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Lecture Outline:

e Multicommodity flow and Sparset cut

1 Multicommodity flow

Demands multicommodity flow: Given graph G = (V, E), edge capacity function C' : E — Z™.
There are k > 1 commodities, each with its own source s;, sink ¢;, and demand dem(i). The
objective is to maximize f such that we can send f - dem(i) units of commodity i from s; to ¢; for
each ¢ simultaneously, without violating the capacity constraint of any edge.

Sum-flow multicommodity flow: Given graph G = (V, E), edge capacity function C' : E — Z™.
There are k > 1 commodities, each with its own source s;, sink ¢;. The objective is to maximize
the sum of the flow sent from s; to t¢;, over all ¢, without violating the capacity constraint for any
edge.

2 Two examples where Max-Flow is not equal to Min-Cut

It is well known that Max-Flow is equal to Min-Cut in Single Commodity Flow problem. But this
is not true for Multicommodity Flow when the number of commodities is greater than 2.

First we give the definition of Min-Cut in multicommodity flow problem.

Definition 1. For any cut (S, S) of the graph, let C(S,S) = > ee(s,5) C(€) which is the total ca-
pacities across this cut, and D(S, S) = Z{i\siES/\tiGS' or s;eSntiesy dem(i) which is the total demand

across this cut. Define the Min-Cut as 7 = mingcy w We refer to IC)E? g;

: DS, 5) as the ratio of
cut (S,9).

Let f* be the optimal value for demands multicommodity flow. It is clear that f* < n. The first
example (Figure 1, taken from Jon Kleinberg’s lecture notes) shows f* could be strictly smaller
than 7 in multicommodity flow problem.

In the graph, there are 4 flow pairs, each with a demand of 1, and the shortest path between each
pair is 2 hops. So the total capacity consumed when we send f* flow for each commodity is 8f*.
And there are only 6 edges in the graph. So we have f* < 3/4.

The second example gives an even worse ratio between Max-Flow and Min-Cut, where f* <

0] (102 n) This example makes use of Uniform Multicommodity Flow and 3-regular expander

graph.

3-regular expanders: 3-regular expander graph has the following properties:



Figure 1: Example of Max-Flow and Min-Cut in multicommodity flow

e degree of every vertex is equal to 3

e dc > 0 (cis a constant), VS C V if |§] < % then 6(5) > ¢|S|. Here 6(S5) is the number of
edges that cross cut (S, S).

Now construct the multicommodity flow problem in the following way. Given a 3-regular expander
graph, set the cost of each edge to one, C'(e) = 1. For each pair of vertices (u,v) set a source and
sink pair (s;,t;). The demand of each (s;,%;) is equal to one, d; = 1.

Theorem 1. f* < O< i >
logn

Proof. We first show that n = Q(1/n). Consider any cut (5,5). Without loss of generality, we
assume |S| < n/2. Owing to the expansion property, the number of edges crossing the cut is at

least ¢|S|. Therefore, the ratio for (S, 9) is at least ¢|S|/(|S] - |S|), which is at least ¢/n = Q(1/n).

For each vertex u € V, the number of vertices that are 1-hop away from w is 3 (this is a 3-regular

expander graph), the number of vertices that are 2-hop away from u is at most 9, the number of

vertices that are 3-hop away from wu is at most 27 .... So there are at least %” vertices that are

more than [loggn| — 1 hops away from u. And the number of pairs that are separated by more
than [logsn| — 1 hops is at least n x %” = % So the total capacity consumed by flows is at least

% x loggn x f*. The total number of edges in this graph is 37" From
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x loggn x f*

we have




In other words, the Max-Flow for the Uniform Multicommodity Flow problem is at least a O (bgn) -

factor smaller than the min-cut.

3 LP of Demands Multicommodity Flow

Let P; be the set of paths between pair (s;,t;), pé» be the j* path in P;, dem(i) be the demands of
pair (s;,t;), and f]’-' be the amount of commodity ¢ sent on path p; Then we get the following LP
for Demands Multicommodity Flow problem.

max f
s.t. 3 f7 > f-dem(i) Vi
J
Zpé:eEpé f; <ece Ve
Py >0 Vi, j
And its dual is
min ), cede

s.t. Eeep; de > ll Vl,j
Yo li-dem(i) >1
de >0 Ve

In the dual, d. can be viewed as the distance assigned to the edge. And I; is the length of the
shortest path between s; and t;, according to the distances given by d.. A feasible solution to the
dual yields a lower bound on f* (by weak duality). In fact, the proof of Theorem ?? can be seen
as one based on weak duality. Take the 3-regular expander graph. We saw that > = where c is a

constant. We now show that f* < O (ngn), using the dual LP defined above. Set d. = 2/n?logn.
Then

>1
n2logn —

2
zi:li > gnQIOgn~

because for each vertex, there are at least %” vertices that are more than [logzn| — 1 hops away

from it, and the demand for each pair is 1, dem(i) = 1.

By weak duality, we thus have
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