Fall 2007 16 October 2007 Scribe: Zhifeng Sun

Lecture Outline:

• Multicommodity flow and Sparset cut

1 Multicommodity flow

Demands multicommodity flow: Given graph G = (V, E), edge capacity function $C : E \to \mathbb{Z}^+$. There are $k \geq 1$ commodities, each with its own source s_i , sink t_i , and demand dem(i). The objective is to maximize f such that we can send $f \cdot dem(i)$ units of commodity i from s_i to t_i for each i simultaneously, without violating the capacity constraint of any edge.

Sum-flow multicommodity flow: Given graph G = (V, E), edge capacity function $C : E \to \mathbb{Z}^+$. There are $k \geq 1$ commodities, each with its own source s_i , sink t_i . The objective is to maximize the sum of the flow sent from s_i to t_i , over all i, without violating the capacity constraint for any edge.

2 Two examples where Max-Flow is not equal to Min-Cut

It is well known that Max-Flow is equal to Min-Cut in Single Commodity Flow problem. But this is not true for Multicommodity Flow when the number of commodities is greater than 2.

First we give the definition of Min-Cut in multicommodity flow problem.

Definition 1. For any cut $\langle S, \bar{S} \rangle$ of the graph, let $C(S, \bar{S}) = \sum_{e \in \langle S, \bar{S} \rangle} C(e)$ which is the total capacities across this cut, and $D(S, \bar{S}) = \sum_{\{i \mid s_i \in S \land t_i \in \bar{S} \text{ or } s_i \in \bar{S} \land t_i \in S\}} dem(i)$ which is the total demand across this cut. Define the Min-Cut as $\eta = \min_{S \subseteq V} \frac{C(S, \bar{S})}{D(S, \bar{S})}$. We refer to $\frac{C(S, \bar{S})}{D(S, \bar{S})}$ as the ratio of cut (S, \bar{S}) .

Let f^* be the optimal value for demands multicommodity flow. It is clear that $f^* \leq \eta$. The first example (Figure 1, taken from Jon Kleinberg's lecture notes) shows f^* could be strictly smaller than η in multicommodity flow problem.

In the graph, there are 4 flow pairs, each with a demand of 1, and the shortest path between each pair is 2 hops. So the total capacity consumed when we send f^* flow for each commodity is $8f^*$. And there are only 6 edges in the graph. So we have $f^* \leq 3/4$.

The second example gives an even worse ratio between Max-Flow and Min-Cut, where $f^* \leq O\left(\frac{\eta}{\log n}\right)$. This example makes use of Uniform Multicommodity Flow and 3-regular expander graph.

3-regular expanders: 3-regular expander graph has the following properties:

Figure 1: Example of Max-Flow and Min-Cut in multicommodity flow

- degree of every vertex is equal to 3
- $\exists c > 0 \ (c \text{ is a constant}), \ \forall S \subseteq V \text{ if } |S| \leq \frac{|V|}{2} \text{ then } \delta(S) \geq c|S|.$ Here $\delta(S)$ is the number of edges that cross cut $\langle S, \bar{S} \rangle$.

Now construct the multicommodity flow problem in the following way. Given a 3-regular expander graph, set the cost of each edge to one, C(e) = 1. For each pair of vertices (u, v) set a source and sink pair (s_i, t_i) . The demand of each (s_i, t_i) is equal to one, $d_i = 1$.

Theorem 1.
$$f^* \leq O\left(\frac{\eta}{\log n}\right)$$

Proof. We first show that $\eta = \Omega(1/n)$. Consider any cut (S, \bar{S}) . Without loss of generality, we assume $|S| \leq n/2$. Owing to the expansion property, the number of edges crossing the cut is at least c|S|. Therefore, the ratio for (S, \bar{S}) is at least $c|S|/(|S| \cdot |\bar{S}|)$, which is at least $c/n = \Omega(1/n)$.

For each vertex $u \in V$, the number of vertices that are 1-hop away from u is 3 (this is a 3-regular expander graph), the number of vertices that are 2-hop away from u is at most 9, the number of vertices that are 3-hop away from u is at most 27 So there are at least $\frac{2n}{3}$ vertices that are more than $\lfloor \log_3 n \rfloor - 1$ hops away from u. And the number of pairs that are separated by more than $\lfloor \log_3 n \rfloor - 1$ hops is at least $n \times \frac{2n}{3} = \frac{2n^2}{3}$. So the total capacity consumed by flows is at least $\frac{2n^2}{3} \times \log_3 n \times f^*$. The total number of edges in this graph is $\frac{3n}{2}$. From

$$\frac{3n}{2} \ge \frac{2n^2}{3} \times \log_3 n \times f^*$$

we have

$$f^* \le \frac{9}{4n\log_3 n} = O\left(\frac{\eta}{\log n}\right)$$

In other words, the Max-Flow for the Uniform Multicommodity Flow problem is at least a $O\left(\frac{\eta}{\log n}\right)$ -factor smaller than the min-cut.

3 LP of Demands Multicommodity Flow

Let P_i be the set of paths between pair (s_i, t_i) , p_j^i be the j^{th} path in P_i , dem(i) be the demands of pair (s_i, t_i) , and f_j^i be the amount of commodity i sent on path p_j^i . Then we get the following LP for Demands Multicommodity Flow problem.

$$\max f$$
s.t.
$$\sum_{p_j^i} f_j^i \ge f \cdot dem(i) \quad \forall i$$

$$\sum_{p_j^i: e \in p_j^i} f_j^i \le c_e \quad \forall e$$

$$p_j^i \ge 0 \quad \forall i, j$$

And its dual is

$$\min \sum_{e} c_e d_e$$
s.t.
$$\sum_{e \in p_j^i} d_e \ge l_i \quad \forall i, j$$

$$\sum_{i} l_i \cdot dem(i) \ge 1$$

$$d_e \ge 0 \quad \forall e$$

In the dual, d_e can be viewed as the distance assigned to the edge. And l_i is the length of the shortest path between s_i and t_i , according to the distances given by d_e . A feasible solution to the dual yields a lower bound on f^* (by weak duality). In fact, the proof of Theorem ?? can be seen as one based on weak duality. Take the 3-regular expander graph. We saw that $\eta \geq \frac{c}{n}$ where c is a constant. We now show that $f^* \leq O\left(\frac{1}{n\log n}\right)$, using the dual LP defined above. Set $d_e = 2/n^2 \log n$. Then

$$\sum_{i} l_i \ge \frac{2}{3} n^2 \log n \cdot \frac{2}{n^2 \log n} \ge 1$$

because for each vertex, there are at least $\frac{2n}{3}$ vertices that are more than $\lfloor \log_3 n \rfloor - 1$ hops away from it, and the demand for each pair is 1, dem(i) = 1.

By weak duality, we thus have

$$f^* \le \sum_e d_e = \frac{2}{n^2 \log n} \cdot \frac{3n}{2} = \frac{3}{n \log n} = O\left(\frac{1}{n \log n}\right)$$