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Lecture Outline:

• Multicommodity flow and Sparset cut

1 Multicommodity flow

Demands multicommodity flow: Given graph G = (V,E), edge capacity function C : E → Z
+.

There are k ≥ 1 commodities, each with its own source si, sink ti, and demand dem(i). The
objective is to maximize f such that we can send f · dem(i) units of commodity i from si to ti for
each i simultaneously, without violating the capacity constraint of any edge.

Sum-flow multicommodity flow: Given graph G = (V,E), edge capacity function C : E → Z
+.

There are k ≥ 1 commodities, each with its own source si, sink ti. The objective is to maximize
the sum of the flow sent from si to ti, over all i, without violating the capacity constraint for any
edge.

2 Two examples where Max-Flow is not equal to Min-Cut

It is well known that Max-Flow is equal to Min-Cut in Single Commodity Flow problem. But this
is not true for Multicommodity Flow when the number of commodities is greater than 2.

First we give the definition of Min-Cut in multicommodity flow problem.

Definition 1. For any cut 〈S, S̄〉 of the graph, let C(S, S̄) =
∑

e∈〈S,S̄〉 C(e) which is the total ca-

pacities across this cut, and D(S, S̄) =
∑

{i|si∈S∧ti∈S̄ or si∈S̄∧ti∈S} dem(i) which is the total demand

across this cut. Define the Min-Cut as η = minS⊆V
C(S, S̄)

D(S, S̄)
. We refer to

C(S, S̄)

D(S, S̄)
as the ratio of

cut (S, S̄).

Let f∗ be the optimal value for demands multicommodity flow. It is clear that f∗ ≤ η. The first
example (Figure 1, taken from Jon Kleinberg’s lecture notes) shows f∗ could be strictly smaller
than η in multicommodity flow problem.

In the graph, there are 4 flow pairs, each with a demand of 1, and the shortest path between each
pair is 2 hops. So the total capacity consumed when we send f∗ flow for each commodity is 8f∗.
And there are only 6 edges in the graph. So we have f∗ ≤ 3/4.

The second example gives an even worse ratio between Max-Flow and Min-Cut, where f∗ ≤

O
(

η
log n

)

. This example makes use of Uniform Multicommodity Flow and 3-regular expander

graph.

3-regular expanders: 3-regular expander graph has the following properties:
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Figure 1: Example of Max-Flow and Min-Cut in multicommodity flow

• degree of every vertex is equal to 3

• ∃c > 0 (c is a constant), ∀S ⊆ V if |S| ≤
|V |

2
then δ(S) ≥ c|S|. Here δ(S) is the number of

edges that cross cut 〈S, S̄〉.

Now construct the multicommodity flow problem in the following way. Given a 3-regular expander
graph, set the cost of each edge to one, C(e) = 1. For each pair of vertices (u, v) set a source and
sink pair (si, ti). The demand of each (si, ti) is equal to one, di = 1.

Theorem 1. f∗ ≤ O

(

η

log n

)

Proof. We first show that η = Ω(1/n). Consider any cut (S, S̄). Without loss of generality, we
assume |S| ≤ n/2. Owing to the expansion property, the number of edges crossing the cut is at
least c|S|. Therefore, the ratio for (S, S̄)̄ is at least c|S|/(|S| · |S̄|), which is at least c/n = Ω(1/n).

For each vertex u ∈ V , the number of vertices that are 1-hop away from u is 3 (this is a 3-regular
expander graph), the number of vertices that are 2-hop away from u is at most 9, the number of
vertices that are 3-hop away from u is at most 27 . . . . So there are at least 2n

3
vertices that are

more than ⌊log3 n⌋ − 1 hops away from u. And the number of pairs that are separated by more

than ⌊log3 n⌋ − 1 hops is at least n× 2n
3

= 2n2

3
. So the total capacity consumed by flows is at least

2n2

3
× log3 n × f∗. The total number of edges in this graph is 3n

2
. From

3n

2
≥

2n2

3
× log3 n × f∗

we have

f∗ ≤
9

4n log3 n
= O

(

η

log n

)
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In other words, the Max-Flow for the Uniform Multicommodity Flow problem is at least a O
(

η
log n

)

-

factor smaller than the min-cut.

3 LP of Demands Multicommodity Flow

Let Pi be the set of paths between pair (si, ti), pi
j be the jth path in Pi, dem(i) be the demands of

pair (si, ti), and f i
j be the amount of commodity i sent on path pi

j . Then we get the following LP
for Demands Multicommodity Flow problem.

max f

s.t.
∑

pi
j
f i

j ≥ f · dem(i) ∀i
∑

pi
j
:e∈pi

j
f i

j ≤ ce ∀e

pi
j ≥ 0 ∀i, j

And its dual is

min
∑

e cede

s.t.
∑

e∈pi
j
de ≥ li ∀i, j

∑

i li · dem(i) ≥ 1

de ≥ 0 ∀e

In the dual, de can be viewed as the distance assigned to the edge. And li is the length of the
shortest path between si and ti, according to the distances given by de. A feasible solution to the
dual yields a lower bound on f∗ (by weak duality). In fact, the proof of Theorem ?? can be seen
as one based on weak duality. Take the 3-regular expander graph. We saw that η ≥ c

n
where c is a

constant. We now show that f∗ ≤ O
(

1
n log n

)

, using the dual LP defined above. Set de = 2/n2 log n.

Then
∑

i

li ≥
2

3
n2 log n ·

2

n2 log n
≥ 1

because for each vertex, there are at least 2n
3

vertices that are more than ⌊log3 n⌋ − 1 hops away
from it, and the demand for each pair is 1, dem(i) = 1.

By weak duality, we thus have

f∗ ≤
∑

e

de =
2

n2 log n
·
3n

2
=

3

n log n
= O

(

1

n log n

)
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