Lecture Outline:

- Multicommodity flow and Sparset cut

1 Multicommodity flow

Demands multicommodity flow: Given graph $G=(V, E)$, edge capacity function $C: E \rightarrow \mathbb{Z}^{+}$. There are $k \geq 1$ commodities, each with its own source s_{i}, sink t_{i}, and demand $\operatorname{dem}(i)$. The objective is to maximize f such that we can send $f \cdot \operatorname{dem}(i)$ units of commodity i from s_{i} to t_{i} for each i simultaneously, without violating the capacity constraint of any edge.

Sum-flow multicommodity flow: Given graph $G=(V, E)$, edge capacity function $C: E \rightarrow \mathbb{Z}^{+}$. There are $k \geq 1$ commodities, each with its own source s_{i}, $\operatorname{sink} t_{i}$. The objective is to maximize the sum of the flow sent from s_{i} to t_{i}, over all i, without violating the capacity constraint for any edge.

2 Two examples where Max-Flow is not equal to Min-Cut

It is well known that Max-Flow is equal to Min-Cut in Single Commodity Flow problem. But this is not true for Multicommodity Flow when the number of commodities is greater than 2 .

First we give the definition of Min-Cut in multicommodity flow problem.
Definition 1. For any cut $\langle S, \bar{S}\rangle$ of the graph, let $C(S, \bar{S})=\sum_{e \in\langle S, \bar{S}\rangle} C(e)$ which is the total capacities across this cut, and $D(S, \bar{S})=\sum_{\left\{i \mid s_{i} \in S \wedge t_{i} \in \bar{S} \text { or } s_{i} \in \bar{S} \wedge t_{i} \in S\right\}} \operatorname{dem}(i)$ which is the total demand across this cut. Define the Min-Cut as $\eta=\min _{S \subseteq V} \frac{C(S, \bar{S})}{D(S, \bar{S})}$. We refer to $\frac{C(S, \bar{S})}{D(S, \bar{S})}$ as the ratio of cut (S, \bar{S}).

Let f^{*} be the optimal value for demands multicommodity flow. It is clear that $f^{*} \leq \eta$. The first example (Figure 1, taken from Jon Kleinberg's lecture notes) shows f^{*} could be strictly smaller than η in multicommodity flow problem.

In the graph, there are 4 flow pairs, each with a demand of 1 , and the shortest path between each pair is 2 hops. So the total capacity consumed when we send f^{*} flow for each commodity is $8 f^{*}$. And there are only 6 edges in the graph. So we have $f^{*} \leq 3 / 4$.

The second example gives an even worse ratio between Max-Flow and Min-Cut, where $f^{*} \leq$ $O\left(\frac{\eta}{\log n}\right)$. This example makes use of Uniform Multicommodity Flow and 3-regular expander graph.

3-regular expanders: 3-regular expander graph has the following properties:

Figure 1: Example of Max-Flow and Min-Cut in multicommodity flow

- degree of every vertex is equal to 3
- $\exists c>0$ (c is a constant), $\forall S \subseteq V$ if $|S| \leq \frac{|V|}{2}$ then $\delta(S) \geq c|S|$. Here $\delta(S)$ is the number of edges that cross cut $\langle S, \bar{S}\rangle$.

Now construct the multicommodity flow problem in the following way. Given a 3-regular expander graph, set the cost of each edge to one, $C(e)=1$. For each pair of vertices (u, v) set a source and sink pair $\left(s_{i}, t_{i}\right)$. The demand of each $\left(s_{i}, t_{i}\right)$ is equal to one, $d_{i}=1$.
Theorem 1. $f^{*} \leq O\left(\frac{\eta}{\log n}\right)$
Proof. We first show that $\eta=\Omega(1 / n)$. Consider any cut (S, \bar{S}). Without loss of generality, we assume $|S| \leq n / 2$. Owing to the expansion property, the number of edges crossing the cut is at least $c|S|$. Therefore, the ratio for (S, \bar{S}) is at least $c|S| /(|S| \cdot|\bar{S}|)$, which is at least $c / n=\Omega(1 / n)$.

For each vertex $u \in V$, the number of vertices that are 1-hop away from u is 3 (this is a 3-regular expander graph), the number of vertices that are 2-hop away from u is at most 9 , the number of vertices that are 3 -hop away from u is at most $27 \ldots$. So there are at least $\frac{2 n}{3}$ vertices that are more than $\left\lfloor\log _{3} n\right\rfloor-1$ hops away from u. And the number of pairs that are separated by more than $\left\lfloor\log _{3} n\right\rfloor-1$ hops is at least $n \times \frac{2 n}{3}=\frac{2 n^{2}}{3}$. So the total capacity consumed by flows is at least $\frac{2 n^{2}}{3} \times \log _{3} n \times f^{*}$. The total number of edges in this graph is $\frac{3 n}{2}$. From

$$
\frac{3 n}{2} \geq \frac{2 n^{2}}{3} \times \log _{3} n \times f^{*}
$$

we have

$$
f^{*} \leq \frac{9}{4 n \log _{3} n}=O\left(\frac{\eta}{\log n}\right)
$$

In other words, the Max-Flow for the Uniform Multicommodity Flow problem is at least a $O\left(\frac{\eta}{\log n}\right)$ factor smaller than the min-cut.

3 LP of Demands Multicommodity Flow

Let P_{i} be the set of paths between pair $\left(s_{i}, t_{i}\right), p_{j}^{i}$ be the $j^{\text {th }}$ path in $P_{i}, \operatorname{dem}(i)$ be the demands of pair $\left(s_{i}, t_{i}\right)$, and f_{j}^{i} be the amount of commodity i sent on path p_{j}^{i}. Then we get the following LP for Demands Multicommodity Flow problem.

$$
\begin{array}{cl}
\max f & \\
\text { s.t. } \sum_{p_{j}^{i}} f_{j}^{i} \geq f \cdot \operatorname{dem}(i) & \forall i \\
\sum_{p_{j}^{i}: e \in p_{j}^{i}} f_{j}^{i} \leq c_{e} & \forall e \\
p_{j}^{i} \geq 0 & \forall i, j
\end{array}
$$

And its dual is

$$
\begin{array}{cl}
\min \sum_{e} c_{e} d_{e} & \\
\text { s.t. } \sum_{e \in p_{j}^{i}} d_{e} \geq l_{i} & \forall i, j \\
\sum_{i} l_{i} \cdot \operatorname{dem}(i) \geq 1 & \\
d_{e} \geq 0 & \forall e
\end{array}
$$

In the dual, d_{e} can be viewed as the distance assigned to the edge. And l_{i} is the length of the shortest path between s_{i} and t_{i}, according to the distances given by d_{e}. A feasible solution to the dual yields a lower bound on f^{*} (by weak duality). In fact, the proof of Theorem ?? can be seen as one based on weak duality. Take the 3 -regular expander graph. We saw that $\eta \geq \frac{c}{n}$ where c is a constant. We now show that $f^{*} \leq O\left(\frac{1}{n \log n}\right)$, using the dual LP defined above. Set $d_{e}=2 / n^{2} \log n$. Then

$$
\sum_{i} l_{i} \geq \frac{2}{3} n^{2} \log n \cdot \frac{2}{n^{2} \log n} \geq 1
$$

because for each vertex, there are at least $\frac{2 n}{3}$ vertices that are more than $\left\lfloor\log _{3} n\right\rfloor-1$ hops away from it, and the demand for each pair is $1, \operatorname{dem}(i)=1$.

By weak duality, we thus have

$$
f^{*} \leq \sum_{e} d_{e}=\frac{2}{n^{2} \log n} \cdot \frac{3 n}{2}=\frac{3}{n \log n}=O\left(\frac{1}{n \log n}\right)
$$

