b] for some a, b.

Now we show that by applying derandomized graph squaring we decrease λ2. We start
with a useful lemma that shows that a random step in a graph G with λ2(G) = λ can be
seen as going to the uniform distribution with probability (1 − λ), and not doing too bad
otherwise.

Lemma 8. If λ2 (G) = λ and A is the normalized adjacency matrix of G, then A =
(1− λ) Jn + λC where Jn is the n × n matrix with 1/n everywhere, and C satisfies ∀v :
‖Cv‖ ≤ ‖v‖.

Proof. Let C := 1
λ

[A− (1− λ) Jn]. We are going to show that for any v we have ‖Cv‖ ≤ ‖v‖.
We can write v = a ·u+w where a is a constant, u represents uniform distribution and u⊥w.

‖Cv‖2 = ‖aCu+ Cw‖2

= ‖a1

λ
[A− (1− λ) Jn]u+

1

λ
[A− (1− λ) Jn]w‖2

= ‖a1

λ
[Au− (1− λ) Jnu] +

1

λ
[Aw − (1− λ) Jnw] ‖2

= ‖a1

λ
[u− (1− λ)u] +

1

λ
[Aw − (1− λ) Jnw] ‖2 (Au = u)

= ‖au+
1

λ
[Aw − (1− λ) Jnw] ‖2

= ‖au+
1

λ
Aw‖2 (Jnw = 0 because u⊥w)

9

= ‖au‖2 + ‖Aw
λ
‖2 (au⊥Aw)

≤ ‖au‖2 + ‖w‖2 (by lemma 3)

= ‖v‖2.

This completes the proof of the lemma.

To analyze the adjacency matrices arising from derandomized graph squaring we use the
notion of tensor product of matrices.

Definition 9 (tensor product). Let A be a n×m matrix, and B be a n′ ×m′ matrix. The
tensor product of A and B is defined as

A⊗B =

 a11B . . . a1nB
... . . .

...
an1B . . . annB

 ,
which is a n · n′ ×m ·m′ matrix.

Theorem 10. If λ2(X) = λ and λ2(G) = µ, then λ2 (XsG) ≤ (1− µ)λ2 + µ.

Proof. Let A be the normalized adjacency matrix of X, and B be the normalized adjacency
matrix of G. We can view a random step in XsG as

v → (v, a)→ (v[a], a)→ (v[a], b)→ (v[a][b], b)→ v[a][b]

where a is a random node in G and b is a random neighbor of a in G.
We now define matrices that implement each of the above steps.
The first step is given by the “lift” matrix L := In ⊗ (1/k, . . . , 1/k)T which is n · k × n.
The second step is given by Ã which is a n · k×n · k matrix, where Ã(u,a),(u′,a′) = 1 if and

only if a = a′ and u′ = u[a]. This matrix corresponds to taking a step in X after the choice
for the step has been made. No entropy is added by Ã, which is a permutation matrix.

The third step is given by B̃ = In ⊗B.
The fourth step is Ã again.
Finally, the fifth step is given by the “projection” matrix P := In ⊗ (1, . . . , 1).
The adjacency matrix M of XsG satisfies

M = PÃB̃ÃL.

By lemma 8, B = (1− µ) Jk + µC where ‖Cv‖ ≤ ‖v‖ for all v. It follows that

B̃ = In ⊗B = (1− µ) In ⊗ Jk + µIn ⊗ C.

Plugging this into the expression for M one gets

M = (1− µ)PÃIn ⊗ JkÃL+ µPÃIn ⊗ CÃL.

10

One can now observe the following:
(1) In ⊗ Jk = L · P , which is easy to check;
(2) P · Ã · L = A;
and (3) the matrix D := PÃIn ⊗ CÃL satisfies that ‖Dv‖ ≤ ‖v‖ for every v. This can be
shown also using the fact that C satisfies this property as we saw before. Therefore:

M = (1− µ)PÃ · LP · ÃL+ µD

= (1− µ)A2 + µD.

Then, by lemma 3

λ2 (XsG) = max
v⊥u

‖Mv‖
‖v‖

≤ ‖ (1− µ)A2v‖
‖v‖

+
‖µDv‖
‖v‖

≤ (1− µ)λ2 + µ.

And this completes the proof of this theorem.

We can verify that if λ2 (G) = 1
100

and λ2 (X) = 1−γ ≥ 1/10, then λ2 (XsG) ≤ 1− 12
11
γ.

So repeating this operation O(log n) times will still give λ2 = 1/10, qualitatively the same
as graph squaring.

We will use a family of expander graphs for G, graphs on arbitrarily many nodes that
have bounded degree and bounded second largest eigenvalue.

Fact 1 (Explicit expander graphs). For some constant Q = 4q, ∀m ∃ a Q-regular graph
Gm on Qm nodes with λ2 ≤ 1

100
. Given a node and an edge index we can compute the

corresponding neighbor in logarithmic space.

Many such constructions are available. One is due to Margulis (the needed expansion
property was proved later). Here the vertex set of a graph G on N nodes is Z√N × Z√N ,

where Z√N is the ring of the integers modulo
√
N . Each vertex v is a pair v = (x, y) where

x, y ∈ Z√N . For matrices T1, T2 and vectors b1, b2 defined below, each vertex v ∈ GN is
connected to T1v, T1v + b1, T2v, T2v + b2 and the four inverses of these operations. It can be

shown that for the choices T1 :=

(
1 1
0 1

)
, T2 :=

(
1 0
1 1

)
, b1 :=

(
1
0

)
and b2 :=

(
0
1

)
the resulting graph is 8-regular with bounded second eigenvalue. By adding self-loops and
taking powers of this graph one achieves the desired parameters.

Theorem 11. The undirected reachability problem is solvable deterministically in O(log n)-
space.

Proof. By Claim 2, we can focus on 4-regular graph with sets S and T . Call this 4-regular
graph X. To make the degrees match, let X1 := Xq. Then the degree of X1 is Q = 4q.
Define

Xi+1 = XisGi.

Note the degree of Xi is equal to the number of nodes in Gi which is equal to Qi: every
derandomized graph squaring increases the degree by a factor Q. Consider Xl for a suitable

11

l = O(log n). By Theorem 10 (cf. the observation right after its proof) we have λ2 (Xl) ≤
1/10. Then we can apply Claim 3, to solve the undirected reachability problem by going
through all s ∈ S and check if one of its neighbors in Xl lies in T , which can be done in
O(log n)-space. It only remains to verify that we can compute neighbors in Xl in O(log n)-
space.

The intuition is: if v ∈ X1, then the neighbors are v [a] where a ∈ {1, 2, . . . , Q}; if v ∈ X2,
then the neighbors are v [(a, b)] = v [a] [a [b]] where a, b ∈ {1, 2, . . . , Q}; if v ∈ X3, then the
neighbors are v [(a, b, c)] = v [(a, b)] [(a, b) [c]] = v [a] [a [b]] [(a′, b′)] = v [a] [a [b]] [a′] [a′ [b′]]
where a, b, c ∈ {1, 2, . . . , Q}; etc.

Figure 5: Compute bi’s from ai’s.

An edge in Xl is specified by (a1, a2, . . . , al) where ai ∈ {1, 2, . . . , Q}. To this edge
there corresponds a path of length 2l−1 in the graph X with labels (b1, b2, . . . , b2l−1) where
bi ∈ {1, 2, . . . , Q}. The associated neighbor of v in Xl is v [b1] [b2] . . . [b2l−1]. So to compute
v[(a1, . . . , al)], we proceed in 2 steps:

1. compute (b1, . . . , b2l−1), and

2. compute v [b1] [b2] . . . [b2l−1].

We must do this in space l = O(log n), and so we cannot afford to write down the output
of the first step. Instead, the following shows given (a1, . . . , al) and an index i ≤ 2l−1

how to compute bi ∈ {1, 2, . . . , Q} in space O(log n). From this, one can easily compute
v [b1] [b2] . . . [b2l−1] in logarithmic space one step at the time.

Observe that the the indices bi are obtained from the indices ai as in Figure 5.
So to compute bi, we just need to go from the root to the leaf bi in the tree. The space

needed for this is just the name of the node in the tree, which takes O(l) = O(log n) bits,
plus the space needed to compute neighbors in the expander graphs which is also O(log n).
So the total space is O(log n) and this completes the proof of the theorem.

12

4 Notes

That undirected reachability is decidable deterministically using logarithmic space was first
proved by Reingold. Reingold’s proof is in the same spirit of the one we presented, but uses
different graph operations to reduce the eigenvalue bound. The proof that we presented is
due to Rozenman and Vadhan.

13

