
CSG399: Gems of Theoretical Computer Science. Lectures 18-20. Mar. 17-24 2009.
Instructor: Emanuele Viola Scribe: Zhifeng Sun

Primes is in P

In these notes we present Agrawal, Kayal, and Saxena’s algorithm that determines if a
given integer n is prime in deterministic polynomial time, i.e. time polylog(n). Previously
there were various other algorithms, but these were either randomized, or relied on unproven
conjectures in number theory, or had running time slightly superpolynomial, such as Adle-
man, Pomerance, and Rumely’s algorithm that runs in deterministic time (log n)O(log log log n).

1 Preliminaries

A polynomial of d is a formal sum
∑d

i=0 aix
i. We often consider polynomials modulo n,

which means that the coefficients are intended modulo n. We also take polynomials modulo
other polynomials. For example we consider polynomials modulo xr − 1 which means that
the powers of x are intended modulo r. We will consider polynomials modulo (n, xr − 1)
which means that the coefficients are taken modulo n while the powers of x modulo r.

Polynomials can be divided like integers; we write f (x) |g (x) if ∃h (x) such that f (x) ·
h (x) = g (x). The following lemma gives an example we will use extensively.

Lemma 1. ∀a, b, n: xa − xb | xna − xnb. In particular, xa − 1 | xna − 1.

Proof. For u := xa and v := xb, un− vn = (u− v) (un−1 + un−2v + un−3v2 + . . . + vn−1).

Polynomials modulo (p, h (x)) is the set of polynomials obtained as remainders when
dividing polynomials by h (x), where the coefficients are considered modulo p. If h(x) is
of degree d and irreducible modulo p, then these remainders form a field of size pd. For
example, let p := 2 and h (x) := x2 + x + 1. The polynomials {0, 1, x + 0, x + 1} form a field
of size 22 = 4.

We write a(x) ≡ b(x) mod (n, h(x)) if h(x)|a(x)−b(x) when the coefficients are interpreted
modulo n.

2 The new characterization of primes

Some previous algorithms for primality had their roots in Fermat’s little theorem, stated
next.

Theorem 2 (Fermat’s little theorem). If p is a prime, then for any integer a, ap ≡p a.

The algorithm we are going to discuss has its root in the following generalization of
Fermat’s little theorem.

1



Theorem 3. ∀a, n such that (a, n) = 1 (i.e. a and n are co-prime), we have

(x + a)n ≡n xn + a⇐⇒ n is prime.

Proof. In general,

(x + a)n − xn − a =
n∑

i=0

(
n
i

)
xian−i − xn − a =

n−1∑
i=1

(
n
i

)
xian−i + an − a.

If n is prime, by Theorem 2, an ≡n a, and for i = 1, . . . , n − 1, n |
(

n
i

)
. This means

(x + a)n ≡n xn + a.
If n is not a prime, let p | n, p prime, and let pk be the highest power of p that divides n.

Consider

(
n
p

)
, since p cannot divide n− 1, n− 2, . . . , n− p + 1, it is still the case that pk

is the highest power of p dividing the numerator of

(
n
k

)
. But p divides the denominator

of

(
n
p

)
. So pk -

(
n
p

)
, which means n -

(
n
p

)
.

The crux of the polynomial-time primality algorithm is the following new characterization
of prime numbers. This characterization requires to be given a number r modulo which n
has high order, where recall n has order t mod r if nt ≡ 1 mod r, and ∀i ∈ {1, . . . , t− 1}
ni 6= 1 mod r. We later point out how, given n, we can efficiently find such an r which is at
most poly log n by brute-force search among the first poly log n integers.

Theorem 4 (Main). ∃c > 0, ∀n if n has order ≥ logc n mod r, then n is a prime if and
only if the following conditions are all satisfied:

1. n is not a perfect power;

2. n does not have factors ≤ r + logc n; and

3. ∀a ≤ r · logc n, (x + a)n ≡ xn + a mod (n, xr − 1).

We now prove this theorem relying on the following fact about the factorization of the
polynomial xr − 1 modulo p. By Lemma 1 this polynomial can always be divided by x− 1
and therefore it is not irreducible. The following fact states that it has an irreducible factor
h(x) which has degree at least 2 and moreover is such that the order of x is r, where x is
interpreted as an element in the field of polynomials mod (p, h(x)).

Fact 1. If p is a prime and (p, r) = 1, then xr − 1 has an irreducible factor h (x) mod p
such that:

1. The degree of h (x) is no less than 2, and

2. the order of x mod (p, h (x)) is r.

We omit the proof of the above fact which is essentially in Example 19.1 in Victor Shoup’s
“A Computational Introduction to Number Theory and Algebra” (version 2).

2



3 Proof of Theorem 4

The “⇒” direction is easy: part (1) and (2) are obvious, and part (3) is true by Theorem 3.
In the rest of this section we prove the “⇐” direction by contradiction. We assume that

n is not prime and satisfies the conditions in Theorem 4, and we derive a contradiction. Let
p be a prime that divides n, and let h(x) be the polynomial from Fact 1. Denote by F the
field of polynomials modulo (p, h (x)). Define

G :=
{

Πa (x + a)la mod (p, h (x)) , for a ≤ r · logc n, la ∈ N
}

,

R :=
{
nipj mod r ∀i, j

}
.

We reach the contradiction by double-counting G. Specifically we show:

Lemma 5. |G| ≤ n2
√
|R|.

Lemma 6. |G| � n2
√
|R|.

To prove the lemmas we need a couple more of definitions. Define H like G, but modulo
(p, xr − 1) instead of modulo (p, h (x)), i.e.

H :=
{

Πa (x + a)la mod (p, xr − 1) , for a ≤ r · logc n, la ∈ N
}

.

Also let

S :=
{

k : ∀ polynomial g (x) ∈ H, g (x)k ≡ g
(
xk
)

mod (p, xr − 1)
}

.

Observe that G ⊆ F ∗ = F \ {0}, because h (x) has degree no less than 2 and thus the
elements of G are obtained by multiplying together non-zero elements of F .

3.1 Proof of Lemma 5

We need the following claim.

Claim 1. We have:
(1) a, b ∈ S ⇒ a · b ∈ S;
(2) a, b ∈ S, a ≡ b mod r ⇒ a ≡ b mod |G|;
(3) n ∈ S, p ∈ S.

To prove the lemma from the claim consider the integers nipj for i, j ∈
{

0, 1, . . . ,
√
|R|
}

.

There are more than |R| distinct such integers, because n is not a perfect power of p (no
duplicates). So two of them are congruent modulo r by the definition of R. Let nipj ≡
ni′pj′ mod r. They are both in S by part 1 and part 3 of Claim 1. And by part 2 of Claim 1,

|G| |
∣∣nipj − ni′pj′

∣∣⇒ |G| ≤ n
√
|R| · p

√
|R| ≤ n2

√
|R|.

3



Proof of Claim 1. For part 1: any g (x) ∈ H is of the form Πa (x + a)la . Since b ∈ S, g (x)b ≡
g
(
xb
)

mod (p, xr − 1). By changing variables, we have g (xa)b ≡ g
(
xab
)

mod (p, xar − 1).

Since xr − 1 | xar − 1, we have g (xa)b ≡ g
(
xab
)

mod (p, xr − 1). Conclude as follows: since

a ∈ S, g (x)ab ≡ g (xa)b ≡ g
(
xab
)

mod (p, xr − 1), which means ab ∈ S.
For part 2: Assuming without loss of generality that a ≥ b, and since a ≡ b mod r, ∀g (x)

we have
xr − 1 | xa−b − 1 | xa − xb | g (xa)− g

(
xb
)
,

where the last step follows because if g (x) =
∑d

i=0 cix
i, then g (xa)−g

(
xb
)

=
∑d

i=1 ci

(
(xa)i −

(
xb
)i)

,

and recall that ∀i ≥ 1, xa − xb | (xa)i −
(
xb
)i

by Lemma 1. Combining this with the as-

sumption that a, b ∈ S we have that for g ∈ G, g (x)a ≡ g (xa) ≡ g
(
xb
)
≡ g (x)b. Therefore

g (x)a−b ≡ 1 mod (p, h (x)). Now pick g (x) to be a generator of G which exists because
G ⊆ F ∗ (F ∗ is cyclic and a subgroup of a cyclic group is cyclic). This shows |G| | a− b.

For part 3: n ∈ S because
(

Πa (x + a)la
)n

≡ Πa ((x + a)n)
la ≡ Πa (xn + a)la mod (n, xr − 1)

by condition (3) of Theorem 4. Also, p ∈ S by a similar argument and Theorem 3.

3.2 Proof of Lemma 6

Let B :=
√
|R| · logc′ n where c′ := c/4. Consider the polynomials

Πa∈T (x + a)

for all T ⊆ {0, 1, . . . , B}. Note |B| ≤ r · logc n, and in particular the values a are contained
in the range of values a in the last condition of Theorem 4.

Claim 2. All these polynomials give distinct elements of G.

To prove the lemma from this claim note that |G| ≥ 2|B| = 2
√
|R|·logc′ n � n2

√
|R|.

Proof of Claim 2. Take f (x) = Πa∈T (x + a) where T ⊆ {0, 1, . . . , B}, and g (x) = Πa∈T ′ (x + a)
where T ′ ⊆ {0, 1, . . . , B}. Assume for the sake of contradiction that f (x) ≡ g (x) mod (p, h (x)).
By Fact 1, x has order r mod (p, h (x)). We use this to show f (x) − g (x) has more roots
than its degree, which implies that f (x)− g (x) = 0, i.e. f (x) = g (x).

Because x has order r mod (p, h (x)), the value xk are different mod (p, h (x)) for different
k ∈ R. We can write k = s + b · r where s ∈ S, b ∈ Z. Let ∆ (x) := f (x)− g (x). We have

∆
(
xk
)
≡ ∆ (xs) mod xr − 1

= f (xs)− g (xs)

≡ f (x)s − g (x)s mod (p, xr − 1)

≡ 0 mod (p, h (x)) .

So ∆ (x) has at least |R| roots in F . Now we look at the degree of ∆ (x). This is no more
than B =

√
|R| · logc′ n. So we have more roots than the degree if |R| >

√
|R| · logc′ n ⇔√

|R| > logc′ n. Recall n has order at least logc n mod r. So |R| ≥ logc n, which means√
|R| ≥ logc/2 n > logc′ n, completing the proof.

4



4 A polynomial-time algorithm for primality

To devise a deterministic algorithm that tests primality in polylog(n) time based on Theorem
4, we need to be able to:

1. in polylog(n) time compute r ≤ polylog(n) such that the order of n mod r is at least
logc n;

2. in polylog(n) time check if n = ab for a, b ∈ N; and

3. in polylog(n) time check if (x + a)n ≡ xn + a mod (n, xr − 1) ∀a ≤ r · logc n.

The following claim plus brute-force search gives (1).

Claim 3. ∀c, ∃d such that for every n there is r ≤ logd n such that the order of n mod r is
≥ logc n.

Proof. We are going to prove this claim by contradiction. Suppose that ∀r ≤ logd n, n has
order smaller than logc n. Take any prime r ≤ logd n, we have r | n − 1 or r | n2 − 1 or
. . . or r | nlogc n − 1. Then we have r | Πlogc n

i=1 (ni − 1). So every prime ≤ logd n divides
Πlogc n

i=1 (ni − 1). Equivalently, the product of these primes divides Πlogc n
i=1 (ni − 1). But

(
# of primes that are smaller or equal to logd n

)
≥ logd n

polyloglog(n)
≥ logd−1 n.

Since every prime is ≥ 2, the product of these primes ≥ 2logd−1 n. On the other hand,

Πlogc n
i=1

(
ni − 1

)
≤
(
nlogc n

)logc n
= nlog2c n.

We have a contradiction for 2logd−1 n > nlog2c n, which follows for a suitable choice of d
depending on c.

The following are the solutions to the 3 problems listed at the beginning of this section:
(1) follows by Claim 3 plus the fact that we can verify if the order of n mod r is at least
logc n in polylog(n) time; (2) follows because for any b we can use binary search to check if
n = ab, and there are only log n b’s; (3) is standard fast modular exponentiation.

5


