
EUROGRAPHICS 2004 / M.-P. Cani and M. Slater
(Guest Editors)

Volume 23(2004), Number 3

SMARTPAPER: An Interactive and User Friendly
Sketching System

Amit Shesh and Baoquan Chen

University of Minnesota at Twin Cities†

Abstract

This paper describes an interactive sketching system for 3D design/modeling that diverts from the conventional
menu-and-button interfaces of CAD tools. The system, dubbed SMARTPAPER, offers a unified sketching environ-
ment that supports direct sketching as well as gestured sketching with more emphasis on the former to encourage
natural sketching styles. SMARTPAPER also provides a unified 2D and 3D drawing domain by allowing the user
to sketch directly on a 3D model in addition to the usual 2D sketching from scratch. A natural sketching ex-
perience is offered by supporting casual sketching consisting of wiggly, discontinuous, overlapping strokes. The
system is empowered by an array of seamlessly integrated 2D and 3D features such as 2D sketch cleaning, 3D
reconstruction from 2D sketch, 3D transformations, sketching on 3D, and conventional 3D CSG operations like
cutting and joining. The key to the success of SMARTPAPER is efficient and robust 3D reconstruction from a single
freehand 2D sketch with minimal hints. We have employed and improved Lipson’s optimization method, originally
designed for offline reconstruction of engineering drawings, in our interactive system by leveraging additional
clues obtained by interaction during sketching.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Interaction Techniques,
Pen-based Interaction

1. Introduction

Designers in almost all professions use a paper and pencil to
make sketches during the early stages of design. However,
designing by sketches on computer has been quite difficult
because of hardware usability issues. Also, the lack of 3D
geometric information in sketches and the imprecision asso-
ciated with them makes them very difficult to interpret al-
gorithmically. In particular, 3D model reconstruction from a
single projective sketch is a mathematically insoluble prob-
lem.

Considerable research effort has been devoted to pro-
mote design by sketches. Work has been done to
support sketching schematics [GD96] and actual 3D
models in architecture design. Lipson and Shpitalni
[LS00, SL97, LS02, SL96, LS96] generate 3D models from
2D sketches, but their systems are non-interactive in nature.

† Email: {ashesh,baoquan}@cs.umn.edu

SKETCH [ZHH96] represents a fully gesture-based sketch-
ing system, which however, can be unintuitive to use if the
gestures are not carefully designed and are large in number.
Teddy [IMT99] employs fewer and more intuitive gestures,
but it focuses on design of free-form objects. We attempt
to minimize these shortcomings by providing an interactive
sketching system, SMARTPAPER, that is capable of recon-
structing and operating on arbitrary rigid solid geometrical
shapes and is intuitive to use. SMARTPAPER draws inspi-
ration from all the seminal work in sketch recognition men-
tioned above to achieve these goals. The system is imple-
mented on a Tablet PC for a more natural sketching experi-
ence (Figure 1(a)).

We make four significant contributions through SMART-
PAPER. First, SMARTPAPER presents a unified sketching
environment that supports both direct and gestured sketch-
ing, with emphasis on the former. Secondly, SMARTPAPER
gives more freedom to the user by supporting casual sketch-
ing styles, where several overlapping discontinuous strokes

c© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



Amit Shesh & Baoquan Chen / SMARTPAPER

Figure 1: SMARTPAPER at a glance: (a) SMARTPAPER on a Tablet PC, (b) a scene created using SMARTPAPER.

could be sketched. Thirdly, it allows a user to sketch di-
rectly on a 3D model in addition to making a normal 2D
sketch. Fourthly, SMARTPAPER provides a feedback sys-
tem that allows a user to examine the interpretation made and
provide hints accordingly to improve its performance, lead-
ing to greater user satisfaction. In addition to sketch recog-
nition, SMARTPAPER offers a compendium of Computa-
tional Solid Geometry (CSG) operations, synergistically re-
sulting in a practical proof-of-concept system. Also, it em-
ploys non-photorealistic rendering techniques to give the re-
constructed objects a sketchy look. As will become evident
in section 3, from a user interface perspective, the system
combines seamlessly various 2D and 3D operations such 2D
sketching, sketching on 3D, 3D transformations, cutting and
joining.

2. Previous Work

Most sketching systems focus on a particular class of entities
according to their target application areas. Landay and My-
ers [LM95] study the application of sketch recognition in
2D user interface design.Electronic Paper Napkin[GD96]
focusses on schematic diagrams in conceptual design, also
in two dimensions. Teddy [IMT99] aims at design of 3D
free-form objects using sketches. Many sketching systems
[ZHH96, GD96, LS00, SL97, LS02, SL96, LS96] focus on
3D rigid objects. SMARTPAPER generates 3D models of
arbitrary rigid solid objects.

Since sketch recognition and interpretation is a mathe-
matically insoluble problem, most sketching systems offer
users some constrained drawing environment to ease recon-
struction. In the system designed by Tolbaet al [TDM01]
the user iteratively sketches objects on paper, scans them
into the system and aligns them on a provided "perspec-
tive grid". Igarashiet al [IH01] interactively generate sug-
gestions as the user sketches. Although this may result in a
greater recognition accuracy as it is based on selection in-
stead of direct recognition after the sketch is complete, the
frequent suggestions popping up on the screen while the user
is sketching can be distracting. Also, these are rule-based
systems and may not scale well to more general objects. Ges-
tured interfaces like SKETCH [ZHH96] identify gestures

from the input strokes and interpret them according to a fixed
set of rules. The performance of these systems and their ease
of use critically depend upon their ability to design intuitive
and fewer gestures and accurately and faithfully recognize
them respectively. Some systems [IMT99, LB90] allow di-
rect sketching which does offer more flexibility to the user
without having to learn many gestures. SMARTPAPER sup-
ports both direct and gestured sketching and reconstructs 3D
objects from sketchy inputs.

Lipson et al [LS96] present an innovative approach to
sketch reconstruction of 3D rigid objects based on optimiza-
tion. The input is a scanned sketch. The sketch is processed
and converted into a 2D graph. This approach then attempts
to "inflate" the graph by giving suitable Z-coordinates to
each vertex of the sketch, assuming that the drawing sur-
face represents the x-y plane. These coordinates are deter-
mined by optimization based on geometric properties such
as parallelism and perpendicularity of edges and faces es-
timated from the 2D sketch. Sometimes special properties,
such as skewed symmetry, can be leveraged to make the
optimization process faster [PMC03]. Later, Lipsonet al
[LS02] take a learning-based statistical approach in which
correlations between 3D objects and their projections are
set up and are used to identify 3D objects from arbitrary
2D projections. This approach requires considerable prior
learning and works satisfactorily for mechanical engineering
drawings that are more precise in nature. SMARTPAPER
employs an array of modifications to Lipson’s approach in
[LS96] to deliver an interactive sketching system.

The rest of the paper is organized as follows: Section 3
summarizes a typical user experience with SMARTPAPER.
Section 4 provides an overview of the system design, and
Sections 5 and 6 provide details about sketch processing,
representation and reconstruction. Section 7 describes the
feedback system, CSG operations and provides a discussion
on the NPR techniques used in SMARTPAPER. Section 8
gives the implementation details and provides a general dis-
cussion. Finally, Section 9 identifies avenues for future work.

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

Figure 2: Representative features of SMARTPAPER. Shaded figures are 3D objects while others are user sketches, unless
otherwise specified.

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

Figure 3: The processing pipeline of SMARTPAPER.

3. User Session Overview

SMARTPAPER is implemented on the Tablet PC, which cre-
ates an unparalleled paper-and-pencil experience. It presents
a directly sketchable blank window. Alternatively, it can pro-
vide standard templates like a ground or a room as a starting
point for the user. The user can directly begin to sketch on
the window with a stylus. The stylus emulates well a stan-
dard pencil, by enabling the user to erase sketched strokes
with its other end.

The generalthemeof working with SMARTPAPER is to
sketch strokes and then specify what they mean. For exam-
ple, to sketch an object the user places strokes as s/he likes
and then specifies the ”recognize" operation. This allows im-
perfections in all operations requiring sketchy input.

To construct simple objects like pyramids, prisms, frus-
trums, etc. the user can directly sketch them. All edges of
the object must be drawn in this case. But sometimes it is
cumbersome for the user to draw all edges of an object. Ob-
jects that are extrusions of planar profiles can be constructed
by sketching the closed profile and an extruding arrow, as
is illustrated in Figure 2(a). To construct more complicated
objects, the user can employ an incremental process by cre-
ating a simple object, transforming it, sketching directly on
it to augment it and so on. This feature is illustrated in Fig-
ure 2(e). Whole objects may not be constructed in one ses-
sion, making the process truly incremental.

Similar to drawing, a user can cut an object in two ways.
S/he can directly specify how an object will be cut, by
sketching lines on it. Alternatively, the cutting planes can
be specified by drawing an open or closed profile, followed
by an extruding arrow. Both forms of cutting are illustrated
in Figure 2(d).

Two objects can be joined by first positioning them so that
the faces to be joined are visible, sketching a line joining the
two faces and then specifying the join operation. This sticks
the two faces to each other, after which the user can position

them as required and then commit the join operation. An-
choring an object to the ground is a special form of joining,
and can be performed by sketching a line joining the ground
and the face of the object to be kept on it and specifying the
anchoring operation. This is illustrated in Figure 2(c).

Finally, when there are many objects on the screen, an
object can be selected by circling the object to be selected
and pressing the lasso selection button, as illustrated in Fig-
ure 2(b). Figure 2(f) shows how a lamp can be constructed
using all of the above operations. The lamp base and lamp
shade are created by drawing and cutting pyramids. These
parts are assembled together by transformation and joining
to create the lamp. This lamp is a part of a more complex
scene shown in Figure 1(b), which is constructed incremen-
tally.

4. System Overview

The block diagram in Figure 3 shows the processing pipeline
of SMARTPAPER. This pipeline shows operations for
which a sketched input is required, i.e. drawing a new ob-
ject, augment existing ones, and cutting. Point-and-click op-
erations such as joining two objects are not illustrated in this
pipeline.

When a set of strokes and the user command is given, over
tracing and other imperfections are removed, as explained
in Section 5.1. This preprocessing is done on all sketched
strokes irrespective of the operation to be performed. A di-
rect consequence of this is that such sketching imperfections
are allowed while drawing as well as cutting. Any gestures
that are part of the set are recognized when queried.

The top part of the pipeline enumerates the 3D recogni-
tion operation, while the lower part represents the cutting
operation. If the specified operation is 3D recognition, then
2D graphs are formed from the set of strokes (Section 5.2).
A set of valid cycles forming faces of the sketched object is

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

then determined (Section 6.1). 3D-model reconstruction is
then performed by optimization to reconstruct the final 3D
object (Section 6.2). This process can be intervened by user
feedback (Section 7.1). Figure 4 illustrates various steps in
recognition.

If the specified operation is cutting, then ray casting is
used to determine a set of cutting planes (Section 7.2). The
object is then cut resulting in two or more objects.

Our system makes aClosed Object assumptionabout a
drawn object: only solid objects that are homeomorphic to
a sphere can be directly drawn. Objects that are not strictly
closed (e.g. objects with holes) can be constructed by a series
of operations. A series of planes resulting in an open object
cannot be drawn.

This class of objects encompasses all objects that can be
physically constructed, and hence does not impede applica-
tions like architectural design.

Figure 4: 3D reconstruction pipeline: (a) the input rough
sketch, (b) the cleaned 2D graph, (c) the recognized faces,
and (d) the recognized object.

5. 2D Processing

The set of strokes is subject to initial pre-processing. This
process achieves sketch cleaning and represents the strokes
in a consistent format for 3D reconstruction or other opera-
tions.

5.1. Sketch Cleaning

Whenever strokes are drawn either for 3D reconstruction or
cutting, some common preprocessing is done. Two functions
are achieved in this block: over tracing consolidation and
gesture recognition.

Over Tracing

A sketch is often drawn as a series of discontinuous strokes
to illustrate edges (Figure 5). Such over tracing could ei-
ther be done unintentionally, to highlight an edge or to sim-
ply complete an edge. These strokes are grouped together
to form the continuous edge(s) that they collectively repre-
sent. This grouping is achieved in two passes over the set

Figure 5: Examples of over tracing: (a) over tracing done to
complete an edge, (b) unintended over tracing, and (c) over
tracing to highlight an edge.

of strokes. In the first pass, we find pairs of strokes that
qualify as over traced strokes. A pair(A,B) qualifies when
they have nearly equal slopes, and at least one end point
of B lies in the x and y ranges of the end points ofA. Let
A(e1,e2) and B(e3,e4) be the two strokes, and lete3 be
the end point ofB lying in the range ofe1 and e2. Now,
let length(e2,e4) < length(e1,e4). Then B is changed to
B′(e2,e4). At the end of this pass, overlapping segments be-
come segments having one common end point. The second
pass then culls all vertices, all edges incident to which have
nearly equal slope. Thus, for example, if no other edges are
incident one2, A(e1,e2) andB′(e2,e4) form a single stroke
A′(e1,e4). These vertices cannot be removed in the first pass
itself because the incidence ofall edges has to be known
before a vertex can be culled. The over traced sketch in Fig-
ure 4(a) is cleaned and interpreted as Figure 4(b).

Gesture Recognition

SMARTPAPER recognizes standard gestures for gestured
drawing and cutting. Gestures are also sketched and are part
of the input set of strokes. The arrow gesture has been im-
plemented as a proof of concept, and its usage for extrusion
is illustrated in Figure 2(a) and (d). The drawing convention
is to draw an arrow in two strokes, the first being the shaft
and the second being the head, drawn from end to end. The
recognizing and cutting modules query this gesture recog-
nizer for gestures. The set of strokes is then passed to the
recognizing or cutting module, depending upon the opera-
tion specified.

5.2. Graph Generation

Every sketched object is represented as a 2D graph of ver-
tices and edges. A connectivity matrix is maintained for each
object. Each vertex stores (x,y) coordinates.

The set of input strokes is distributed among the existing
set of objects depending on their proximity with the projec-
tion of existing objects in the current viewing plane, as the
user does not explicitly specify whether the strokes specify
new objects or augmentation to existing ones. Strokes that do

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

not augment existing objects create new graphs. Two graphs
are merged if a stroke with one end point in each of the
graphs occurs. If an object is drawn by extrusion, then two
copies of the profile are made and are connected by edges
parallel to the direction of extrusion.

Clustering as mentioned in [SL97] is used to group ver-
tices close to each other in the graph. As edges are added
to the graph, all end points within a distance ofδ from an
existing vertex are grouped with it. This clustering threshold
δ can be changed in the feedback system to allow sketches
with lesser precision (Section 7.1).

To uphold the Closed Object assumption, each vertex
must have degree at least 3. This check is used to clean
unnecessary vertices, which may be created when a single
stroke is incorrectly interpreted as two or more edges due to
its slope. The final representation is a 2D graph with vertex
degree at least 3 and order at least 4. Augmented and newly
sketched objects undergo 3D geometry reconstruction.

6. 3D Geometry Reconstruction

This section encapsulates the functionality for determining
the 3D aspects of each unrecognized object, namely face de-
termination and iterative 3D reconstruction. For the follow-
ing discussion, for a given graphG, V(G) and E(G) rep-
resent the vertex set and edge set ofG, respectively, while
G−e is the sub-graph obtained by deleting the edgee from
G.

6.1. Face Determination

We determine the faces of the object from its representative
graph G as illustrated in Figure 4(c). All faces are cycles of
G; however the converse is not true. Shpitalniet al [SL96]
discusses a face determination algorithm based on an A* or
branch-and-bound search. Their algorithm is too slow be-
cause it performs an exhaustive search on the set of all pos-
sible cycles, and the Closed Object assumption allows us to
formulate a definition which simplifies face determination.
In the definition, graph G represents the 2D graph of an un-
recognized object:

Definition A: All edges of graphG are part of exactly
two faces. Every valid faceF of G is such that for all pairs
v1,v2 ∈ V(G) that are inF, the shortestv1,v2-path inG is
of the same length as thev1,v2-path inF.

Justification: The first statement is a property of closed,
non-laminar, rigid objects. If the second statement is not
true, let P be the shortestv1,v2-path in G and let P′ be
the shorterv1,v2-path in F. There is at least one edge in
P not in P′. PP′ thus creates a smaller closed walk and
hence a smaller cycleC containingv1 andv2. The edge set
E(C)− (E(C)∩E(F)) divides faceF into two or more dif-
ferent planes, which is a contradiction asF is a valid face
and hence is planar.

We propose two algorithms for face determination that di-
rectly determine all valid faces of G instead of examining all
possible cycles of G for validity. While the first algorithm
takes advantage of interactive drawing cues and is fast, the
second algorithm is theoretically more robust albeit slower.

Algorithm 1: Edge Coherence algorithm

Humans draw objects according to how they perceive them.
Often our drawing styles construct the object part by part.
This algorithm examines the sequence S in which strokes
are drawn to search for cycles that form valid faces. Note
that consolidating over traced strokes does not disturb this
sequence, as the earliest stroke in a series of over tracing
strokes is used to determine the order of the consolidated
stroke.

If the object is drawn face by face, then edges of such
faces are adjacent in S and thus, a linear traversal of edges
in their order directly recognizes some faces. If two adjacent
edges in this order do not have a common end vertex, the
algorithm "looks ahead" in S to find an edge connected to
the current edge. Our preliminary tests showed that a look
ahead of 1 was sufficient for simple primitives like prisms,
pyramids, etc. This algorithm works in two passes. Pseudo
code for it is provided in the appendix and is illustrated in
Figure 9. The main advantage of this algorithm is its speed.
The amortized cost of the first pass isO(e), while the sec-
ond pass takesO(e1 · n2) time, where e1 is the number of
edges that are not part of two faces andn is the number of
vertices ofG. The first pass amortizes the second pass de-
pending upon how the object is drawn. This is the default
face determination algorithm in SMARTPAPER.

The speed of this algorithm is due to the fact that humans
intuitively draw objects according to how they perceive them
and not in a completely random fashion. However, this as-
sumption is not theoretically strong. Also, if all the strokes
collectively representing an edge of the object are erased and
redrawn, this order may be disturbed. To improve the per-
formance of SMARTPAPER, we have devised a second al-
gorithm for face determination. This is a theoretically more
robust albeit considerably slower algorithm, but it still di-
rectly determines all valid faces and hence is an improve-
ment over [SL96]. The user can explicitly switch algorithms
as explained in section 7.1.

Algorithm 2: Modified Dijkstra’s algorithm

This algorithm finds all faces for each edge in the graph such
that definition A is satisfied. For every edge e, we remove the
edge from the graph and find a shortest path between its end
points. We employ Dijkstra’s algorithm for this purpose.

We maintain a setR of edges for which all faces contain-
ing those edges have been found. If any edgee′ in this set
shares an end vertex with the current edgee, we mark the
other end vertex ofe′ as traversed. This prevents the Dijk-
stra’s algorithm from finding a shortest path which contains

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

Figure 6: Inflation of sketch by optimization. Upper and
lower rows show how inflation without and with layering
respectively: (a) initial condition, (b) and (c) intermediate
states, and (d) the final object. The colored circles show how
vertices move during inflation.

any edge inR in it. Intuitively, once all the faces of which an
edge is part of have been determined, the edge cannot be part
of any faace determined in future, even if it is on some short-
est path. Thus, this satisfies definition A and hence the algo-
rithm is correct. Pseudo code for the algorithm is provided in
the appendix. The last step in the pseudo code removes any
fictitious "internal" faces as illustrated in Figure 10. Thus,
the algorithm finally produces two faces per edge.

Both algorithms update face lists of objects incrementally.
It is important to note that if a sketch augments an existing
object, only faces containing vertices to which new edges are
incident are determined.

6.2. Iterative 3D Reconstruction

SMARTPAPER uses a modification of the optimization pro-
cess proposed in [LS96], which we summarize here for com-
pleteness. This step "inflates" the planar sketch by assigning
suitableZ-coordinates to each vertex of the graph of the ob-
ject, which are determined using a set of geometric proper-
ties. Some properties used are planarity of faces, parallelism
between edges, etc. The general idea of this method is to du-
plicate the properties available in the 2D sketch in the 3D
object. Each constraint is expressed as a factor relating a 2D
property to a 3D property. A compliance functionF(Z) is
computed for an 3D configuration by summing the contri-
bution of the factors. The final compliance function to be
optimized takes the form

F(Z) = W∑A

whereA is the vector of all factors andW is a weighting
function. This is an n-dimensional optimization problem. We
use Brent’s minimization technique to solve it as a set of
1-dimensional optimization problems by cycling through all
vertices. For a detailed discussion on factors and formulation
of the problem, please refer to [LS96].

A critical issue is the dependence of the result of opti-
mization on the initial guess. If all Z values are initialized

to 0, incorrect local minima are often reached, which is vi-
sually indicated by a deformed or collapsed reconstructed
object (Figure 6 (a) top). The user can provide hints (dotted
lines) in the sketch by specifying hidden edges. If such a hint
is available, then the object is divided into 3 Z-layers. One
layer consists of vertices to which only hidden edges are in-
cident (Z = −10, say), the second layer consists of vertices
to which only visible edges are incident (Z = 10, say) and
a third layer consists of all remaining vertices on silhouettes
(Z = 0) , as illustrated in Figure 6 (a) bottom. This partially
inflates the object and our tests show that this produces a
better initial guess leading to fewer cases of convergence to
incorrect local minima. It is important to note that 3D in-
formation of vertices of existing objects to which new edges
are not incident is retained, and hence 3D reconstruction is
incrementally performed.

The final representation of the object is a graph with aug-
mented 3D information. This representation is similar to a
boundary representation (B-Rep). When the user wishes to
sketch from a new viewpoint, all objects are re-projected
onto the current viewing plane. These projections are used
to determine if strokes drawn augment existing objects or
create new ones, and for object selection.

7. Other Features

7.1. Feedback system

The sketch recognition system may occasionally fail.
SMARTPAPER offers visual feedback for the user to de-
termine the source of error and repair it. The user explicitly
invokes the feedback system. There are two types of feed-
back.

The clustering threshold mentioned in section 5.2 leads
to an incorrect interpretation of the sketch if it clusters too
many or too few vertices. This is possible if the object is
sketched such that different vertices appear too close or if
end points of different strokes meant to be the same vertex
are too far apart. Figure 7(a) shows how a sketch looks if
clustering is wrong. Figure 7(b) shows the result of changing
the threshold value and previewing the changes.

If the order of drawn edges is random, then the edge co-
herence algorithm finds faces incompletely/incorrectly. Fig-
ure 7(c) shows an exploded view of the recognized object
showing incorrect faces. The Modified Dijkstra’s algorithm
can be switched to and results previewed immediately, as
is illustrated in Figure 7(d). Our tests show that most erro-
neous recognitions are caused by the above two miscalcula-
tions and thus, the feedback system is very effective.

7.2. CSG Operations

SMARTPAPER supports limited CSG operations, such as
cutting and joining.

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

Figure 7: Feedback system: (a) incorrect clustering of a
sketch, (b) the correct clustering after the clustering thresh-
old is decreased by moving the slider, (c) incorrectly deter-
mined faces, (d) the correct faces when the Modified Dijk-
stra’s algorithm is selected by checking the option.

Cutting

The user can specify cutting in two ways. A cutting plane
can be directly drawn on the object. Alternatively, an open
or closed profile and an extruding arrow can also be drawn.
Due to the unified preprocessing in the pipeline, over tracing
is allowed in these specifications as well.

Because our representation scheme is similar to B-reps,
the actual cutting algorithm is similar to that proposed in
[Män86]. The user strokes are converted into a 2D graph af-
ter preprocessing. A ray is cast from the eye position into
the scene through both end vertices of each edge. For the
extruding arrow, the shaft edge is used to determine the di-
rection of extrusion by ray casting. A set of cutting planes is
obtained and a set F of faces created by them is determined.
An algorithm similar in idea to that discussed in [Män86]
then completes this operation.

Joining

Two objects can be joined face-to-face by selecting each ob-
ject and then selecting the face that is to be joined to the
selected face of the other. A simple coordinate transforma-
tion "sticks" the two faces together. Now one object can be
translated in the plane of the selected face or rotated about
its normal for positioning. The join operation joins the two
objects after the user commits this positioning. Since objects
are drawn roughly, two faces are seldom congruent to each
other. Therefore the user can choose to deform one of the
selected faces so that it coincides seamlessly with the other
selected face. Alternatively, the user can choose to simply
stick the two faces without deformation. This is desirable
when the two faces are meant to be different in size, like
those of a table top and a rectangular leg while constructing
a table.

7.3. Rendering

Non-photorealistic rendering techniques are employed to re-
tain the sketchy look of an object in order to remind the user
of its ambiguous shape and dimensions [KMM∗02]. We ex-
tend the approach taken by [ZHH96] to render the recog-
nized objects in sketchy styles. The rendering is achieved
in two passes. In the first pass, faces of all objects are ren-
dered as colored polygons and the depth buffer is modified
accordingly. In the second pass, all the edges are rendered
as textured quads with the depth testing turned on. Different
NPR styles are achieved by changing the stroke textures, as
illustrated in Figure 8.

Figure 8: Various NPR styles. The thumbnails below each
figure show the stroke texture used for the corresponding
NPR style.

8. Discussion

SMARTPAPER has been implemented on the Toshiba
Portégé 3500 Tablet PC. The programming has been done
using Microsoft Visual C++ .NET with the Tablet PC SDK
on the Windows XP platform.

SMARTPAPER is a design-by-sketches system for appli-
cations like architectural design. A user meeting and discus-
sion was held with a group of 10 students and one faculty
member from the Department of Architecture. The users ex-
perimented with SMARTPAPER and appreciated its ability
to allow sketching freely without much learning. The idea
of drawing by gestures, which seemed somewhat nonintu-
itive to us initially, found support among our users, due to
which it was incorporated in SMARTPAPER. They found
the Tablet PC environment a very refreshing alternative to
the mouse-based CAD experience that some of them had.
Some suggestions regarding support for architectural draw-
ing conventions were made, which we have striven to incor-
porate in SMARTPAPER.

In summary, SMARTPAPER offers a natural and effec-
tive sketching experience because of its support for natural
drawing styles, easy and intuitive specification of operations,
integrated 2D and 3D drawing domains, active user involve-
ment in 3D reconstruction by providing feedback, and its
implementation on the Tablet PC. This does away with the

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

artificial fully menu-based and mouse operated CAD inter-
face.

9. Future Work

Some limitations and ideas for future work are being worked
upon. Currently, all drawn edges must be straight lines. We
plan to support the drawing of curved objects by recognizing
curves as primitives in strokes and maintaining their charac-
teristics in the 3D reconstruction process.

In order to sketch an object directly the user needs to
draw all edges, whether visible or invisible from the assumed
viewpoint. Drawing by extrusion already circumvents this
problem. We strive to devise methods to relax this constraint
[LB90].

The problem of the optimization procedure reaching a lo-
cal minimum would be investigated further. Alternatives for
minimizing this problem include using genetic algorithms
for solving the optimization, but these are usually very slow.
A few other optimization methods are being experimented
with.

We recognize the power of gestured drawing shown by
existing systems like SKETCH [ZHH96], and plan to in-
vestigate further in this direction while striving to maintain
a balance between direct and gestured sketching. Gestures
will be used to specify geometric properties like parallelism
and perpendicularity in rough sketches to obtain more reg-
ular shapes. For example, a bracket can be drawn between
two edges to show mutual perpendicularity, etc.

The sketch reconstruction and interpretation are critically
dependent on a set of thresholds and constants, like the
clustering threshold. We plan to build a threshold manage-
ment system to maintain individual user profiles and draw-
ing styles through these parameters and dynamically change
them by learning from user sketching styles and habits. This
will make the overall drawing process more adaptive to in-
dividual users. In general, we plan to conduct more compre-
hensive usability studies to improve upon our current inter-
face design. In particular, we wish to make the feedback sys-
tem more intuitive to use and transformation and placement
of objects easier to perform during construction of complex
environments.

In order to focus more on our target application of archi-
tectural design, we plan to incorporate more domain-specific
drawing knowledge obtained from our user sessions. For ex-
ample, architecture designers use construction lines in draw-
ing, which do not have any physical meaning but merely act
as scaffolding to the actual object sketch. We plan to support
the user of such construction lines.

We continue to draw inspiration from Tablet PC devices
and are limited by their hardware capabilities. We plan to
develop more strategies leveraging hardware capabilities for
a better drawing experience as and when these limitations

Figure 9: Edge coherence algorithm: edges are drawn in
order 01-12-23-30-04-45-35-56-62-47-76-71 (a typical way
of drawing a cube). The first pass determines faces 01-12-
23-30 and 04-45-35-03 and partial faces 56-62, 47-71 and
76. The second pass completes these faces.

are minimized by the advent of newer and more powerful
Tablet PC devices.

The ability to draw directly on existing 3D models offers
a plethora of ideas for future design applications. Models of
existing sites obtained from 3D scanning can be used in con-
junction with SMARTPAPER to design buildings directly
in their target sites. Efforts to scan and process such envi-
ronments are being independently pursued by our research
group. We envision SMARTPAPER to be used in such de-
sign applications in future.

10. Acknowledgements

Support for this work includes a University of Minnesota
Digital Technology Center Seed Grant 2003, a Microsoft
Gift, and NSF CAREER ACI-0238486. We thank Dr. An-
drzej Piotrowski for his resourceful comments and evalua-
tion on our system and Dr. Ravi Janardan for his inputs to-
wards design of the Modified Dijkstra’s algorithm.

Appendix

Pseudo code for the Edge Coherence algorithm:

Input: Set of edges in order specified inS

Output: Complete set of facesL and incomplete set of
facesV

Pass 1:

//for each edge e inSif the next edge inSis connected to
it, add in temporary faceF, and ifF is closed, addF to L.

//If next edge inS does not have a common vertex with
e, look ahead”k” steps for such an edge. If such an edge is
found, add in temporary faceF and if F is closed, addF to
L, else addF to V.

Pass 2:

//Construct sub-graphG′, such that V(G′) = V(G)
E(G′) = e : e∈ E(G)andeisnot parto f2 f aces

//For every edgee∈ E(G′), if e = (v1,v2), then find a
shortestv1,v2-path in G′− e. This forms a cycle withe in
G′. If e is now part of two faces, deletee from G′.

c© The Eurographics Association and Blackwell Publishing 2004.



Amit Shesh & Baoquan Chen / SMARTPAPER

Pseudo code for the Modified Dijkstra’s algorithm:

S: Set of edges that are not part of at least 2 facesR: Set of
edges that are part of at least 2 facesM: Matrix having faces
as rows and edges as columns.

//Initialize S to all edges that are not part of at least 2
faces. If a current object is being augmented, this set is a
proper subset of the edge set of the graph.

while Sis not empty do

e∈ S,e= (v1,v2)

//if e′ ∈ Rshares an end vertex withe, then mark end ver-
tices ofe′ as traversed

//Find all edge-disjointv1,v2-paths, markM accordingly.

//TraverseM column-wise and mark all edges are that
are part of more than 2 faces. Then traverseM row-wise
to delete all faces consisting of only marked edges.

G = G−eend while

Figure 10: Modified Dijkstra’s algorithm. The top figures
show iterations. The edge for each iteration is shown by a
bold line. The bottom figure shows how an "internal face"
may arise by first drawing the cube and then augmenting the
pyramid to it.

References

[GD96] GROSSM. D., DO E. Y.-L.: Ambiguous in-
tentions: a paper-like interface for creative de-
sign. InProc. UIST 1996(1996), pp. 183–192.

[IH01] IGARASHI T., HUGHESJ. F.: A suggestive in-
terface for 3d drawing. In14th Annual Sympo-
sium on User Interface Software and Technol-
ogy, ACM UIST 2001(2001), pp. 173–181.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: A sketching interface for 3d freeform
design. In Proc. SIGGRAPH 1999(1999),
pp. 409–416.

[KMM ∗02] KALNINS R. D., MARKOSIAN L., MEIER

B. J., KOWALSKI M. A., L EE J. C., DAVID -
SONP. L., WEBB M., HUGHESJ. F., FINKEL -
STEIN A.: Wysiwyg npr: Drawing strokes di-
rectly on 3d models. InProc. SIGGRAPH 2002
(2002), pp. 755–762.

[LB90] LAMB D., BANDOPADHAY A.: Interpreting
a 3d object from a rough 2d line drawing. In
Proc. IEEE Visualization 1990(1990), pp. 59–
66.

[LM95] LANDAY J. A., MYERS B. A.: Interactive
sketching for the early stages of user interface
design. InProc. SIGCHI 1995(1995), pp. 43–
50.

[LS96] L IPSON H., SHPITALNI M.: Optimization-
based reconstruction of a 3d object from a sin-
gle freehand line drawing.Journal of Computer
Aided Design 28, 8 (1996), 651–663.

[LS00] L IPSON H., SHPITALNI M.: Conceptual de-
sign and analysis by sketching.Journal of AI
in Design and Manufacturing (AIEDAM) 14
(2000), 391–401.

[LS02] L IPSONH., SHPITALNI M.: Correlation-based
reconstruction of a 3d object from a single
freehand sketch.AAAI Spring Symposium on
Sketch Understanding(2002), 99–104.

[Män86] MÄNTYLÄ M.: Boolean operations of 2-
manifolds through vertex neighborhood classi-
fication. ACM Transactions on Graphics 5, 1
(1986), 1–29.

[PMC03] PIQUER A., MARTIN R., COMPANY P.: Us-
ing skewed mirror symmetry for optimisation-
based 3d line-drawing recognition. InProc.
5th IAPR International Workshop on Graphics
Recognition(2003), pp. 182–193.

[SL96] SHPITALNI M., L IPSON H.: Identification of
faces in a 2d line drawing projection of a wire-
frame object. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 18,
10 (1996), 99–104.

[SL97] SHPITALNI M., L IPSON H.: Classification of
sketch strokes and corner detection using conic
sections and adaptive clustering.ASME Jour-
nal of Mechanical Design 119, 2 (1997), 131–
135.

[TDM01] TOLBA O., DORSEY J., MCM ILLAN L.: A
projective drawing system. InProc. I3D Sym-
posium on Interactive 3D Graphics(2001).

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES

J. F.: Sketch: An interface for sketching 3d
scenes. InProc. SIGGRAPH 1996(1996),
pp. 163–170.

c© The Eurographics Association and Blackwell Publishing 2004.


