
Chapter 5

Controlling negative diffusion in

the presence of risk behavior

changes

In Chapter 4, we analyzed intervention strategies assuming the behavior of each indi-

vidual remains the same before and after taking interventions, which is not an accurate

assumption in some real world scenarios. Previous studies have shown imperfect in-

terventions and risk behavior changes can lead to perverse outcomes. Thus, in this

chapter, we study how to control negative diffusion with the presence of risk behavior

changes.

From the results in Chapter 4, we can see that Nash equilibrium may not exist

even without risk behavior changes. Using game theory in the presence of risk behavior

changes is going to be extremely difficult. In this chapter, we formulate a network-based

model and use random graph techniques to understand how risk behavior change in con-

junction with failure of prophylactic interventions can lead to perverse outcomes where

“less (intervention) is more (effective)”. Our model captures the distinction between

one- and two-sided risk behavior change. In one-sided situations (e.g. influenza/H1N1)

it is sufficient for either individual in an interaction to exhibit risk behavior change

whereas in two-sided situations (e.g. AIDS/HIV) it is necessary for both individuals

in the interaction to exhibit risk behavior change, for a potential transmission of the

disease. A central discovery is that the phenomenon of perversity occurs at differing

levels of intervention coverage depending upon the “sidedness” of the interaction. Fur-

83



5. CONTROLLING NEGATIVE DIFFUSION IN THE PRESENCE OF
RISK BEHAVIOR CHANGES

thermore, again dependent on the “sidedness,” targeting highly connected nodes can

be strictly worse than uniformly random interventions at the same level of coverage.

In Section 5.1, we formally define our model. In Section 5.2, we explain our first

finding where less intervention can be more effective. In Section 5.3, we explain our

second finding where targeted intervention strategy can be worse than random inter-

vention strategy. Section 5.4 backs up our findings with comprehensive simulations.

And we conclude this Chapter in Section 5.5.

5.1 Models

We obtain our results through both analytical techniques and simulations on a range

of networks including preferential attachment networks [28] and large synthetic and

real-world networks. For our analyses, we adopt the SIR model of epidemics defined on

networks. Let G = (V,E) denote an undirected social contact graph, where V denotes a

set of people (referred to as nodes henceforth) and (u, v) ∈ E denotes a contact between

nodes u and v (see Figure 5.1(a) for an example). If node u becomes infectious, it will

infect each of its susceptible neighbors independently with probability p (referred as

base transmissivity). Each node in the graph is either vaccinated (e.g., nodes B or

F in Figure 5.1(b)) or not (e.g., nodes A or C in Figure 5.1(b)). If a node u is not

vaccinated, we label it as UV. The vaccine fails with probability pf . If a node u’s

vaccine fails, we label it as VF; otherwise, we label it VS. Both UV and VF nodes are

susceptible. We assume that vaccine failure is a stochastic event and that (vaccinated)

nodes do not know if (their own) vaccination succeeded or not. If a node with vaccine

failure is infected then its risk behavior changes, i.e., it increases its contacts to some

of its’ neighbors, resulting in boosted transmissivity pm - in the one-sided model a node

infects all its susceptible neighbors with boosted transmissivity pm, while in the two-

sided model, it only infects those neighbors with boosted transmissivity pm that have

also had a failed vaccination. In the rest of the paper, we use pv to denote the probability

that a node is vaccinated, under a campaign of uniformly random vaccination.

The disease transmission process is thus defined by the tuple (p, pm, pf , pv) in the

following manner: every node is labeled with UV, VS, VF with probability 1 − pv,

pv(1− pf ), and pvpf , respectively. All nodes labeled VS are removed from the graph.

Each edge (u, v) connecting two surviving nodes u and v, is “open” (or retained in the
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graph, in the language of percolation, which corresponds to disease transmission on this

edge), or “closed” (or removed from the graph), with some probability depending on

the model - (i) in the one-sided model, edge (u, v) is open with probability p, if both u

and v are labeled UV, and is open with probability pm if one of u and v is labeled VF;

(ii) in the two-sided model, edge (u, v) is open with probability p, unless both u and

v are labeled VF. Following the well known correspondence between bond percolation

and disease transmission, the connected component containing a specific node u is

the (random) subset of nodes infected, if the disease starts at u. If the components

resulting from one random instance of the above stochastic process are C1, C2, . . . , Ck,

then
�

i
|Ci|2 /n denotes the expected outbreak size of the disease starting from a

random initial node. In our analysis, we use this as a measure of epidemic severity.

5.2 Perversity and sidedness

We first report on our finding that both one-sided and two-sided behavior changes can

lead to perverse outcomes (less vaccination is more effective) across a wide range of

contact networks. One-sided behavior change leads to perverse outcomes at low levels

of intervention, in which the epidemic severity increases with pv, up to a point, as shown

in Figure 5.2, 5.3, and 5.4. Two-sided behavior change leads to perverse outcomes at

high levels of intervention, in which the epidemic severity starts increasing beyond

a threshold value of pv. We mathematically establish the phenomena of perversity

and non-monotonicity for graphs generated according to the Erdös-Renyi model [108],

denoted by G(n, p), in which each edge between a pair of nodes is chosen independently

with probability p. We prove rigorously that there exist p, pm, and pf , such that (i)

in the one-sided model, it almost surely holds that the epidemic severity is o(n) for

both pv = 0 and pv = 1, yet Θ(n) for some pv in (0, 1); (ii) in the two-sided model,

the epidemic severity is Θ(n) for both pv = 0 and pv = 1, yet o(n) for some pv in

(0, 1). This implies that there is a choice of parameters (which turns out to be be quite

broad), such that as the vaccinated fraction pv is varied, the epidemic severity shows a

non-monotone behavior.

Theorem 39. For the Erdös-Rényi random graph model G(n, p), there exist p, pm,
and pf , such that (i) in the one-sided model, it almost surely holds that the epidemic
severity is o(n) for both pv = 0 and pv = 1, yet Θ(n) for some pv in (0, 1); (ii) in the
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Figure 5.1: Sidedness of risk behavior change: the one-sided and two-sided models.
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Figure 5.2: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25 and
ps = 0.35.

Figure 5.3: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.
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Figure 5.4: Epidemic severity with different intervention success probabilities in one-sided
(left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking
interventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25,
and pm = 0.5.

two-sided model, the epidemic severity is Θ(n) for both pv = 0 and pv = 1, yet o(n) for
some pv in (0, 1).

We give a brief sketch of our proof, which is based on recent results of Söderberg [120]

and Bollobás et al [39] on heterogeneous random graphs. We refer the reader to supple-

mentary information for details. Consider the model of heterogeneous random graphs

denoted by G(N,K, r, c), where (i) K is a positive integer, (ii) r = {r1, . . . , rK} is a prob-

ability vector, (iii) c = (cij) is a K×K matrix, (iv) each node j = 1, . . . , N , is assigned

a type i ∈ {1, . . . ,K} with probability ri, and (v) each pair of nodes i, j are connected

by an edge with probability p(i, j) = cij/N . Söderberg [120] and Bollobás et al. [39]

established the following: (i) if the eigenvalues of the matrix {cijrj} are all less than 1,

it is sub-critical (i.e., has no giant component), and (ii) if some eigenvalue is larger than

1, it is super-critical (i.e., has a giant component) with asymptotically ri(1−fi)N nodes

of type i, where fi satisfies the coupled set of equations: fi = exp
��

j
cijrj(fj − 1)

�
.

We show that if the contact network is generated by the Erdos-Renyi model G(n, c/n),

then the disease transmission process produces a heterogeneous random graph with the

eigenvalue characteristic equation given by

−λ(λ2 − (c(1− pv) + pmcpvpf )λ + c2(1− pv)pmpvpf − c2(1− pv)pvpf ) = 0.

We show the existence of parameters pv, pf , pm, and c such that the absolute value of

every eigenvalue is smaller than 1.
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We find the phenomenon of perversity exists in a broad class of graphs, and in order

to formally prove its widespread occurrence, we consider locally finite graphs, which

have been widely studied in percolation theory (e.g., see [38]). Locally finite graphs

include infinite graphs in which each node has bounded degree. Using techniques from

percolation theory, we prove that in every locally finite graph G, there exist p, pm, and

pf , such that: (i) the epidemic severity is finite for both pv = 0 and pv = 1, yet infinite

for some pv in (0, 1) in the one-sided model; (ii) the epidemic severity is infinite for both

pv = 0 and pv = 1, yet finite for some pv in (0, 1) in the two-sided model. This result

provides strong evidence of the universality of the phenomenon. As such it begs for a

natural and intuitive explanation. Our best structural understanding at this point is

that this is the consequence of two competing tensions – vaccine success that serves to

contain the spread and risky behavior that, exacerbated by vaccine failure, serves to

boost the contagion. In the one-sided situation since it is sufficient for infection spread

to have just the one party in an interaction exhibiting risky behavior we see perversity

manifesting itself at low levels of vaccination. Whereas, in the two-sided situation since

it is necessary for both the interacting parties to exhibit risky behavior we see perversity

manifesting itself only at high vaccination levels which is a prerequisite for a non-trivial

fraction of parties with failed vaccines to exist.

Theorem 40. For every locally-finite infinite graph G, there exist p, pm, and pf , such
that: (i) the epidemic severity is finite for both pv = 0 and pv = 1, yet infinite for some
pv in (0, 1) in the one-sided model; (ii) the epidemic severity is infinite for both pv = 0
and pv = 1, yet finite for some pv in (0, 1) in the two-sided model.

The phenomenon of non-monotonicity and its dependence on sidedness that we have

identified occurs across a wide range of network models.

5.2.1 Proof of Theorem 39

In this section, we give formal proofs of perversity and non-monotonicity in Erdös-

Rényi random graphs. We have observed the non-monotonicity is pervasive in wide

range of contact graphs, including scale-free graphs, Erdös-Rényi graphs, and other

synthetic or real world graphs. Theorem 39 gives the rigorous proof of one-sided model

and two-sided model for Erdös-Rényi random graphs.
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Lemma 41. Given a complete graph as the contact network, for intervention with
any success probability ps, there exists parameter set p, pm, pv, such that there is non-
monotonicity in two-sided risk behavior model.

Proof. When nobody takes interventions, there are n nodes in the graph, and the
disease transmission probability between each pair of nodes is p = c/n, where c >

1. By [60], there is a giant connected component with high probability (size of the
connected component is Θ(n)).

When everybody takes interventions, psn + o(n) nodes will have successful inter-
ventions with high probability, and thus removed from the graph. The remaining
(1− ps)n + o(n) nodes will all exhibit risk behavior changes. Thus, the disease trans-
mission probability between each pair of nodes is pm = c�/(1 − ps)n, where c� > 1.
By [60], there is a giant connected component with high probability (size of the con-
nected component is Θ(n)).

Now we are going to show there exists a pv, such that, if we apply interventions to
each node independently with probability pv, the epidemic severity will be o(n) with
high probability. Let A be the set of nodes that haven’t taken interventions, B be the
set of nodes that have taken interventions but failed, and C be the set of nodes that
have taken interventions and succeeded. rA = 1 − pv represents the probability of a
random node being in set A, rB = pv (1− ps) represents the probability of a random
node being in set B, and rC = pvps represents the probability of a random node being
in set C. In the two-sided model, disease transmits with probability pm between nodes
in set C, and p otherwise. Set a = c and b = c�/ (1− ps). Let

M =




arA arB 0
arA brB 0
0 0 0





This yields a model of inhomogeneous random graphs with 3 types of vertices (A, B,
and C). By [120] Theorem 1, if all the eigenvalues of M are less than 1 in absolute value,
then the size of the largest connected component is o (n). Let λ be the eigenvalues of
M .

det (M − λI) = det




arA − λ arB 0

arA brB − λ 0
0 0 −λ





= −λ
�
(arA − λ) (brB − λ)− a2rArB

�

= −λ
�
λ2 − (arA + brB) λ + abrArB − a2rArB

�
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Solving det (M − λ) = 0, we have

λ1 =
(arA + brB) +

√
∆

2
, λ2 =

(arA + brB)−
√

∆
2

, λ3 = 0

where ∆ = (arA − brB)2 + 4a2rArB. Since |λ3| ≤ |λ2| ≤ |λ1|, it is sufficient to show
there exists a set of parameters that yields |λ1| < 1. Set c� = c.

|λ1| =
(arA + brB) +

�
(arA − brB)2 + 4a2rArB

2

=
c (1− pv) + c�pv +

�
(c (1− pv)− c�pv)2 + 4c2pv (1− pv) (1− ps)

2

= c
(1− pv) + pv +

�
((1− pv)− pv)2 + 4pv (1− pv) (1− ps)

2

= c
1 +

�
((1− pv) + pv)2 − 4pspv (1− pv)

2

= c
1 +

�
1− 4pspv (1− pv)

2

When 0 < pv < 1, 1+
√

1−4pspv(1−pv)
2 is a constant smaller than 1. We can find c > 1

that satisfies c
1+
√

1−4pspv(1−pv)
2 < 1. Thus, for intervention with success probability

ps, there exist parameters pv, p, and pm, such that the epidemic size is o (n). This
completes our proof of this lemma.

Lemma 42. Given a complete graph as the contact network, for intervention with
any success probability ps, there exists parameter set p, pm, pv, such that there is non-
monotonicity in one-sided risk behavior model.

Proof. When nobody takes interventions, there are n nodes in the graph, and the
disease transmission probability between each pair of nodes is p = c/n, where c < 1.
By [60], the size of the largest connected component is O (log n) with high probability.

When everybody takes interventions, psn + o (n) nodes will have successful inter-
ventions with high probability, and thus removed from the graph. The remaining
(1− ps)n + o (n) nodes will exhibit risk behavior changes. Thus, the disease trans-
mission probability between each pair of nodes is pm = c�/ (1− ps)n, where c� < 1.
By [60], the size of the largest connected component is O (log n) with high probability.

Now we are going to show there exists a pv, such that, if we apply interventions to
each node independently with probability pv, the epidemic severity will be Θ (n) with
high probability. Let A be the set of nodes that haven’t taken interventions, B be the
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set of nodes that have taken interventions but failed, and C be the set of nodes that
have taken interventions and succeeded. rA = 1 − pv represents the probability of a
random node being in set A, rB = pv (1− ps) represents the probability of a random
node being in set B, and rC = pvps represents the probability of a random node being
in set C. In the one-sided model, disease transmit with probability p between nodes in
set A, and pm otherwise. Set a = c and b = c�/ (1− ps). Let

M =




arA brB 0
brA brB 0
0 0 0





This yields a model of inhomogeneous random graphs with 3 types of vertices (A, B,
and C). By [120] Theorem 1, if some eigenvalue of M is larger than 1, then the size of
the largest connected component is Θ (n). Let λ be the eigenvalues of M .

det (M − λI) = det




arA − λ brB 0

brA brB − λ 0
0 0 −λ





= −λ
�
(arA − λ) (brB − λ)− b2rArB

�

= −λ
�
λ2 − (arA + brB)λ + abrArB − b2rArB

�

Solving det (M − λ) = 0, we have

λ1 =
(arA + brB) +

√
∆

2
, λ2 =

(arA + brB)−
√

∆
2

, λ3 = 0

where ∆ = (arA − brB)2 + 4b2rArB. Since |λ1| ≥ |λ2| ≥ |λ3|, it is sufficient to show
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there exists a set of parameters that yields |λ1| > 1. Let c = c�.

|λ1| =
(arA + brB) +

�
(arA − brB)2 + 4b2rArB

2

=
c (1− pv) + c�pv +

�
(c (1− pv)− c�pv)2 + 4c�2 pv(1−pv)

1−ps

2

= c
(1− pv) + pv +

�
((1− pv)− pv)2 + 4pv(1−pv)

1−ps

2

= c
1 +

�
((1− pv)− pv)2 + 4pv (1− pv)− 4pv (1− pv) + 4pv(1−pv)

1−ps

2

= c
1 +

�
((1− pv) + pv)2 + 4pv (1− pv)

�
1

1−ps
− 1

�

2

= c
1 +

�
1 + 4pv (1− pv) ps

1−ps

2

When 0 < pv < 1,
1+

q
1+4pv(1−pv) ps

1−ps

2 is a constant greater than 1. We can find c < 1

that satisfies c
1+

q
1+4pv(1−pv) ps

1−ps

2 > 1. Thus, for vaccination with success probability
ps, there exist parameters pv, p, and pm, such that the epidemic size is Θ (n). This
completes our proof of this lemma.

Now we can show the proof of Theorem 39 as follows.

Proof of Theorem 39. We claim the disease transmission process on Erdös-Rényi ran-
dom graph G(n, p∗) with parameter set (p, pm, ps, pv) is the same as the disease trans-
mission process on a complete graph with parameter set (p∗p, p∗pm, ps, pv). It’s simply
because the edge between each pair of nodes “opens” with the same probability in both
random processes. Thus, for any disease transmission process on Erdös-Rényi random
graph, we can reduce it to the corresponding process on a complete graph. Then by
Lemma 41 and 42 we can conclude the statement of this theorem holds.

5.3 Randomized vs. targeted vaccinations

We next report on our finding that targeted vaccination can be strictly worse than

random vaccination for some level of vaccine coverage, and this phenomenon occurs

both for one-sided as well as two-sided behavior change (as shown in Figure 5.5).
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In the literature it has been observed that targeting highly connected individuals for

vaccination lead to better outcomes as opposed to random coverage [127, 55, 35]. Our

finding adds nuance to the existing results when risky behavior is taken into account.

This counterintuitive phenomenon can also be explained by the tug of war between

successful vaccination and risky behavior. If the effect of risky behavior is dominant

then one would expect that targeted vaccination ends up being worse than random

coverage since it is the targeted high-degree individuals that are the most responsible

for creating additional contagion. And, in fact the evidence supports this explanation

in that we see targeted coverage being inferior to random coverage at low levels of

vaccination in the one-sided case but at high levels in the two-sided case.

Figure 5.5: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage
of nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.25,
and ps = 0.35.

5.4 Simulations

In order to validate our findings, we carried out comprehensive simulations over a wide

range of networks, listed in Table 5.1.

The disease transmission is a random process, defined by the parameter set (p, pm, pf , pv).

If a node u becomes infectious, it will infect each of its susceptible neighbors indepen-

dently with probability p, referred as base transmissivity. Each node in the graph is

either vaccinated or not. If a node u is not vaccinated, we label it as UV. If a node u’s
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Table 5.1: Descriptions of the networks used in the paper. For each network we show its
type, name, number of nodes n and edges m.

name n m description
Human con-
tact

NewRiverValley
[29]

74,375 1,888,833 Synthetic human contact network for
New River Valley county in Virginia.

Social commu-
nication

Enron mail [87, 3] 36,691 367,666 Email communication network in a
company.

Peer-to-peer
network

Gnutella [116, 4] 10,876 39,994 Gnutella peer-to-peer file sharing
network from August 2002

Random
graphs

Preferential at-
tachment [28]

100,000 300,000 Generated using Python NetworkX
library.

Erdös and Rényi
[60]

100,000 5,000,000

vaccine fails, we label it as VF. Otherwise, we label it VS. Both UV and VF nodes

are susceptible. If a node with vaccine failure is infected then its risk behavior changes,

resulting in boosted transmissivity pm. In the one-sided model a node infects all its

susceptible neighbors with boosted transmissivity pm, while in the two-sided model it

only infects those neighbors with boosted transmissivity pm that have also had a failed

vaccination. Parameter pv denotes the probability that a node is vaccinated.

In our simulation, every node is labeled with UV, VS, VF with probability 1− pv,

pv(1− pf ), and pvpf , respectively. All nodes labeled VS are removed from the graph.

Each edge (u, v) connecting two surviving nodes u and v is “open”, which corresponds

to disease transmission on this edge, or “close” with some probability depending on

the model - (i) in the one-sided model, edge (u, v) is open with probability p if both

u and v are labeled UV, and is open with probability pm if one of u and v is labeled

VF; (ii) in the two-sided model, edge (u, v) is open with probability p, unless both u

and v are labeled VF. The closed edges are removed from the graph. In the residual

graph, the connected component containing a specific node u is the (random) subset of

nodes infected, if the disease starts at u. Let C1, C2, . . . , Ck be the resulting connected

components, then
�

i
|Ci|2 /n denotes the expected outbreak size of the disease starting

from a random initial node, which we referred as epidemic severity. Since the disease
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transmission is a random process, for a fixed parameter set we run the simulation for

10 iterations, and take the average value of the epidemic severity. We varified that the

epidemic severity is tightly concentrated around the mean, thus the average value of

the epidemic severity is a good measure.

We want to confirm our findings: (i) both one-sided and two-sided behavior changes

can lead to perverse outcomes (less vaccination is more effective, more precisely, as the

vaccinated fraction pv is varied, the epidemic severity shows a non-monotone behavior);

(ii) in both one-sided and two-sided behavior changes, targeted vaccination can be

strictly worse than random vaccination for some level of vaccine coverage. For each

graph, we run simulations over wide range of parameter set (p, pm, pf , pv), and generate

the following 4 sets of plots to validate our findings.

• First set of plots shows how the change of boosted transmissivity will affect the

perverse outcomes, as shown in Figure 5.6, 5.10, 5.14, and 5.18. The x-axis is

pv (percentage of vaccinated population) and the y-axis is the epidemic severity

(expected percentage of nodes getting infected). We fix the base transmissivity

p and the vaccination success probability ps, then plot the curves for different

boosted transmissivity.

• Second set of plots shows how the change of base transmissivity will affect the

perverse outcomes, as shown in Figure 5.7, 5.11, 5.15, and 5.19. The x-axis is pv

and the y-axis is the epidemic severity. We fix the vaccination success probability

ps and keep the boosted transmissivity pm twice the base transmissivity p (i.e.

pm = 2p), then plot the curves for different base transmissivity.

• Third set of plots shows how the change of vaccination success probability will

affect the perverse outcomes, as shown in Figure 5.8, 5.12, 5.16, and 5.20. The

x-axis is pv and the y-axis is the epidemic severity. We fix the base transmissivity

p and the boosted transmissivity pm, then plot the curves for different vaccination

success probability.

• Fourth set of plots shows the finding that targeted vaccination can be strictly

worse than random vaccination, as shown in Figure 5.9, 5.13, 5.17, and 5.21.

The x-axis is pv and the y-axis is the ratio between the epidemic severity under

targeted vaccination strategy and the epidemic severity under random vaccination
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strategy. If y value is bigger than 1, it means targeted strategy is worse than

random strategy. We fix the base transmissivity p and the vaccination success

probability ps, then plot the curves for different boosted transmissivity.

In order to capture real disease transmission through simulations, we find typical

values of R0, the basic reproduction number, for many diseases such as influenza and

HIV [65, 49, 125]. Then, we devide R0 by the average degree of the graph, and use it

as the base transmissivity p. For vaccination success probability, we use the efficacy for

real vaccines [61, 70, 1].

Figure 5.6: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25 and
ps = 0.35.

5.5 Conclusion

In conclusion, risk behavior change in conjunction with failure of prophylactic inter-

ventions can have perverse non-monotone effects on the spread of diseases. This study

has explicitly identified sidedness as an attribute of risk behavior change that needs to

be taken into account in public policies for vaccinations and antiviral treatments. For

one-sided risk behavior change, it is imperative to have sufficiently high levels of cover-

age, while two-sided situations require both high coverage as well as programs aimed at

reducing risky behavior. Our results echo the central premise of Blower-McLean that

the development of efficacious prophylactic treatments and increasing their coverage

need to go hand in hand with behavioral intervention strategies. These issues need to
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Figure 5.7: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.8: Epidemic severity with different intervention success probabilities in one-sided
(left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking
interventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25,
and pm = 0.5.
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Figure 5.9: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage
of nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.25,
and ps = 0.35.

Figure 5.10: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.03 and
ps = 0.35.
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Figure 5.11: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.12: Epidemic severity with different intervention success probabilities in one-
sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes
taking interventions, and y-axis is the expected percentage of nodes getting infected. p =
0.03, and pm = 0.06.
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Figure 5.13: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of
nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.03,
and ps = 0.35.

Figure 5.14: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.15 and
ps = 0.35.

101



5. CONTROLLING NEGATIVE DIFFUSION IN THE PRESENCE OF
RISK BEHAVIOR CHANGES

Figure 5.15: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.16: Epidemic severity with different intervention success probabilities in one-
sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes
taking interventions, and y-axis is the expected percentage of nodes getting infected. p =
0.15, and pm = 0.3.
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Figure 5.17: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of
nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.15,
and ps = 0.35.

Figure 5.18: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.2 and
ps = 0.35.
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Figure 5.19: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.20: Epidemic severity with different intervention success probabilities in one-
sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes
taking interventions, and y-axis is the expected percentage of nodes getting infected. p =
0.2, and pm = 0.4.
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Figure 5.21: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of
nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.2,
and ps = 0.35.

be revisited in the context of new anti-retroviral treatments being considered for HIV

[61].
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