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Abstract

A bisection of a graph with n vertices is a partition of its vertices into two sets,
each of size n/2. The bisection cost is the number of edges connecting the two sets.
It is known that finding a bisection of minimum cost is NP-hard. We present an algo-
rithm that finds a bisection whose cost is within ratio of O(log2 n) from the minimum.
For graphs excluding any fixed graph as a minor (e.g. planar graphs) we obtain an
improved approximation ratio of O(log n). The previously known approximation ratio
for bisection was roughly

√
n.

1 Introduction

Let G(V, E) be an undirected graph with n vertices and m edges, where n is even. For a
subset S of the vertices (with S #= ∅, V ), the cut (S, V \ S) is the set of all edges in G with
one endpoint in S and one endpoints in V \ S; these edges are said to be cut by (S, V \ S).
The cost of a cut is the number of edges in it.

A cut (S, V \S) is called a bisection of G if its two sides, S and V \S, are each of size n/2.
We denote the minimum cost of a bisection of G by b. Minimum bisection is the problem of
computing b for an input graph G. This problem is NP-hard, see [GJS76], and we address
the problem of approximating it.

An algorithm is said to approximate a minimization problem within ratio f ≥ 1 if it
runs in polynomial time and outputs a solution whose cost is at most f times the cost of
the optimal solution. The problem is said to have a PTAS (polynomial time approximation
scheme) if for every fixed f > 1 there is an algorithm with approximation ratio f .
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1.1 Previous work

Leighton and Rao [LR88, LR99] showed how to approximate within ratio O(log n) minimum-
quotient cuts, which we shall call min-ratio cuts. In these cuts, one wishes to minimize the
cut ratio (also called edge expansion or flux) c/|S|, where c is the number of edges cut, and
|S| is the cardinality of the smaller of the two vertex sets.

A β-balanced cut is a cut that partitions the graph into two parts, each of size at most βn.
Leighton and Rao [LR88] used the approximate min-ratio cuts to find a 2/3-balanced cut
(also called edge separator) with at most O(b log n) edges, see also [LR99, Shm97]. Note that
such a 2/3-balanced cut does not provide an O(logn) approximation for the value of b. For
example, when the graph consists of 3 disjoint cliques of equal size, an optimal 2/3-balanced
cut has no edges, whereas b = Ω(n2).

A straightforward approach for obtaining an exact bisection is to first find an almost
balanced cut (e.g. using approximate min-ratio cuts) and then move a few low degree
vertices from one side to the other. Using this approach one can approximate bisection

within a ratio of Õ(
√

m/b) (we use Õ(f) to denote O(f ·polylog n)) see e.g. [LR99, Footnote
10] and [FKN00]. This is a dramatic improvement over the naive ratio of O(m/b) (achieved
by arbitrarily picking n/2 vertices), but might still be larger than n.

In terms of n, the best approximation ratio previously known is Õ(
√

n), due to [FKN00].
Their approach follows, in part, a divide-and-conquer paradigm. Two of their main tools are
(i) approximate min-ratio cuts, which are used to recursively break the graph, and (ii) dy-
namic programming, which is used to combine certain possible parts into an exact bisection.
The current work also uses a divide-and-conquer approach, but in a more sophisticated way.

Additional related work include the following. In [SV95], Saran and Vazirani give an
algorithm that approximates bisection within a ratio of n/2. In [AKK99], Arora, Karger
and Karpinski show that bisection has a PTAS for everywhere-dense graphs, i.e. graphs
with minimum degree Ω(n). In [GSV99], Garg, Saran and Vazirani give an approximation
ratio of 2 for the problem of finding a 2/3-balanced cut of minimum cost in a planar graph.
Their result extends to a β-balanced cut, for any β ≥ 2/3, but does not extend to a bisection,
which is a 1/2-balanced cut. In [BJ92], Bui and Jones show that for any fixed ε > 0, it is
NP-hard to approximate the minimum bisection within an additive term of n2−ε. In terms
of approximation ratio, however, there is no known hardness of approximation result which
excludes the possibility that bisection has a PTAS.

1.2 Our results

Our main result is an algorithm for approximating the minimum bisection within a polylog-
arithmic ratio.

Theorem 1 A bisection of cost within ratio of O(log2 n) of the minimum can be computed
in polynomial time.

In Section 2 we give an overview of the algorithm. On a high level, the algorithm follows
a divide-and-conquer approach. The input graph is recursively divided into parts, using a
new cut notion which we call an amortized cut, and then the parts are combined into a
bisection using dynamic programming.
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In Section 4 we describe our algorithm for approximating bisection, based on a subroutine
for finding an amortized cut. If the subroutine is guaranteed to find a ρ-amortized cut in a
graph, the algorithm computes a bisection whose cost is within ratio of 1 +O(ρ logn) of the
minimum.

In Section 3 we devise an algorithm for finding an O(log n)-amortized cut in a gen-
eral graph. By using this algorithm as a subroutine in the 1 + O(ρ log n) approximation
algorithm for bisection, we are guaranteed that ρ = O(log n), proving Theorem 1. The
subroutine uses a τ -approximate min-ratio cut in order to find an O(τ)-amortized cut. The
best known approximation algorithms for min-ratio cut in general graphs, due to Leighton
and Rao [LR88, LR99] and due to [AR98, LLR95], have approximation ratio τ = O(log n).

In certain graph families, there is a better approximation ratio τ for the min-ratio cut
problem. If these graph families are closed under taking induced subgraphs, then we can
approximate bisection within an improved ratio of O(τ log n). For example, it is shown
in [KPR93] that in graphs excluding any fixed graph as a minor (e.g. bounded-genus graphs)
min-ratio cut can be approximated within a constant ratio, i.e. τ = O(1).

Theorem 2 In graphs excluding any fixed graph as a minor (e.g. planar graphs), a bisection
of cost within ratio of O(log n) of the minimum can be computed in polynomial time.

In Section 5 we show that our results extend to several natural generalizations of the
bisection problem. These extensions include, for example, bisection of graphs with arbitrary
nonnegative edge costs and graph partitioning into three parts of equal size.

1.3 Conventions and notation

We will often denote the two sides of a (not necessarily optimal) bisection as white W and
black B. A graph may have several different bisections of minimum cost. For the analysis,
let us fix one of them (arbitrarily) and call it the fixed optimal bisection (W ∗, B∗).

For V1, V2 two disjoint subsets of vertices in a graph, let e(V1, V2) denote the number of
edges with one endpoint in V1 and the other endpoints in V2. Subsets V1, V2 ⊂ V are called a
partition of V if they are nonempty, disjoint, and their union is equal to V . In our context,
V is the vertex set of a graph, and then a partition V = V1 ∪ V2 is equivalent to the cut
(V1, V2).

A subset of vertices S ⊂ V with 0 < |S| < |V |, corresponds to a cut (S, S) in the graph,

where S = V \S. We denote by r(S) the ratio of this cut, i.e. r(S) = e(S,S)
min{|S|,|S|} , and by r′(S)

the ratio of this cut towards S, i.e. r′(S) = e(S,S)
|S| . We call S a part of the graph, referring

either to the set of vertices S or to the subgraph induced on S, depending on the context.
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2 Overview and techniques

Our approximation algorithm for minimum bisection has three stages, as outlined below.

Stage 1: Decomposition. This stage consists of a sequence of divide steps. The input to
a divide step is a part of the input graph G, i.e. a vertex set and the subgraph induced on
it, and the output is a partition of the vertex set into two nonempty subsets, giving two new
parts of the graph. These divide steps are applied on the input graph G recursively, until it
is decomposed into individual vertices.

The output of the whole decomposition stage is a binary tree T , that we call the decom-
position tree. Each node i of the tree contains a part Vi obtained in a divide step, as follows.
The root of the tree contains the input graph G, the leaves of the tree contain individual
vertices of G, and the two direct descendents of a node i are the two subparts obtained in
the divide step of its part Vi.

To complete the description of the decomposition stage, we need to explain how a divide
step is performed. This is done using a new notion called an amortized cut, which we define
later in this section. We devise an algorithm for finding amortized cuts in Section 3. The
decomposition stage is described in more detail in Section 4.1.

Stage 2: Labeling. Consider a labeling of the decomposition tree T , which labels each
(nonleaf) tree node as either white or black. Fixing a parameter 1/2 < α< 1, we say that a
labeling is α-consistent with respect to a white-black bisection (W, B) of the input graph if
every part Vi (at a tree node i) satisfies that |W ∩ Vi| ≤ α|Vi| if the label of node i is white,
and that |B ∩ Vi| ≤ α|Vi| if the label of node i is black.

The desired outcome of the labeling stage is a labeling which is α-consistent with the fixed
optimal bisection (W ∗, B∗), called in short an opt-consistent labeling. However, an optimal
bisection is not known to the algorithm, so instead of finding an opt-consistent labeling, this
stage produces a family of labelings, such that at least one member of the family is opt-
consistent. The description of how this is done is deferred to Section 4.2. For the purpose of
this overview, it will be convenient to think of the labeling stage as if it produces only one
labeling, which is opt-consistent.

Stage 3: Combining. Given a decomposition tree T and an arbitrary (not necessarily
opt-consistent) labeling of it, the combining stage assigns to each vertex v of the input graph
G a white charge and a black charge. The two charges are simple to compute based on the
labels along the path from the root of T to the leaf that contains the vertex v.

The charge of a bisection (W, B) of the input graph G (with respect to the labeling) is
defined as the sum of the white charges of the vertices of W and the black charges of the
vertices of B. The functions white charge and black charge have the property that for every
bisection, charge is an upper bound on cost (regardless of the labeling).

If the charge is defined with respect to an opt-consistent labeling of T then our notion
of amortized cut used in the decomposition stage guarantees in addition that the charge
of the fixed optimal bisection is within a polylogarithmic factor of its cost b. Hence, using
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the opt-consistent labeling produced by the labeling stage ensures that the input graph G
contains a bisection whose charge is within polylogarithmic ratio of b.

Finding a bisection of minimum charge in G is relatively straightforward. Associate with
each vertex a net-charge, which is its white charge minus its black charge, and pick the n/2
vertices with smallest net-charge to form one side W , leaving the remaining n/2 vertices in
another side B. The bisection (W, B) that we find has minimum charge, and its cost is thus
within a polylogarithmic factor of b, the cost of the minimum bisection.

It is interesting to note that finding a minimum cost bisection is an optimization problem
with a quadratic objective function (minimizing the number of edges, where edges are pairs
of vertices). Finding a minimum charge bisection (given the decomposition tree and an
opt-consistent labeling) is an optimization problem with a linear objective function (sum of
net-charges over individual vertices). Hence in a sense, our algorithm performs a linearization
of a quadratic function, and loses a polylogarithmic factor in the process.

The above presentation of the combining stage was oversimplified. The output of the
labeling stage is not one labeling that is opt-consistent, but rather a large family of labelings,
such that at least one of them is opt-consistent. Moreover, this family has exponential
cardinality, so we cannot try the above net-charge approach on each labeling separately.
Instead, we exploit the structure of this family of labelings and use dynamic programming
to compute a labeling from the family and a bisection, such that the charge of this bisection
with respect to this labeling is minimum over all labeling-bisection pairs. Details appear in
Section 4.4.

In the rest of the overview we shall introduce and discuss the notion of amortized cut,
which is of central importance in bounding the ratio between the charge and the cost of the
fixed optimal bisection. To motivate this new notion we present our algorithm as a divide-
and-conquer algorithm. We then suggest a kind of cut that is desirable for the algorithm’s
divide step and call this cut notion an amortized cut.

Divide and conquer approach

A possible divide and conquer approach for a graph problem is to divide the input graph G
into two parts (using a cut), solve a subproblem for each part, and then combine the solutions
of the two subproblems into a solution for G. This approach can be applied recursively, and
then the input graph G is recursively divided into smaller and smaller parts, where each part
is associated with a subproblem. Note that the divide step cut is a tool of this approach,
and is not intended to be a solution to the subproblem.

In our context, the graph problem is minimum bisection, and we apply this divide and
conquer approach for the more general problem of cutting away an arbitrary number of
vertices that is given as part of the input (bisection is the special case where the given
number is n/2). Similarly, the subproblem of each part requires to cut away (from that
part) an arbitrary number of vertices that is given in the subproblem. Note that minimum
bisection is a cut problem, and therefore in addition to the divide step cuts we have here also
solution cuts (later called combined cuts). Note that the solution cut of a part need not be
the same as the divide step cut of this part.
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Our three stage algorithm outlined above follows this divide and conquer approach. The
task of breaking the input graph into smaller and smaller parts is performed by the decom-
position stage, whose decomposition tree T represents the recursive structure of the divide
steps.

For such a divide and conquer approach to be successful, it is desirable that (i) each of
the two subproblems can be solved separately; and (ii) the solutions of the two subproblems
can be combined while incurring a relatively small additional cost. Below we provide an
overview of how our algorithms handles these issues.

Consider the problem of cutting away k vertices from a part U ⊆ V of the input graph.
The corresponding divide step uses a cut (U1, U2) of U to break this problem into the two
subproblems of cutting away k1 vertices from U1 and of cutting away k2 vertices from U2,
with k = k1 + k2. (For the sake of exposition assume that k1, k2 can be guessed.) Let
us assume that the subproblem associated with each subpart Ui is solved separately (by
recursion) and the solution obtained for it is a cut (Ci, Fi) with |Ci| = ki (see also Fig. 1).
The two solution cuts are then combined into a cut of U that separates k = k1 + k2 vertices,
namely (C1 ∪C2, F1 ∪F2). Let Cut(U ′, k′) denote the cost of the cut of U ′ that separates k′

vertices and is found by the algorithm. Then the cost of the combined cut is given by

Cut(U, k) = Cut(U1, k1) + Cut(U2, k2) + e(C1, F2) + e(C2, F1). (1)

F1

C F

U1

Divide

Step

C1 F2

U2

C2

U

U2

U1

k1 k2

Figure 1: The divide and conquer paradigm

Previous accounting method

The approach of [FKN00] is based on a straightforward upper bound on the cost (1) of the
combined cut. The additional cost incurred by the divide step, i.e. e(C1, F2) + e(C2, F1), is
at most the cost of all the edges cut by the divide step, i.e. e(U1, U2), yielding the upper
bound

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(U1, U2). (2)
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We remark that a bound similar to (2) is used in divide and conquer algorithms for many
other graph problems, such as minimum cut linear arrangement (a.k.a. cutwidth), see
e.g. [LR99].

The divide steps of [FKN00] use an approximate min-ratio cut to break each part U .
This cut appears to be suitable for the bound (2) because it minimizes the cost of the cut
(U1, U2), and at the same time tries to cut the part U into parts of roughly equal size, so as
to minimize the depth of the recursion.

It is particularly instructive to evaluate the quality of our upper bound in the case where
the computed cut (C1 ∪ C2, F1 ∪ F2) is just the cut induced on U by the optimal bisection
(W ∗, B∗). Intuitively, we analyze the case where the algorithm happens to find the optimal
bisection. In fact, we will later use dynamic programming to find a bisection for which the
upper bound is minimized, so such an analysis bounds from above the cost of the output
bisection.

There are cases where the upper bound (2) is tight (i.e. holds with equality). Indeed,
the cuts within each Ui are computed independently of each other, and so it might happen
that all the edges between the two parts U1, U2 end up in the combined cut. However, this
bound is insensitive to cases where only few of the edges that are cut in the divide step end
up in the combined cut, leading to a relatively poor approximation ratio.

New accounting method

We introduce a more sophisticated way of bounding the cost of the combined cut. Since
F1 ⊆ U1 and F2 ⊆ U2 we can bound the cost of the combined cut by

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(C1, U2) + e(C2, U1). (3)

Unlike the actual cost (1), the upper bound (3) can be used in a divide and conquer
approach, as follows. Let us call e(C1, U2) + e(C2, U1) the charge of the divide step of U .
This charge can be distributed into a charge e(C1, U2) of the part U1, and a charge e(C2, U1)
of the part U2. The charge of a part Ui consists of the edges going from Ci to the other
part U3−i, and thus depends on the cut (Ci, Fi) chosen in the part Ui, but not on the cut
chosen in the other part U3−i. We obtain two separate subproblems (as in each part Ui

we want to find a cut (Ci, Fi) for which sum of the cost of this cut and the charge to this
part is minimal), enabling a recursive divide and conquer approach. In contrast, the terms
e(C1, F2) and e(C2, F1) of the actual cost of the combined cut depend on the cuts chosen in
both parts, and do not allow to break the problem into two separate subproblems.

The new accounting method makes a distinction between the two sides C and F of the
combined cut. Unlike e.g. in (2), these two sides have different roles in the upper bound (3),
and we will choose in a certain way which side is referred to as C (and which as F ). Since
we wish to minimize the charge, it makes sense to choose the smaller of the two sides to be
C. In our analysis we have a somewhat relaxed condition, requiring that |C| ≤ α|U |, for a
fixed 1/2 < α < 1. The task of identifying a side C as required above in each divide step
(i.e. each node of the decomposition tree) is performed by the labeling stage, as explained
in Section 4.2.

The charge of a bisection is the upper bound that is obtained by applying the upper
bound (3) recursively, i.e. it is the sum of the charges of all the divide steps. In Section 4.3
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we discuss this notion in more detail, and in Section 4.4 we show that its current formulation
is equivalent to the one from Stage 3 of the algorithm outline (where the identification of a
side C at each divide step corresponds to labeling of the decomposition tree T ). ¿From the
current formulation it is straightforward that the charge of a bisection is always an upper
bound on its cost (regardless of the identification of C at each divide step, i.e. the tree
labeling).

We call the vertices of C = C1∪C2 charged and the vertices of F = F1∪F2 free. The edges
in the part U can then be classified as charged-charged, charged-free or free-free, according
to their two endpoints.

Desired divide step

Rather than find a bisection of minimum cost, our approximation algorithm looks for a
bisection of minimum charge. Our desired divide step is therefore one that guarantees that
for the fixed optimal bisection, charge can be used to approximate cost. By the labeling
stage, it suffices to refer here to charge with respect to an opt-consistent labeling, so from
now on we assume that |C| ≤ α|U | at each divide step.

Consider the charge of the fixed optimal bisection, and recall that it is the sum of the
charges of all the divide steps. The charge of a divide step of a part U is e(C1, U2)+e(C2, U1)
and can be written also as e(C1, F2)+ e(C2, F1)+2e(C1, C2), i.e. the cost of the charged-free
edges that the divide step cuts and twice the cost of the charged-charged edges that it cuts.
Observe that a charged-free edge is always an edge of the fixed optimal bisection (and vice
versa) and that each edge is cut exactly once in the decomposition stage. Hence, all the
charged-free edges cut in all the divide steps are exactly all the edges of the fixed optimal
bisection. So for the fixed optimal bisection, the difference between charge and cost is twice
the cost of all the charged-charged edges cut in all the divide steps.

It is therefore desired that the divide step cuts relatively few charged-charged edges,
where relative here is with respect to b, the cost of the fixed optimal bisection. Since b
is the total cost of the charged-free edges that are cut in all the divide steps, we seek an
amortization scheme that amortizes the total cost of all charged-charged edges cut against
the total cost of all charged-free edges cut. The partition of vertices to charged and free is
not known to the divide step, and we therefore require that the amortization scheme holds
for every possible partition of vertices to charged and free.

A simple amortization scheme can consider each divide step separately and amortize the
cost of the charged-charged edges cut in a divide step against the cost of the charged-free
edges cut in the same divide step. Suppose that in every divide step the amortized cost in this
method is at most ρ, i.e. at every part U we have that e(C1, C2) ≤ ρ[e(C1, F2) + e(C2, F1)].
Then the total cost of charged-charged edges cut in all divide steps is clearly at most ρb, and
the charge of the fixed optimal bisection is at most (1 + 2ρ)b.

The problem with this simple amortization scheme is that in order to guarantee that the
scheme holds for all possible partitions of vertices to charged and free, ρ might be required to
be at least n, a value that is too high for our intended application. For example, consider a
graph that consists of two cliques of size n/2 connected by an edge e. If the divide step breaks
any of the cliques, then letting this clique be C and the other clique be F , the amortization
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cost will be at least n. Otherwise, the divide step consists of the edge e and then letting C
consist of the two endpoints of e, the amortization cost will be infinite.

We employ a more complicated amortization scheme that allows a small amortization
cost ρ but introduces an additional logarithmic factor. The reason for the logarithmic factor
is that this scheme amortizes against the same edge more than once (but, in a sense, not
too many times). Another complication is that this scheme actually has two amortization
methods, and it uses at each divide step the one that is better (for that divide step).

Amortized cut

We amortize the cost of the charged-charged edges cut in a divide step against the cost of the
charged-free edges in the part being divided, i.e. in the divide step of a part U we amortize
e(C1, C2) against e(C, F ). The edges that we amortize against are not cut in this divide
step, and hence an edge may receive an amortized cost in many divide steps. However, our
amortization scheme described below will guarantee that the total cost amortized against a
single edge is at most O(ρ · log n), for a suitable ρ. Since the edges that we amortize against
are charged-free edges and hence edges of the fixed optimal bisection, it would follow that
the total cost of the charged-charged edges cut in all the divide steps is at most O(ρ log n) ·b,
and so the charge of the fixed optimal bisection is (1 + O(ρ log n)) · b.

For motivation, consider the case where the divide steps recursion has depth O(log n),
e.g. when all the divide steps are roughly balanced. In this case, an edge can receive an
amortized cost in at most O(logn) divide steps. Suppose that in every divide step the
amortized cost is at most ρ, i.e. in every part U we have that e(C1, C2) ≤ ρ · e(C, F ). Then
the total cost amortized against a single edge is at most O(ρ log n).

We do not require that the divide steps are balanced, but rather scale the amortization
cost at a part U according to the imbalance of its divide step. Out of the several possible
scaling factors we will use only the following two, where we assume, without loss of gener-
ality, that |U1| ≤| U2|. The first scaling factor is e(C1, F1)/e(C, F ), and its corresponding
amortization method requires that

e(C1, C2) ≤ ρ · e(C1, F1)

e(C, F )
· e(C, F ). (4)

The second scaling factor is |C1|/|C|, and its corresponding amortization method requires
that

e(C1, C2) ≤ ρ · |C1|
|C|

· e(C, F ). (5)

Alternative formulations. The first amortization method (4) can be written also as
e(C1, C2) ≤ ρ · e(C1, F1). A convenient interpretation of this formulation is that we amortize
against the charged-free edges inside U1, the smaller side of the divide step cut (rather than
inside U , the part being divided), and the amortized cost is required to be at most ρ.

The second amortization method (5) can be written also as e(C1, C2) ≤ ρ · r′(C) · |C1|
where r′(C) = e(C, F )/|C| (see Section 1.3 for the difference between r′(C) and r(C)). A
convenient interpretation of this formulation is that we amortize against the vertices in C1,
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the charged vertices inside the smaller side of the divide step cut, and the amortized cost is
required to be at most ρ · r′(C).

Total amortized cost. The total cost amortized in the first method (4) is at most
O(ρ log n) · b. Indeed, let us use the alternative formulation in which the amortization is
only against edges inside U1, the smaller side of the divide step cut. An edge can be inside
U1 in at most log n divide steps (since the size of the part it is contained in reduces at each
such divide step by a factor of 2). Hence the total cost amortized in this method against a
single edge (of the fixed optimal bisection) is at most O(ρ log n), and the claim follows.

The total cost amortized in the second method (5) is also at most O(ρ log n) · b. Indeed,
we show in Section 4.3 that the total cost amortized in this method against a single edge (of
the fixed optimal bisection) is at most O(ρ log n) (essentially by careful summation of the
relevant terms of the form |C1|/|C|), and the claim follows.

Our amortization scheme. Our amortization scheme chooses at each divide step the
scaling factor that is better for this divide step, and so it suffices to have that at each part
U at least one of (4) and (5) holds. It follows from the above discussion (see Section 4.3 for
a full proof) that the total cost amortized in both methods together is at most O(ρ logn) · b.

We can now formally define our desired divide step according to the (alternative formu-
lations of) the two amortization methods described above. We call this cut an amortized
cut.

Definition (Amortized cut). Let (U1, U2) be a cut with |U1| ≤| U2| in a graph G′(U, E′),
and let U = C ∪F be a partition of the graph vertices U to charged vertices C and free vertices
F . Let us denote Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2, as in Fig. 1. Let

ρe =
e(C1, C2)

e(C1, F1)
and ρv =

e(C1, C2)

|C1| · r′(C)
(6)

where r′(C) = e(C, F )/|C|. We call ρe the amortized cost for the edges, and ρv the amortized
cost for the vertices (note that ρe, ρv depend on C, F ).

The amortized cost of the cut (U1, U2) is the maximum of min{ρe, ρv}, where the maximum
is taken over all partitions U = C ∪ F with 0 < |C| ≤ α|U | for a fixed 1

2 ≤ α < 1. We say that
the cut (U1, U2) is ρ-amortized if its amortized cost is at most ρ.

In order us to correctly handle cases where there is no cost to amortize against, we use the
convention that 0

0 is defined to be 0, and that t
0 for t > 0 is defined to be ∞. In particular,

we may extend (6) to the case where C = ∅ and then ρe, ρv are defined to be 0.

Convenient characterizations. A convenient characterization of an amortized cut is
given in the following proposition, whose proof is straightforward. (We will use this charac-
terization in Section 4.)

Proposition 1 A cut (U1, U2) with |U1| ≤ |U2| is ρ-amortized if and only if for every C ⊂ U
with |C| ≤ α|U | and F = U \ C,

e(C1, C2) ≤ ρ · max
{
e(C1, F1) , |C1|

|C| · e(C, F )
}

10



where Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2.

The restriction |C| ≤ α|U | implies that the two terms r(C) = e(C,F )
min{|C|,|F |} and r′(C) =

e(C,F )
|C| differ by no more than a constant factor. Indeed, min{|C|, |F |} = Θ(|C|) and hence

r(C) = e(C,F )
min{|C|,|F |} = e(C,F )

Θ(|C|) = Θ(r′(C)).

We can therefore characterize the amortized cost of a cut (up to constant factors) in
terms of r(C) rather than r′(C). (We will use this characterization in Section 3).

Proposition 2 A cut (U1, U2) with |U1| ≤ |U2| is O(ρ)-amortized if for every partition
U = C ∪ F with 0 < |C| ≤ α|U |,

min

{
e(C1, C2)

e(C1, F1)
,

e(C1, C2)

|C1| · r(C)

}

≤ ρ (7)

where Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2.

Remarks. Observe that without the restriction |C| ≤ α|U |, the amortized cost ρ might
be required to be Ω(|U |), a value that is too high for our intended application. For example,
consider a clique on n vertices and a cut (U1, U2) in it with |U1| ≤| U2|. Let one vertex of
U2 be the only free vertex, and the rest of the vertices be charged. The number of charged-
charged edges cut is |U1| · Θ(n). There are no charged-free edges in U1, so the amortized
cost for the edges is ρe = ∞. The number of charged vertices in the smaller side is |U1| and
r′(C) = n−1

n−1 = 1, so the amortized cost for the vertices is ρv = |U1|Θ(n)
|U1|·1 = Θ(n). Therefore,

the amortized cost of any cut would be ρ = Ω(n).
In contrast, we show that the restriction |C| ≤ α|U | allows to obtain relatively small

values of ρ. Namely, there always exists a cut whose amortized cost is ρ = O(1), and a
cut whose amortized cost is O(log |U |) can be computed efficiently. We remark that our
constructions are stronger than those required by Proposition 2, as they satisfy (7) with
no restriction on |C|. (The point is that we use r(C) rather than r′(C), which makes a
significant difference when |C| ,| F |, as in the above clique example.)

Note that the amortized cost ρ is not an approximation ratio. On the one hand, it is not
clear from the definition that every graph has an O(1)-amortized cut. On the other hand,
the amortized cost of a cut may be smaller than 1, as demonstrated by a graph that consists
of two cliques of size n/2 connected by an edge. The cut that separates the two cliques can
be seen to have amortized cost O(1/n).

11



3 Finding an amortized cut

In this section we devise an algorithm for finding O(log n)-amortized cuts in general graphs,
and O(1)-amortized cuts in graphs excluding any fixed minor (e.g. planar graphs). The input
graph for this algorithm is denoted by G (though it may be just a part of the input graph
for bisection). We assume that G is connected, as otherwise we can separate a connected
component while cutting no edges at all.

Section 3.1 shows that every optimal min-ratio cut is an O(1)-amortized cut. It follows
that in every graph there exists an O(1)-amortized cut. An optimal min-ratio cut is NP-hard
to find in general graphs, and we thus consider approximate min-ratio cuts.

Section 3.2 demonstrates an approximate min-ratio cut which would be a poor divide
step for our accounting method. In particular, its amortized cost is high, showing that
the arguments of Section 3.1 do not immediately extend from optimal min-ratio cuts to
approximate ones.

Section 3.3 presents an algorithm that uses a τ -approximate min-ratio cut in order to
find an O(τ)-amortized cut. Known algorithms for the min-ratio cut problem in general
graphs [LR99, AR98, LLR95] have approximation ratio τ = O(log n), and we can thus
find an O(logn)-amortized cut. For certain graph families a better approximation ratio is
possible. For example, in graphs excluding any fixed minor, a ratio of τ = O(1) is known
due to [KPR93], and we can thus find an O(1)-amortized cut.

3.1 Min-ratio cuts are O(1)-amortized

We give an O(1) upper bound on the amortized cost of optimal min-ratio cuts. The proof is
based on the characterization given in Proposition 2 for an amortized cut. We remark that
our proof satisfies (7) with no restriction on |C|.

Lemma 3 An optimal min-ratio cut in a graph is O(1)-amortized.

Proof. Let (V1, V2) be an optimal min-ratio cut in a graph G, and assume, without loss of
generality, that |V1| ≤| V2|. Let V = C ∪ F be an arbitrary partition of the graph vertices
to charged vertices C and free vertices F , with 0 < |C| < |V |, and denote Ci = Vi ∩ C and
Fi = Vi ∩ F for i = 1, 2 (see also Fig. 2). We show below that

min

{
e(C1, C2)

e(C1, F1)
,

e(C1, C2)

|C1| · r(C)

}

≤ 2, (8)

and then by Proposition 2 we will have that (V1, V2) is O(1)-amortized, which proves the
lemma. Note that we can assume that |C1| > 0, as otherwise there is nothing to prove.

One easy case is when e(C1,C2)
e(C1,F1)

(i.e. the amortized cost for the edges ρe) is at most 2,

which clearly implies (8).
Another easy case is when e(C1,C2)

|C1| ≤ 2r(V1). Since (V1, V2) is an optimal min-ratio cut,

we also have that r(V1) ≤ r(C). We obtain that e(C1,C2)
|C1|·r(C) ≤ 2 r(V1)

r(C) ≤ 2, and therefore (8)
holds.

12
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Figure 2: The amortized cost of an optimal min-ratio cut (V1, V2)

We next prove that one of the two easy cases above must hold, as otherwise we must have
that r(F1) < r(V1), in contradiction with (V1, V2) being an optimal min-ratio cut. Indeed,
assume that e(C1, C2)/e(C1, F1) > 2 and e(C1,C2)

|C1| > 2r(V1). Since r(V1) = e(V1,V2)
|V1| is the

average degree from V1 to V2, it can be represented as the following convex combination of
the average degree from C1 to V2 and the average degree from F1 to V2, namely

r(V1) =
|F1|
|V1|

· e(F1, V2)

|F1|
+

|C1|
|V1|

· e(C1, V2)

|C1|
.

Since r(F1) = e(F1,V2)+e(F1,C1)
|F1| (note that |F1| ≤ |V1| ≤ 1

2 |V |), we can represent r(V1) also as

r(V1) =
|F1|
|V1|

· r(F1) +
|C1|
|V1|

·
[
e(C1, V2) − e(F1, C1)

|C1|

]

.

By the above two assumptions (that exclude the easy cases) we have that

e(C1, V2) − e(F1, C1)

|C1|
≥ e(C1, C2) − e(F1, C1)

|C1|
≥

1
2e(C1, C2)

|C1|
> r(V1).

The last two inequalities imply that

r(V1) >
|F1|
|V1|

· r(F1) +
|C1|
|V1|

· r(V1).

We obtained that some convex combination of r(F1) and r(V1) is smaller than r(V1), and
we can therefore conclude that r(F1) < r(V1). This contradicts the fact that (V1, V2) is an
optimal min-ratio cut, and completes the proof of Lemma 3. !

The converse of Lemma 3 is not true, and an O(1)-amortized cut can be an Ω(n)-
approximate min-ratio cut, as follows from the next proposition with t = O(1).

Proposition 4 Fix a constant 1/2 < α < 1 for the definition of an amortized cut. Then for
every t = o(n), there is an O(1/t)-amortized cut which is an Ω(n/t)-approximate min-ratio
cut.
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Proof. Consider the a graph on n vertices, for a sufficiently large n, that consists of three
cliques as follows. V1 is a clique on t vertices, V2 is a clique on αn vertices, and V3 is a clique
on the remaining Ω(n) vertices. In addition, the graph contains one edge connecting V1 to
V2, and one edge connecting V2 to V3.

The cut (V1, V2 ∪ V3) has amortized cost O(1/t). Indeed, let C ∪ F be a partition of the
vertices with |C| ≤ αn. We may assume that C contains both endpoints of the edge between
V1 and V2, as otherwise the cut contains no charged-charged edges and its amortized cost
is 0. So we have that the cost of the charged-charged edges cut is 1, and that both V1 and
V2 contain at least one charged vertex. If V1 contains also at least one free vertex, then the
number of charged-free edges in V1 is at least t − 1 and hence ρe = e(C1,C2)

e(C1,F1)
≤ 1/(t − 1).

Otherwise, we have C1 = V1; since there are at most αn charged vertices, and at least one of
them is in V1, we have that V2 contains also free vertices and thus e(C, F ) ≥ Ω(n); it follows
that ρv = e(C1,C2)

e(C,F ) · |C|
|C1| ≤ O(1/t).

The cut (V1, V2 ∪ V3) is an Ω(n/t)-approximate min-ratio cut. Indeed, the ratio of this
cut is r(V1) = 1/t, while the cut (V3, V1 ∪ V2) is an optimal min-ratio cut and has ratio
r(V3) = O(1/n). !

The next corollary follows from Lemma 3.

Corollary 5 In every graph there exists an O(1)-amortized cut.

Corollary 5 is optimal up to constant factors, and there are graphs for which any cut has
amortized cost Ω(1). For example, consider a clique on n vertices. Given a cut (V1, V2) with
|V1| ≤| V2|, let α be the constant in the amortized cut definition, and take (α−1/2)n vertices
of V2 and all of V1 to be the charged vertices. It can be seen that ρe = ∞ and ρv = Θ(1),
and so the amortized cost of the cut (V1, V2) is Ω(1), as claimed.

3.2 Approximate min-ratio cuts might be poor amortized cuts

We demonstrate that an approximate min-ratio cut of a graph might be a poor divide step,
and in particular a poor amortized cut. Consider, for example, the following graph G on
2n + 2

√
εn vertices for a fixed 0 < ε < 1 (see also Fig. 3). The vertex set of the graph is

F1 ∪F2 ∪C1 ∪C2 where each of F1, F2 are of size n, each of C1, C2 are of size
√

εn, and each
of the four subsets forms a clique. These four cliques are connected as follows. Between F1

and F2 there are n edges that form a matching (i.e. have no common endpoint). Between
C1 and C2 there are all possible εn edges, thus C1 ∪C2 forms a clique. There are also 2

√
εn

edges between Fi and Ci (for i = 1, 2) so that their endpoints at Fi are distinct and each
vertex of Ci is an endpoint of exactly two of these edges.

Let C = C1 ∪ C2 be the charged vertices, and F = F1 ∪ F2 the free vertices. Such a
partition to charged and free may reflect the “right” cut of 2

√
εn vertices from the graph G

(if, e.g., the input graph for bisection consists of this graph G and a clique on 2n − 2
√

εn
vertices).

Consider a divide step based on the cut (F1 ∪C1, F2 ∪C2), whose ratio is nearly optimal.
Indeed, an optimal min-ratio cut in this graph is (F1, C1∪F2∪C2) and its ratio is 1+2

√
ε/
√

n.
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Figure 3: A poor divide step by an approximate min-ratio cut

The cut (F1 ∪C1, F2 ∪C2) has a slightly higher ratio of (1 + ε)(1− o(1)), and so it is a 1 + ε
approximate min-ratio cut.

Observe that the cut (F1 ∪C1, F2 ∪C2) is a poor divide step. It cuts εn charged-charged
edges while the total number of charged-free edges in G (and the bisection cost in the input
graph) is only 4

√
εn. According to the new accounting method, such a divide step does not

give an approximation ratio better than Ω(
√

εn).
The observation that the cut (F1 ∪ C1, F2 ∪ C2) is a poor divide step is supported by

its high amortized cost. The amortized cost for the edges is ρe = εn/2
√

εn =
√

εn/2.
The ratio of the cut (C, F ) is r(C) = r′(C) = 2, so the amortized cost for the vertices is
ρv = εn/(

√
εnr′(C)) =

√
εn/2. We conclude that a 1+o(1) approximate min-ratio cut might

have amortized cost ρ ≥ min{ρe, ρv} =
√

εn/2.

3.3 Finding O(τ)-amortized cut

We present an algorithm that finds an O(τ)-amortized cut, given a subroutine for computing
a τ -approximate min-ratio cut. The algorithm is motivated by the O(1) upper bound on
the amortized cost of a min-ratio cut shown in Section 3.1. In particular, we examine what
additional properties are required in order to extend the analysis of Lemma 3 from optimal
min-ratio cuts to approximate ones.

The proof of Lemma 3 uses twice the fact that (V1, V2) is an optimal min-ratio cut. In
the first usage we had that e(C1,C2)

|C1|·r(C) ≤ 2 r(V1)
r(C) ≤ 2, which extends to the case where (V1, V2)

is an approximate min-ratio cut with the approximation ratio carried over to the amortized
cost, i.e. if (V1, V2) is a τ -approximate min-ratio cut then we have e(C1,C2)

|C1|·r(C) ≤ 2 r(V1)
r(C) ≤ 2τ .

The second time we used the fact that (V1, V2) is an optimal min-ratio cut was to say
that r(F1) < r(V1) cannot hold and gives a contradiction. In general, this usage does not
extend to an approximate min-ratio cut, as demonstrated by the example in Section 3.2.
However, the proof does extend to an approximate min-ratio cut if we have the additional
property that the ratio of V1 is minimal over all its subsets F1, i.e. r(V1) ≤ r(F1) for all
F1 ⊂ V1. We therefore obtain that the proof of Lemma 3 extends to approximate min-ratio
cuts as follows.

15



Lemma 6 Let (V1, V2) be a τ -approximate min-ratio cut in a graph, with |V1| ≤| V2|. If
r(V1) ≤ r(F1) for every F1 ⊂ V1 then (V1, V2) is an O(τ)-amortized cut.

Note that the proof of Lemma 6 is not symmetric with respect to the two amortization
methods. It guarantees that either e(C1, C2)/e(C1, F1) ≤ 2 (i.e. the amortized cost for the
edges ρe is at most 2), or e(C1,C2)

|C1|·r(C) ≤ 2τ (i.e. the amortized cost for the vertices ρv is O(τ)).

In contrast, in the proof of Lemma 3 for optimal min-ratio both amortization costs are O(1).

The amortized cut algorithm. We use Lemma 6 to devise an algorithm that finds an
O(τ)-amortized cut based on a τ -approximate min-ratio cut. The algorithm, described in
Fig. 4, starts with a τ -approximate min-ratio cut (V1, V2) and then “fixes” it so that it would
also be “minimal” with respect to containment, as required by Lemma 6. It then follows
that the output cut is O(τ)-amortized.

In order to “fix” the cut (V1, V2), the algorithm uses minimum (s, t)-cuts in a related
graph G′, which is defined in step 2. The related graph G′ contains edges of the input graph
G, as well as new edges. The edges from G have unit capacity, while the capacity of the
new edges is some parameter p > 0. Step 3 then finds the optimal value of p with respect
to the minimum (s, t)-cut. Before discussing implementation issues of step 3, let us analyze
the algorithm correctness.

Algorithm FindAmortized.

1. Find in the input graph G = (V, E) a τ approximate min-ratio
cut (V1, V2) with |V1| ≤| V2|.

2. Create a related graph G′:

– Merge all vertices of V2 into a single vertex t, removing self loops
at t, and keeping all edges to V1, including parallel edges.

– Add a new vertex s which is connected to each vertex of V1 by
an edge whose capacity (weight) is a parameter p > 0.

3. Let S denote the vertices of V1 which are on the same side with
s in a minimum (s, t)-cut of G′.

– Find (e.g. by binary search) the minimum p > 0 for which
S #= ∅. (Possibly, S = V1).

4. Output the cut (S, V \ S) of the input graph.

Figure 4: Algorithm for amortized cuts

Lemma 7 The cut (S, V \ S) output by algorithm FindAmortized is a τ -approximate
min-ratio cut. In addition, every nonempty subset of V1 has ratio at least as large as S, i.e.
r(S) = min{r(S ′) : ∅ #= S ′ ⊆ V1}.
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Proof. Consider an arbitrary value p and an arbitrary (s, t)-cut in the related graph G′

with the corresponding set S ⊂ V1 (see Fig. 5). The cut consists of (i) edges between s and
V1 \ S (each of capacity p) (ii) edges between S and V1 \ S (these are edges from the input
graph G) and (iii) edges between S and t (these are the edges between S and V2 in the input
graph G). The capacity of this (s, t)-cut is thus

cap(S) = p · |V1 \ S| + e(S, V \ S)

where, as usual, e(·, ·) denotes the number of corresponding edges in the input graph G. In
the special case of the empty set S = ∅, the capacity of the (s, t)-cut is

cap(∅) = p · |V1|

Fixing the value of p, let us compare the capacity of the cut defined by the empty set ∅
with that of an arbitrary set S #= ∅, i.e. cap(∅) vs. cap(S). The empty set ∅ yields a smaller
capacity whenever

p · |V1| < p · |V1 \ S| + e(S, V \ S)

.

p <
e(S, V \ S)

|S|
= r(S)

where r(S) is the ratio of the cut (S, V \S) in the input graph G (note that |S| ≤| V1| ≤ 1
2 |V |

and that r(S) > 0 if G is connected).
We claim that the value of p found at step 3 is essentially p∗ = min{r(S) : ∅ #= S ⊆ V1}.

Indeed, when p < p∗, a minimum (s, t)-cut in G′ corresponds to S = ∅, and when p > p∗, a
minimum (s, t)-cut yields a set S #= ∅. When p = p∗, a minimum (s, t)-cut can be obtained
either by S = ∅, or by (one or more) S #= ∅ with r(S) = p∗.

When p = p∗ + ε for a very small ε > 0, only the sets S #= ∅ with r(S) = p∗ give smaller
capacity than the empty set, and thus a minimum (s, t)-cut is obtained by one of these sets
S. By the definition of p∗, this set ∅ #= S ⊂ V1 has minimal ratio r(S) over all nonempty
subsets of V1, i.e. r(S) = min{r(S ′) : ∅ #= S ′ ⊆ V1}, as claimed. Furthermore, since S = V1 is

t

V1V1 \ S
S

1

s

V2

V2

p

1

Figure 5: An (s, t)-cut in the related graph G′
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included in this range, we get that r(S) ≤ r(V1) and hence (S, V \S) is a τ -approximate min-
ratio cut, finishing the proof. We remark that a slightly modified algorithm can guarantee
in addition that r(S) < r(S ′) for every S ′ ⊂ S with S ′ #= ∅, S. Details omitted. !

Theorem 3 Given a subroutine for computing a τ -approximate min-ratio cut, algorithm
FindAmortized finds an O(τ)-amortized cut.

Proof. Lemma 7 guarantees that the cut found by the algorithm satisfies the requirements
of Lemma 6, from which it follows that the cut is O(τ)-amortized. !

We now address the issue of implementing step 3. Observe that p∗ is the maximum value p
for which the empty set ∅ gives a minimum (s, t)-cut. Since, by definition, p∗ is the ratio r(S)
of a set S, it has only n3 possible values, which can be exhaustively searched. Alternatively,
p∗ can be found in O(log n) iterations of binary search, since as an exact multiple of 1/|S|
it is bounded between 0 and n, and the difference between any two of its possible values is
more than 1/n2.

Once we find p∗, we need to find a set S #= ∅ that gives a minimum (s, t)-cut for p∗. We
can either guess a vertex of V1 and merge it with s before computing the minimum (s, t)-cut
for p∗, or alternatively compute a minimum (s, t)-cut for p = p∗ + ε with e.g. ε = 1/n2.
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4 The bisection algorithm

In this section we describe our approximation algorithm for bisection and prove the following
theorem. (See Section 2 for the definition of an amortized cut.)

Theorem 4 Given a subroutine that finds a ρ-amortized cut, a bisection within ratio of
1 + O(ρ log n) of the minimum can be found in polynomial time.

4.1 Decomposition stage

The decomposition stage recursively divides the input graph G = (V, E) into smaller and
smaller parts using a ρ-amortized cut subroutine (e.g. the one devised in Section 3). Each
part is further divided unless it consists of a single vertex.

The decomposition stage builds a rooted binary tree T , called the decomposition tree,
which corresponds to the recursive decomposition of the input graph G in a natural way, as
follows. (Throughout, we call the vertices of T nodes, to avoid confusion with the vertices
of the input graph G.) Each tree node i contains a part Vi ⊆ V that was found during
the recursive decomposition. The root node of T contains V , i.e. the whole input graph G.
Let us denote the two children of a nonleaf node i by L(i) and R(i). Then their two parts
VL(i), VR(i) are the result of dividing Vi, i.e. the ρ-amortized cut found in Vi is (VL(i), VR(i)). A
leaf of the tree T contains a part that consists of a single vertex of G. Therefore T contains
exactly n leaves and n − 1 nonleaf nodes.

4.2 Labeling stage

Recall the following definitions from Section 2. A labeling of the decomposition tree T labels
each nonleaf node of the tree as either white or black. Fixing a parameter 1/2 < α< 1,
we say that a labeling is α-consistent with respect to a white-black bisection (W, B) of G if
every tree node i satisfies that: If the label of node i is white then |W ∩ Vi| ≤ α|Vi|, and
if the label of node i is black then |B ∩ Vi| ≤ α|Vi| (where Vi is the part contained in node
i). A labeling is called opt-consistent if it is α-consistent with the fixed optimal bisection
(W ∗, B∗).

The labeling stage produces a family F of labelings. The cardinality of F is exponential
in n, so rather than listing its members explicitly, the labeling stage produces an implicit
representation of F . The actual work of the labeling stage is to mark certain nodes of T ,
and these nodes implicitly define the family F , as described below.

The labeling stage marks some of the nodes of T in a process that goes from the root of
T towards its leaves, as follows. The root of T is always marked, and any other node i in
the tree is marked in this process if its closest marked ancestor j satisfies |Vi| ≤ 1

2α |Vj| (as
before, Vi and Vj are the parts contained in the nodes i and j, respectively). Note that the
constant α is chosen so that 1

2 < α < 1, implying 1
2 < 1

2α < 1.
A labeling of T is said to be derived from the marked nodes, if the label of every unmarked

node is the same as the label of its closest marked ancestor (there is no restriction on the
labels of the marked nodes). Note that in this case the labels of the marked nodes uniquely
define the labels of all the internal tree nodes.

19



The family F produced by the labeling stage consists of all the labelings that can be de-
rived from the marked nodes. Since each of the Ω(n) marked nodes can be labeled arbitrarily
by one of two colors, the resulting family of labelings has exponentially large cardinality, and
we cannot explicitly list all the family members. Instead, the algorithm implicitly represents
this family F by identifying which are the marked nodes.

Lemma 8 The family of labelings F contains at least one opt-consistent labeling.

Proof. Let the white-black cut (W, B) be the fixed optimal bisection. Consider the labeling
that is derived from the marked nodes, with the label of each marked node i being the color
in minority among the vertices of Vi.

This labeling is clearly in the family F , and we claim that it is also opt-consistent.
Indeed, the label of a marked node i is by definition the minority color in Vi. The label
of an unmarked node i is the same as the label of its closest marked ancestor j. Suppose,
without loss of generality, that this label (of i and j) is white. Then at most half the vertices
of Vj are white, i.e. |W ∩ Vj| ≤ 1

2 |Vj|. Observe that Vi ⊂ Vj and |Vi| > 1
2α |Vj| and hence

|W ∩ Vi| ≤ |W ∩ Vj| ≤ 1
2 |Vj| < α|Vi|. Hence, this labeling of F is opt-consistent. !

4.3 The charge of a bisection

We now formally define the charge of a bisection (W, B) with respect to the decomposition
tree T and a labeling of it. The reference to T will later be omitted, as we always refer to
the tree computed in the decomposition stage.

Definition (Charge). Let (W, B) be a bisection of the input graph, and assume we are given
a decomposition tree T and a labeling of it. For each (nonleaf) node i of T , if i is labeled white
then we let (see Fig. 6) Ci = W ∩ Vi and Fi = B ∩ Vi, and if i is labeled black then we let
Ci = B ∩ Vi and Fi = W ∩ Vi. We obtain a cut (Ci, Fi) of the part Vi, and say that Ci is
charged and Fi is free. The charge of the divide step of a (nonleaf) node i is defined as

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)).

The charge of the bisection (W, B) is defined as the sum of all the divide steps charges, i.e.

∑

i∈T

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)).

(These charges are defined with respect to T and a labeling of it.)

Bisection charge vs. cost

In certain conditions, a bisection charge can approximate its cost. As shown below, the
charge of a bisection upper bounds its cost, and the gap between them is not too large if the
charge is taken with respect to an α-consistent labeling (as in the case of the fixed optimal
bisection and an opt-consistent labeling).
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Figure 6: The charge of a bisection (W, B) throughout the decomposition tree

Lemma 9 The charge of a bisection (W, B) with respect to any labeling is at least as large
as its cost.

Proof. As we have seen in section 2, the true cost of the (W, B) edges cut in a divide step i
is e(Ci ∩VL(i), Fi ∩VR(i))+ e(Ci∩VR(i), Fi∩VL(i)), and is therefore not larger than the charge
of this step. The proof follows by summing over all divide steps, since the decomposition
stage eventually divides the graph into individual vertices, and so every edge of the bisection
(W, B) is cut at some divide step. !

Lemma 10 The charge of a bisection (W, B) with respect to a labeling that is α-consistent
with it is at most e(W, B) · (1 + O(ρ log n)).

Proof. Consider a bisection (W, B) and a labeling of T that is α-consistent with it. As we
have seen in Section 2 and in Lemma 9 the charge of a divide step is larger than the true
cost of the (W, B) edges cut in that step by the cost of the charged-charged edges cut in
that divide step. Summing over the divide steps we get that the charge of (W, B) the fixed
optimal bisection is larger than its cost by 2

∑
i e(Ci ∩ VL(i), Ci ∩ VR(i)), where i ranges over

all (nonleaf) nodes i in T . We use the shorter notation CL = Ci ∩ VL(i) and CR = Ci ∩ VR(i),
where i is clear from the context.
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To upper bound 2
∑

i e(CL, CR), observe that each part Vi is divided using a ρ-amortized
cut, and that the α-consistent labeling guarantees that |Ci| ≤ α|Vi| for all nodes i, so we can
use the amortization scheme of Section 2. Namely, let us assume, without loss of generality,
that the decomposition stage places in the left child of a node i the smaller of the two
subparts of Vi, i.e. |VL(i)| ≤| VR(i)| for every nonleaf node i. Then by Proposition 1 we can
upper bound

e(CL, CR) ≤ ρ · max
{
e(CL, FL) , |CL|

|Ci| · e(Ci, Fi)
}

,

and obtain

2
∑

i

e(CL, CR) ≤ 2ρ ·
{

∑

i

e(CL, FL) +
∑

i

|CL|
|Ci| · e(Ci, Fi)

}

. (9)

Therefore, to complete the proof of Lemma 10 it suffices to upper bound the sums in the
curly brackets (i.e. the total cost amortized in each of the two methods) by e(W, B)·O(log n).

Consider first
∑

i e(CL, FL). The edges that contribute to this sum are charged-free edges
and hence edges of the bisection (W, B). An edge in the cut (CL, FL) must be inside VL(i),
the smaller side of the cut of Vi, and any single edge can be inside VL(i) in at most log n
divide steps i throughout the tree T . Hence,

∑
i e(CL, FL) consists of at most log n times the

cost of every edge of the bisection (W, B), and therefore this sum is at most e(W, B) · log n.
Consider next

∑
i
|CL|
|Ci| · e(Ci, Fi), and recall our convention that 0

0 is defined to be 0. The

edges of e(Ci, Fi) contribute to the sum their cost scaled by a factor of |CL|
|Ci| . Each edge of

e(Ci, Fi) is a charged-free edge and hence an edge of the bisection (W, B). However, an edge
of the bisection (W, B) belongs to e(Ci, Fi) if and only if this edge is inside Vi. The nodes i
for which this edge is inside Vi are all on a path from the root to a leaf of the decomposition
tree T , and therefore the total contribution of this edge is at most its cost scaled by the sum
of |CL|

|Ci| over that path in T .

We claim that the sum of |CL|
|Ci| over any path from the root to a leaf is bounded by

O(log n). It follows from this claim that
∑

i
|CL|
|Ci| · e(Ci, Fi) can be described as the cost of

every edge of the bisection (W, B) scaled by at most O(log n), and therefore this sum is at
most e(W, B) · O(log n).

To prove the claim, consider an arbitrary path from the root to a leaf, and denote the
path nodes by 1, 2, . . . , p + 1. At each node i the charged side (i.e. Ci) may be either W or
B, depending on the label of the node, so denoting wj = |W ∩Vj| and bj = |B∩Vj|, we have

that |CL|
|Ci| is either

wL(i)

wi
or

bL(i)

bi
, and clearly at most their sum. Hence,

p∑

i=1

|CL|
|Ci|

≤
p∑

i=1

wL(i)

wi
+

p∑

i=1

bL(i)

bi

Consider first
∑p

1
wL(i)

wi
, and observe that wi is a nonincreasing sequence, since in the tree,

node i is a parent of node i + 1. If node i + 1 is a left child (of its parent node i), then
wL(i) = wi+1 and hence

wL(i)

wi
= wi+1

wi
≤ 1. The number of such nodes i is at most log n,

since the path from the root to a leaf can contain at most logn left children i (recall that
|VL(i)| ≤| VR(i)|). The contribution of all such nodes i to

∑p
1

wL(i)

wi
is therefore at most log n.
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If node i+1 is a right child (of its parent i), then wL(i) = wi−wi+1, and the contribution
of all such nodes i is at most

∑p
1

wi−wi+1

wi
. Clearly, wi−wi+1

wi
≤ 1

wi
+ . . . + 1

wi+1+1 and hence

the contribution of all such nodes i to
∑p

1
wL(i)

wi
is at most

∑p
1

wi−wi+1

wi
≤ 1

w1
+ . . . + 1

2 + 1 =

H(w1) ≤ H(n) where H(k) =
∑k

1
1
j is the k-th harmonic number.

We conclude that
∑p

1
wL(i)

wi
≤ log n+H(n) ≤ O(logn). Similarly,

∑p
1

bL(i)

bi
= O(logn), and

together we get that
∑p

1
|CL|
|Ci| ≤ O(log n), proving the claim and the lemma. !

Corollary 11 The charge of the fixed optimal bisection (W ∗, B∗) with respect to an opt-
consistent labeling is at most b(1 + O(ρ logn)).

Distributing charge to vertices

It will be convenient (algorithmically) to distribute the charge of a bisection (W, B) (with
respect to T and a labeling) to the vertices of the input graph, as follows. For each vertex
v ∈ Vi let the cross-degree of v at node i, denoted crossi(v), be the cost of the edges that
are incident at v and are cut in divide step i. We define the charge of a vertex v ∈ V as
the sum of the cross-degree of v at all nodes i for which v belongs to the charged side, i.e.∑

i:v∈Ci
crossi(v). The next lemma proves that distributing the charge of a bisection to the

graph vertices is indeed correct.

Lemma 12 The charge of a bisection (W, B) is the sum of the charges of all vertices in G.

Proof. The charge of a divide step of node i is equal to the sum of the cross-degrees at node
i of all vertices v ∈ Vi, i.e.

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)) =
∑

v∈Ci

crossi(v) .

Summing over all nodes i in the tree T , the lefthand side is, by definition, the bisection
charge, and the righthand side is the sum of the charges of all vertices in G. The proof
follows. !

Distributing the charge to the vertices of G is important algorithmically. The charge
of a vertex depends on (and can be easily computed from) the side of this vertex in the
bisection (W, B), the decomposition tree T , and the labeling of T , but it does not depend
on the side of the cut (W, B) that other vertices of the graph belong to. It follows that the
charge of a bisection (W, B) with respect to a given decomposition tree T and a labeling of
it, depends linearly on the placement of vertices into W and B. This formulation of charge
will be exploited by (the dynamic programming in) the combining stage.

4.4 Combining stage

The combining stage computes a bisection of the input graph G and a labeling of the de-
composition tree T , such that the bisection charge with respect to the labeling is at most
b · (1 + O(ρ log n)). It then follows from Lemma 9 that the cost of the computed bisection is
at most b · (1 + O(ρ logn)), as desired.
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Consider first the case where an opt-consistent labeling is known. Then it suffices to
compute a bisection of G whose charge with respect to this opt-consistent labeling is minimal,
because Corollary 11 guarantees that the charge of the computed bisection is at most b · (1+
O(ρ log n)). Below we describe a simple procedure for finding a bisection of G with minimal
charge with respect to a given labeling.

However, we do not know how to efficiently find an opt-consistent labeling, and therefore
we go over all the labelings in the family F . Specifically, using a more complicated procedure
described below the combining stage finds a bisection of G and a labeling from F , such that
the charge of the bisection with respect to the labeling is minimal over all such bisection-
labeling pairs. Lemma 8 guarantees that at least one of these labelings is opt-consistent,
in which case Corollary 11 applies. Hence, the bisection-labeling pair computed by this
procedure satisfies that the charge of the bisection with respect to the labeling is indeed at
most b · (1 + O(ρ log n)).

Minimizing charge over a given labeling

Finding a bisection of minimum charge with respect to a given labeling is relatively straight-
forward. By Lemma 12, the charge of a bisection (W, B) is the sum of the vertex charges.
Since the decomposition tree T and the labeling are fixed, the charge of a vertex depends
only on its side in the bisection (W, B). We can therefore compute for each vertex v what is
its charge when it belongs to W , called the white charge of v, and what is its charge when
it belongs to B, called the black charge of v. (Note that summing the white charge and the
black charge of a vertex gives the degree of that vertex in G.)

The charge of a bisection (W, B) is then the sum of the white charges of W and the
black charges of B. To find a bisection (W, B) with minimum charge with respect to the
given labeling, we can thus compute for each vertex its net-charge (white charge minus black
charge), and take W to be the n/2 vertices with smallest net-charge. (This algorithm for
the case where a labeling is given was used in the algorithm outline in Section 2, where we
assumed that the labeling stage produces an opt-consistent labeling.)

Minimizing charge over the family F

The combining stage uses dynamic programming to find a bisection and a labeling from the
family F , so that the charge of the bisection with respect to this labeling is minimum over
all such bisection-labeling pairs.

The dynamic programming table Q has entries of the form Q(i, k, g), where i is a node
of the decomposition tree T , k is an integer between 0 and |Vi|, and g is a guess list that
contains the labels of the marked ancestors of node i. Throughout, i is considered an ancestor
of itself.

An entry Q(i, k, g) in the table contains the optimal solution to the following problem:
Choose k vertices of Vi and a labeling from F that agrees with g, so that when these k
vertices are placed in the side W and the remaining vertices of Vi are placed in the side
B, the sum of the charges of all the vertices of Vi with respect to the chosen labeling, is
minimal over all such choices. Note that when we only consider labelings from the family F
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that agree with g, the labels of all the ancestors of i are uniquely defined from g, while the
marked descendants of i can have arbitrary labels.

For a leaf node i, the table entry Q(i, k, g) can be computed directly, as follows. Since i is
a leaf node, the part Vi consists of a single vertex, say v, and k can be either 0 or 1. If k = 0
then v is necessarily in B, and if k = 1 then v is necessarily in W . The guess list g gives
the labels of all the nodes on the path from the leaf i to the root, and hence all the labels
that can possibly affect the charge of v. Since k and g uniquely define all the data that the
charge of v depends on, Q(i, k, g) is just the charge of v, and can be computed directly as∑

j crossj(v) where j ranges over all ancestors of i whose label (according to g) agrees with
the side of v (as follows from k).

For a nonleaf node i, the table entry Q(i, k, g) can be efficiently computed from table
entries of its children nodes L(i), R(i). Indeed, choosing k vertices from Vi is equivalent to
choosing j vertices from one child part VL(i) and k−j vertices from the other child part VR(i),
so we need to add up two entries, each corresponding to one child node. The optimal value
of j is not known, but it can be exhaustively searched. The guess list g can be extended into
lists gL, gR for the children nodes, in possibly more than one way. Therefore,

Q(i, k, g) = min
0≤j≤k

min
gL,gR

{Q(L(i), j, gL) + Q(R(i), k − j, gR)}

where gL, gR range over all possible extensions of g, as described below. If a child node L(i)
is a marked node, then there are two possible ways to extend the list g into a list gL (by
adding a label for VL(i)), and the optimum Q(i, k, g) is achieved by taking the one which is
better. If a child node L(i) is not a marked node, then the only extension is gL = g, because
i and L(i) have the same marked ancestors. The possible extensions of the child node R(i)
are similar. It follows that each table entry of a nonleaf node i can be computed from table
entries of its children L(i), R(i) in time O(|Vi|) = O(n).

To fill all the table entries, start from the entries that correspond to leaf nodes i and
go upwards the decomposition tree T . In particular, the entries Q(iroot, n/2, g) will be
computed for the root node iroot. At the root node, the guess list g contains the label of the
root, and thus has only two possible values. (In fact, the two entries must be the same due
to symmetry.) The combining stage outputs ming Q(iroot, n/2, g), which by definition, is the
minimum charge of all bisections of the input graph with respect to any labelings from F ,
as desired. A bisection that achieves this minimum charge can also be computed. Simply
go over the table entries in the reversed order of computation, and recover at each entry the
values of j, gL, gR that gave the optimum. Alternatively, associate with each entry Q(i, k, g)
a set of k vertices of Vi which is optimal for it, and its corresponding labels.

Lemma 13 The combining stage finds in polynomial time a bisection of the input graph
G and a labeling from the family F , so that the charge of the bisection with respect to the
labeling is minimal over all such bisection-labeling pairs.

Proof. The above discussion shows that the algorithm correctly computes every entry
Q(i, k, g), and a bisection-labeling pair as desired.

The size of the table Q is polynomial in n. Indeed, there are only O(n) tree nodes i.
For each tree node i, the range of k contains O(|Vi|) = O(n) possible values. In addition,
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at each tree node i the guess list g contains labels of at most O(log n) ancestor nodes, and
thus g assumes polynomially many values. The polynomial bound on the size of the table Q
follows.

An entry for a leaf nodes i is computed efficiently. An entry for a nonleaf node is
efficiently computed from previously computed entries. By the upper bound on the table
size we conclude that all the table entries are computed in polynomial time, and in particular
Q(iroot, n/2, g). !

Corollary 14 The combining stage finds bisection of the input graph (and a labeling of T )
such that bisection charge (with respect to the labeling) is at most b(1 + O(ρ log n)).

Proof. By Lemma 13 and Corollary 11 there exists a bisection of G and a labeling of F
such that the bisection charge with respect to the labeling is at most b(1 + O(ρ log n)). The
proof then follows by applying Lemma 8. !

This corollary completes the proof of Theorem 4, since by Lemma 9 the charge of a
bisection is an upper bound on its actual cost.
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5 Extensions

Our results extend to several variants (and generalizations) of the minimum bisection prob-
lem, including the case of edges with arbitrary nonnegative costs (Section 5.1), the case of
vertices with polynomially bounded nonnegative integer weights (Section 5.2), the variant
that requires, in addition, to separate a given pair of vertices s and t (Section 5.3), the case
of cutting away from the graph an arbitrary number of vertices (instead of n/2) that is given
as part of the input (Section 5.4), the case of cutting the input graph into a fixed number of
equal-size parts (Section 5.5), and the case of finding a 2/3-balanced cut whose cost is small
relative to the minimum bisection cost b (Section 5.6).

In what follows, the basic bisection problem refers to the minimum bisection problem that
was defined in Section 1. In contrast, the extended bisection problems refer to the variants
of the problem specified above. We discuss each extended problem separately, but it is
straightforward to combine together several extensions (e.g. to allow both edge costs and
vertex weights as described above, and require that the total weight of the vertices cut away
is a number k that is given in the input).

We consider two approaches for extending our approximation algorithm from the basic
bisection problem to an extended problem. One approach is to reduce the extended problem
to the basic one. Another approach is to modify the algorithm that we devised for the
basic bisection problem so that it handles also the extended variant. As we discuss below,
each approach has its own advantages and so it is valuable to show both approaches for each
extended problem. We indeed show that for almost all the extended problems specified above
both approaches can be applied, although for a few problems we provide only a modified
algorithm.

A major advantage of the reduction approach is that it is self contained and not restricted
to the particular algorithm that we devise, so future improvement in the approximation ratio
for the basic problem may lead to an immediate improvement also for the extended problem.
Most of our reductions transform an approximation ratio f(n) for the basic problem into an
approximation ratio f(nO(1)) for the extended problem (because they increase the number
of vertices n by a polynomial), and so for the current approximation ratio f(n), which
is polylogarithmic, these reductions increase the approximation ratio by at most a constant
factor. The techniques used in our reductions are similar to those devised in [BJ92, BCLS87]
for the (different) purpose of proving NP-hardness results.

The advantages of the algorithm modification approach are that it preserves aspects that
are specific to our algorithm, such as an improved O(log n) approximation ratio for planar
graphs, and that it is usually more efficient (and therefore practical) than the reduction
approach. A drawback of the algorithm modification approach is that it requires to go
again through the algorithm’s analysis. In particular, we might be required to verify that
the approximate min-ratio cut algorithm (that we use as a black-box) can be extended
accordingly. However, the necessary changes in the algorithm and its proof are usually
straightforward.
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5.1 Edge costs

Suppose that the edges of the input graph G have arbitrary nonnegative costs, and that the
cost of a bisection is the total cost (i.e. sum of the costs) of its edges, and we wish to find a
bisection of G of (approximately) minimum cost.

Reduction. We reduce the extended problem of bisection with edge costs (described
above) to the basic bisection problem, as follows. Given a graph G with edge costs as an
input, we first guess the most costly edge in a minimum cost bisection of G, by exhaustively
trying all O(n2) edges in the input graph. By scaling all edge costs, we can assume, without
loss of generality, that the cost of the guessed edge is n2. It follows that the cost b of the
optimum bisection is at least n2 but smaller than n4. We then round down all edge costs to
their closest integer, which can decrease the cost of any bisection by at most

(
n
2

)
≤ b/2 and

therefore by a factor of at most 2. We next change to n5 every edge cost that is larger than
n5, which does not affect the cost of nearly optimal bisections (i.e. whose original cost was
within ratio of roughly n from the minimum). Finally, we replace each vertex of the graph
by a clique of size n5, and each edge (u, v) of cost t by t unit cost edges placed arbitrarily
between the clique of u and the clique of v (since t < n10 we can do that with no parallel
edges).

The bisection of minimum cost b in G corresponds to a bisection of cost Θ(b) in the
resulting graph. Hence, applying our algorithm for the basic problem on the resulting graph
(which has n6 vertices) yields a bisection whose cost is O(b(log n6)2) = O(b log2 n). This
bisection cannot split any of the cliques that we created, as otherwise its cost will be at least
n5−1 , b log2 n, and it therefore must correspond to a bisection of G, whose cost is roughly
the same, namely O(b log2 n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem so that
it handles the extended problem with edge costs, as follows. Rather than considering the
number of edges we always consider their cost, e.g. e(V1, V2) denotes the sum of the costs
of the edges with one endpoint in V1 and one endpoint in V2. The corresponding changes in
our algorithm and analysis are straightforward. Note that the amortized cut algorithm (see
Fig. 4) requires (in step 1) a subroutine that computes an approximate min-ratio cut with
respect to the edge costs, but known algorithms (e.g. due to [LR99]) provide this subroutine.
Note also this algorithm’s binary search (step 3) takes O(M log n) iterations, where M is
the number of bits used to represent an edge cost, and so the running time is polynomial in
the input size. The resulting approximation ratio is the same as for the basic problem, i.e.
O(log2 n).

5.2 Polynomial vertex weights

Suppose that the vertices of the input graph G have nonnegative integer weights that are
bounded by a polynomial nc (where n is the number of vertices in G), and let a bisection be
a cut that separates half of the total weight (i.e. sum of the weights) of the vertices of V .
We wish to find a bisection of G of (approximately) minimum cost. Note that if the weights
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are allowed to be exponential in n, finding any bisection of the graph is equivalent to the
partition (or subset-sum) problem, and therefore NP-hard.

Reduction. We reduce the extended problem of bisection with vertex weights (described
above) to the basic bisection problem, as follows. Given a graph G with vertex weights as
an input, we replace each vertex of cost w in G by a clique of max{1, w · n3} unit weight
vertices, and replace each edge (u, v) in G by one edge placed arbitrarily between the clique
of u and the clique of v. In addition, for each vertex of weight 0 in G we place in the graph
a new isolated vertex of unit weight.

A bisection of minimum cost b in G corresponds to a bisection of the same cost b in the
resulting graph. Hence, applying our algorithm for the basic problem on the resulting graph
(which has at most nc+4 vertices) yields a bisection whose cost is O(b(c + 4)2 log2 n). This
bisection cannot split any of the cliques that we created, as otherwise its cost will be at least
n3 −1 , b · (c+4)2 log2 n. Furthermore, the vertices of the created cliques of size at least n3

must be partitioned evenly by this bisection, as otherwise their partition deviates from an
even one by at least n3 (these clique sizes are multiples of n3) which is much more than the
total number of remaining vertices, 2n2 (recall that we added isolated vertices for vertices
of weight 0 in G). The computed bisection of the resulting graph therefore corresponds to a
bisection of G, whose cost is the same, namely O(b(c + 3)2 log2 n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem so that it
handles the extended problem with vertex weights, as follows. Rather than considering the
number of vertices in a part we always consider their total weight, e.g. r(S) denotes the cost
of the cut (S, V \ S) divided by the minimum between the weight of S and the weight of
V \ S. The corresponding changes in our algorithm and analysis are straightforward. Note
that the amortized cut algorithm (see Fig. 4) requires (in step 1) a subroutine that computes
an approximate min-ratio cut with respect to the vertex weights, but known algorithms (e.g.
due to [LR99]) provide this subroutine. Note also that in this algorithm’s related graph G′

(step 2) the capacity of an edge between a vertex v ∈ V1 and the new vertex s is p times
the weight of v1. The resulting approximation ratio is the same as for the basic problem, i.e.
O(log2 n).

5.3 Separating two vertices from each other (s − t cut)

Suppose that the input graph G contains two special vertices s and t, and we wish to find a
bisection that separates s from t and has minimum cost. (Note that the converse restriction,
namely that s, t will not be separated, is equivalent to merging them into one vertex of
weight 2, and therefore follows from Section 5.2).

Reduction. We reduce the extended problem of a bisection that separates s from t to
the extended problem of bisection with vertex weights (described in Section 5.2), as follows.
Given an input graph G with special vertices s, t as above, we let the vertices s, t have weights
n and let all other vertices of G have weight 1. The total weight of s and t together is 2n,
while the total weight of all other vertices is n − 2 (and thus smaller), so every bisection of
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the resulting graph must separate s from t. It follows that every bisection of the resulting
graph corresponds to a bisection of G that separates s from t and has the same cost, and
vice versa. We can therefore find a bisection of G that separates s from t and its cost is
within O(log2 n) from the minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem so that it
handles the extended problem of a bisection that separates s from t, as follows. We change the
dynamic programming table Q of the combining stage, so that every entry Q(i, k, g) contains
two solutions (if they exist); one solution with the k chosen vertices containing s but not t,
and the other solution with the k chosen vertices not containing any of s and t. Computing
the table entries is straightforward, and the output of the algorithm is ming Q(iroot, n/2, g),
where the minimum is taken only over solutions that contain s and not t. The necessary
changes in our analysis are straightforward. The resulting approximation ratio is the same
as for the basic problem, i.e. O(log2 n).

5.4 Cutting an arbitrary given number of vertices

Suppose that the input consists of a graph G and a number k, and we wish to find a minimum
cost cut that separates exactly k vertices.

Reduction. We reduce the problem of cutting away a given number k of vertices to the
problem of bisection with vertex weights (described in Section 5.2), as follows. Given an
input graph G and a number k (assume, without loss of generality, that k ≤ n/2), we let
the vertices of G have weight 1, and add to the graph an isolated vertex of weight n− 2k. It
is clear that every bisection of the resulting graph corresponds to a cut of G that separates
k vertices and has the same cost, and vice versa. We can therefore find a cut of G that
separates k vertices and its cost is within O(log2 n) from the minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem so that
it handles the extended problem of cutting a given number of vertices, as follows. The only
change in the algorithm is in the combining stage, that now outputs ming Q(iroot, k, g), where
Q is the dynamic programming table (see Section 4.4). The necessary changes in our analysis
are straightforward. The resulting approximation ratio is the same as for the basic problem,
i.e. O(log2 n).

5.5 Cutting into a fixed number of parts

Suppose that we wish to find a cut that separates the input graph G into a fixed number p
of parts of equal size.

We do not know of a reduction from this extended problem to the basic bisection problem.
A recursive bisection approach has a poor performance in general, although it may be useful
in some special cases and if some requirements are relaxed, see [ST97] and the references
therein.
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Modified algorithm. We modify our algorithm for the basic bisection problem so that it
handles the problem of cutting the graph into p parts of equal size, as follows. The cost of
a cut that partitions V into p parts V 1, . . . , V p is

∑

j<l

e(V j , V l) =
1

2

∑

j

e(V j, V \ V j).

Therefore, by scaling the value of every possible solution by a factor of 2 (which clearly
does not affect any approximation ratio issues), we obtain that the objective function of
the extended problem has the convenient form

∑
j e(V j, V \ V j). Observe that each cut

(V j , V \ V j) corresponds to separating V j from the other parts, which are grouped into
one part V \ V j. Thus, each summand e(V j, V \ V j) in the objective function is similar
to the basic bisection problem (with the minor exception that the two sides are not of the
equal sizes). Below we describe the modifications to the three stages of the algorithm, which
works simultaneously on all p cuts (V j, V \ V j). Its analysis is based on applying the new
accounting method of Section 2 separately to each of these p cuts.

The decomposition stage computes a decomposition tree T exactly as in the algorithm for
the basic problem (see Section 4.1). Observe that the amortized cut notion does not depend
on the cut that we seek, and so the obtained decomposition (and its tree T ) can be used for
all cuts (V j , V \ V j).

We extend the notion of a labeling of the decomposition tree, as follows. An extended
labeling of T assigns to every tree node a vector of p “basic” labels, one label for each cut
(V j , V \ V j). An extended labeling corresponds to deciding at each tree node i and for each
j, which of V j and V \ V j is considered charged (and which is considered free) in the part
Vi. Note that an extended labeling can be viewed as a vector, whose coordinate j forms a
basic labelings for (V j , V \ V j).

The labeling stage marks some nodes of the tree T exactly as in the algorithm for the
basic problem (see Section 4.2). This stage implicitly defines a family F that consists of all
extended labelings in which every unmarked node has the same label as its closest marked
ancestor (there is no restriction on the labels of the marked nodes). It is straightforward
that F contains at least one extended labeling, for which every coordinate j (forms a basic
labeling that) is α-consistent with the cut (V j , V \ V j). We can restrict the number of
possible labels at the marked (and hence also unmarked) nodes from 2p to p + 1 values, as
follows. Similar to the proof of Lemma 8 it is sufficient for our purposes that F contains the
labeling where V j is considered free at a marked node i if more than half the vertices of the
part Vi are from V j . At any part Vi, the latter can happen for at most one value of j, and
so it suffices to consider only labelings where at most one V j is free.

We extend the notion of a charge of a vertex, as follows. The extended charge of a vertex
v with respect to an extended labeling is the sum of the basic charges of v with respect to
each of the p coordinates of this extended labeling.

The combining stage uses dynamic programming on a table Q, whose entries are of the
form Q(i, k, g), as follows. i is a tree node. k = (k1, . . . , kp), where kj is the desired size
of the jth part and

∑
j kj = |Vi|. g = (g1, . . . , gp) where gj is a guess list that contains the

jth label of every marked ancestor of i. An entry Q(i, k, g) contains the optimal solution
to the following problem: Choose a partition of Vi into subsets with sizes according to k,
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and choose a labeling from F that agrees with g, so that the sum of the extended charges
of all the vertices of Vi with respect to the chosen labeling, is minimal over all such choices.
Note that this problem requires some correlation between p cuts, and therefore Q(i, k, g) is
generally not equal to

∑
j Q(i, kj , gj) (where Q is the basic table).

The rules for computing the entries of the table Q are a straightforward extension of
those for the table Q (see Section 4.4). The algorithm computes all the table entries and
then outputs ming Q(iroot, k, g) where k = (n/p, . . . , n/p).

The running time of this modified algorithm is polynomial in n (for fixed p). Indeed,
the decomposition stage and the labeling stage are exactly as in the algorithm for the basic
bisection problem, so let us consider the dynamic programming table Q of the combining
stage. The number of tree nodes i is O(n), and the range of k contains at most np possible
values. The vector g contains one of p + 1 possible values for each of the O(logn) marked
ancestors (of the relevant tree node i), so g assumes one of nO(log p) values. It follows that
the size of the table Q is np+O(log p). Each table entry is computed efficiently from previously
computed entries, and hence the combining stage takes polynomial time.

To analyze the approximation ratio, let V 1, . . . , V p be the optimal partition of the input
graph into p parts of equal size. Recall that the extended charge of a vertex is the sum of its
basic charges with respect to each cut (V j , V \ V j), and we can therefore apply the analysis
of the basic algorithm for each cut (V j, V \ V j) separately. It follows that the output value
is guaranteed to be at most O(log2 n) · ∑

j e(V j, V \ V j). Furthermore, one can obtain from
the table Q a cut (into p parts of equal size) whose cost is at most (half) this value, i.e.
within a ratio of O(log2 n) from the minimum.

5.6 Bicriteria approximation and balanced cuts

Suppose that we wish to find a 2/3-balanced cut (recall that a cut is called β-balanced if
it partitions the graph into two parts, each of size at most βn) whose cost is guaranteed
to be small relative to the minimum cost b of a bisection (i.e. a 1/2-balanced cut). Here,
the minimum bisection problem is relaxed in two respects, as the solution cut is allowed
to have cost larger than b and also to deviate from the cardinality constraints (for its two
sides). Algorithms for such problems are sometimes referred to as bicriteria approximation
and sometimes as pseudo-approximation.

Known bicriteria approximation algorithms find a 2/3-balanced cut of cost O(b log n).
Leighton and Rao [LR88, LR99] show how an algorithm that finds a τ approximate min-
ratio cut can be used to find a 2/3-balanced cut of cost O(bτ); the approximation ratio
τ = O(log n) that they achieve is the best currently known, see also [Shm97]. Even, Naor,
Rao and Schieber [ENRS97] devise a different algorithm that also finds a 2/3-balanced cut
of cost O(b log n).

We show below that amortized cuts can be used to obtain also bicriteria approximation
algorithms (in addition to approximation algorithms) for minimum bisection. In fact, our
algorithm is similar to the one of [LR88, LR99], except that we use amortized cuts instead
of approximate min-ratio cuts.

Lemma 15 An algorithm that finds a ρ-amortized cut can be used to find a 2/3-balanced
cut of cost b(1 + O(ρ)).
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Proof. Given an input graph G(V, E) on n vertices, use the algorithm that finds a ρ-
amortized cut, as follows. Repeatedly find (in the graph) a ρ-amortized cut and remove
(from the graph) the smaller of its two sides, until the graph contains no more than 2n/3
vertices. Denoting by S the set of vertices that remain in the graph after the last iteration,
output the cut (S, V \ S).

It is straightforward to see that n/3 < |S| ≤ 2n/3, and hence the output cut (S, V \ S)
is a 2/3-balanced cut. We prove below that the total cost of all edges cut by the amortized
cuts (throughout the iterations) is at most b(1 + O(ρ)). It would then follow immediately
that e(S, V \ S) ≤ b(1 + O(ρ)), as required.

We now upper bound the total cost of all edges cut in the amortized cuts. Let (W, B)
be a fixed optimal bisection of cost b, and call the vertices of W white, and the vertices of
B black. The total cost of white-black edges cut is clearly at most b. We show below that
the total cost of all white-white edges cut is O(bρ). By the symmetry between W and B,
we will then have a similar upper bound on the total cost of the black-black edges cut, and
obtain the desired upper bound of b(1 + O(ρ)) on the total cost of all edges cut.

To show that the total cost of white-white edges cut in the amortized cuts is O(bρ), we
consider the white vertices W as charged in all the amortized cuts, and then white-white
edges are charged-charged edges. The algorithm applies a ρ-amortized cut in parts of G that
contain at least 2n/3 vertices. At least n/2 − n/3 = n/6 of the vertices in such a part are
black, while at most n/2 of them are white, and hence at most 3/4 of the vertices in this
part are considered charged. Taking a constant α ≥ 3/4 in the definition of an amortized
cut, we have that the cost of the charged-charged edges cut can be amortized in one of two
amortization methods (see Section 2).

In one amortization method the cost of the charged-charged edges cut is amortized against
charged-free edges in the smaller side of the cut, with amortized cost at most ρ. Observe
that an edge can be in the smaller side of the amortized cut (the side that is removed) in at
most one iteration, so the total cost amortized in this method (in all the iterations) against
one charged-free edge is at most ρ. Hence, the total cost amortized in this method (in all
the iterations) is at most bρ.

In the other amortization method the cost of the charged-charged edges cut is amortized
against charged-free edges in the part being divided, with amortized cost at most ρ|C1|/|C|,
where C denotes the charged vertices in the part being divided and C1 denotes the charged
vertices in the smaller side of the cut. The total cost amortized in this method (in all
the iterations) against one charged-free edge is then upper bounded by ρ times the sum of
|C1|/|C| over all iterations. Recall that the charged vertices are the white vertices, and so
|C| ≥ n/6 in all amortized cuts (i.e. iterations). Furthermore, each vertex is in the smaller
side of the cut (the side that is removed) in at most one iteration, and so the sum of |C1|
over all iterations is at most n/2. It follows that the total cost amortized in this method
(in all the iterations) against one charged-free edge is at most 3ρ, and hence the total cost
amortized in this method is at most b · 3ρ.

We conclude that the total cost of all charged-charged (i.e. white-white) edges cut in all
the iterations is at most b ·4ρ. As described above, this proves that the total cost of all edges
cut in all the iterations is at most b(1 + 8ρ) = b(1 + O(ρ)), and the lemma follows. !

We remark that a 2/3-balanced cut of cost b(1 + O(ρ)) can be found also by modifying
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the algorithm we devised for the basic bisection problem so that its combining stage outputs
ming,n/3≤k≤n/2 Q(iroot, k, g) (and its corresponding cut). Indeed, the proof of Lemma 15
shows a 2/3-balanced cut whose charge (with respect to a certain labeling in F) is at most
b(1 + O(ρ)). Details omitted.

Concluding remarks. Designing an algorithm that finds a cut of amortized cost better
than O(log n) remains an important open question. An efficient algorithm that accomplishes
that will not only improve the approximation ratio for minimum bisection (by Theorem 4),
but also the bicriteria approximation ratio for minimum bisection (by Lemma 15), which
will lead, in turn, to improved approximation ratios for many other problems, see [LR99,
Section 3].

Finding a cut whose amortized cost is better than O(logn) is, in a sense, no harder (and
possibly easier) than approximating min-ratio cuts within a ratio better than O(log n), as the
former problem is reducible (by Theorem 3) to the latter. Furthermore, an O(1)-amortized
cut always exists (by Corollary 5), and we know of no hardness result for the problem of
finding such a cut.
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