
Defending Against Large-scale Crawls
in Online Social Networks

Mainack Mondal, Bimal Viswanath, Allen Clement,
Peter Druschel, Krishna P. Gummadi, Alan Mislove†, Ansley Post

MPI-SWS
{mainack, bviswana, aclement, druschel,

gummadi, abpost}@mpi-sws.org

†Northeastern University
amislove@ccs.neu.edu

ABSTRACT
Thwarting large-scale crawls of user profiles in online social
networks (OSNs) like Facebook and Renren is in the interest
of both the users and the operators of these sites. OSN users
wish to maintain control over their personal information,
and OSN operators wish to protect their business assets and
reputation. Existing rate-limiting techniques are ineffective
against crawlers with many accounts, be they fake accounts
(also known as Sybils) or compromised accounts of real users
obtained on the black market.

We propose Genie, a system that can be deployed by OSN
operators to defend against crawlers in large-scale OSNs.
Genie exploits the fact that the browsing patterns of honest
users and crawlers are very different: even a crawler with
access to many accounts needs to make many more profile
views per account than an honest user, and view profiles of
users that are more distant in the social network. Experi-
ments using real-world data gathered from a popular OSN
show that Genie frustrates large-scale crawling while rarely
impacting honest users; the few honest users who are af-
fected can recover easily by adding a few friend links.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection

General Terms
Security, Design, Algorithms

Keywords
Sybil attacks, social networks, network-based Sybil defense

1. INTRODUCTION
Online social networking sites (OSNs) like Facebook, MyS-
pace, and Orkut have the personal data of hundreds of mil-
lions of users. OSNs allow users to browse the (public) pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

files of other users in the network, making it easy for users
to connect, communicate, and share content. Unfortunately,
this functionality can be exploited by third-parties to aggre-
gate and extract data about millions of OSN users. Once
collected, the data can be re-published [20], monetized, and
mined in ways that may violate users’ privacy. For instance,
it has been shown that private user attributes like sexual
orientation can be inferred from a user’s set of friends and
their profile attributes [20, 29]; a third party with access to
aggregated user data could easily apply these techniques.

These third-party aggregators, which we refer to as
crawlers, represent a significant problem for OSN site op-
erators as well. User data provides OSN operators with a
revenue stream (e.g., via targeted advertisements); stopping
crawlers is therefore in the OSN operators’ business inter-
ests. Additionally, OSN operators cannot ensure that data
collected by a third party is used according to the operator’s
privacy policy. Yet, OSN operators are likely to be held re-
sponsible if crawled data is used in ways that violate the
policy, at least in the court of public opinion. For example,
Facebook was widely blamed in the popular press [12] when
a single crawler gathered public profiles of over 100 million
users [20]. Thus, OSN operators need effective mechanisms
to thwart large-scale crawling of OSN sites [40]1.

Today, OSN operators typically limit the rate at which a
single user account or IP address can view user profiles [41],
in order to discourage large-scale data collection. Unfortu-
nately, crawlers can circumvent these schemes by creating a
large number of fake user accounts [3], by employing bot-
nets [21] or cloud services [8] to gain access to many IP
addresses, or by using the compromised accounts of a large
number of real users [1].

In this paper, we propose Genie, a system that OSN op-
erators can deploy to limit large-scale crawlers. Genie lever-
ages the differences in the browsing patterns of honest users
and crawlers to effectively thwart large-scale crawls of user
profiles. Genie’s design is based on the insight that hon-
est users tend to view the profiles of others who are well
connected and close in the social network. A crawler, on
the other hand, is limited in his ability to form or control
enough links to be close to all users whose profiles he wishes
to view. Genie exploits this fact by enforcing rate limits in

1Not all large-scale crawls are for nefarious purposes. Re-
searchers, for instance, already tend to obtain the consent
of the OSN operator before doing their crawls for research
purposes (e.g., [9, 22]); such authorized crawlers can be
whitelisted even if a defense is in place.

a way that is sensitive to the distance and degree of connec-
tivity between viewer and viewee.

Using profile view data from RenRen, a Facebook-like
OSN that is popular in China [39], we observe that average
social network distance between honest users and the pro-
files they view tends to be low (1.62 social network hops).
We demonstrate that a crawler, on the other hand, would re-
quire a very large number of well-distributed accounts (e.g.,
controlling 3% of all existing accounts in OSN) to be able
to view the profiles of all users while maintaining the same
low average distance.

Genie works by deriving a credit network [10,14,15] from
the social network. In brief, credit is associated with links in
the social network, and a viewer must “pay” credits to the
viewee, along a path in the social network, when viewing
a profile. Compared to conventional per-account or per-IP
address rate-limiting, credit networks offers two key advan-
tages. First, in a credit network, the rate limits are asso-
ciated with social network links rather than user accounts
or addresses. As a result, a crawler gains little by creat-
ing many Sybil accounts or using many IP addresses [22].
Second, the greater the distance between viewer and viewee
in the social network, the stricter the rate limit is imposed
by the credit network on profile views. Consequently, even
crawlers with access to a relatively large number of compro-
mised user accounts are unable to crawl the network quickly.

The contributions of this work are as follows:

• We analyze profile viewing data from the Renren so-
cial network and show that the average distance in the
social network between a honest viewer and a viewee is
significantly smaller than that of a crawler. Moreover,
a crawler interested in crawling the entire social net-
work is fundamentally unable to blend in with honest
viewers unless he controls a very large proportion of
strategically positioned user accounts.
• We present the design of Genie, which leverages credit

networks derived from the already-existing social net-
work to block large-scale crawling activity, while al-
lowing honest users’ browsing unhindered.
• We demonstrate the feasibility of deploying Genie

with an evaluation using large partial social network
graphs obtained from Renren, Facebook, YouTube,
and Flickr, and a mix of real and synthetically gen-
erated profile viewing traces. We demonstrate that
Genie effectively blocks crawlers while the impact on
honest users is minimal.
• We show that Genie can scale to networks having mil-

lions of nodes by scaling up credit network operations.
Thus, Genie is practical on the large OSNs of today.

2. RELATED WORK
In this section, we describe relevant prior work on limiting
large-scale crawls of OSNs and leveraging social networks to
defend against Sybil attacks.

Limiting large-scale crawlers There exist a number of
techniques that aim to prevent crawls of web services. Two
techniques commonly used in practice are robots.txt [4],
and IP-address- or account-based rate limiting [18,38,46].
robots.txt is a file stored at the web server that indicates

a set of pages that should not be crawled. Compliance with
this policy is voluntary; robots.txt consequently provides
little defense against malicious crawlers.

Large websites like Yahoo! often rely on a simple per-IP-
address rate limit to control access to their web services [38].
Each IP address is allocated a maximum number of re-
quests, which are replenished in 24 hour intervals. Once a
user exceeds this limit, the operator either stops serving the
user or may require that the user solve a CAPTCHA [5].
This approach limits the number of views a crawler can
perform from an individual IP address, but is not effec-
tive against botnets that control many IPs. Additionally,
dedicated crawlers can bypass defenses like CAPTCHA us-
ing available CAPTCHA-solving service providers [32], and
other schemes exist that can bypass IP-address-based rate-
limiting approaches [8,16].

Online social networks like Facebook, Google Plus or
Twitter [18, 41, 46] often use account-based rate limits on
requests to view profile pages. Similar to IP-based rate lim-
its, this approach works well if crawlers control at most a
small number of accounts; in the face of Sybils or compro-
mised accounts, it is not effective.

Wilson et al. proposed SpikeStrip [52], a system designed
to discourage OSN crawlers. SpikeStrip uses cryptography
to make information aggregation from OSN websites ineffi-
cient. SpikeStrip rate limits the number of profile views al-
lowed per browsing session and prevents different browsing
sessions from sharing data. Thus, crawlers cannot aggregate
or correlate data gathered by different sessions.

Despite its elegant design, SpikeStrip restricts the func-
tionality of the OSN. For example, SpikeStrip does not allow
two OSN users to share website links of a common friend.
Moreover, SpikeStrip would require OSNs like Facebook to
change the way they use content distribution networks like
Akamai to serve users’ content. Unlike SpikeStrip, Genie
does not affect the OSN functionality or content distribu-
tion. As we will show later, Genie can be deployed with
minimal disruption to the browsing activities of honest users.

Social network-based Sybil defenses Recently there
have been proposals to leverage social networks to defend
against Sybil attacks [11,28,35,37,44,45,53,54].

Sybil defense proposals such as SybilLimit [53] or Sybil-
Infer [11] try to detect Sybils in the network and then block
them from the service. However these Sybil detection mech-
anisms are not designed to address compromised accounts.
Additionally, recent work has shown that these Sybil detec-
tion schemes suffer from limitations due to assumptions they
make concerning the structure of the social network [30,50].

The design of Genie borrows credit network [10, 14, 15]
techniques from Sybil-tolerant [48] systems like Ostra [28]
and Bazaar [35], and uses Canal [49] to manage credit net-
work operations. In contrast to Sybil detection schemes,
Sybil tolerant systems do not aim to detect Sybil users; in-
stead they minimize the impact of Sybils on honest users.

Genie differs from existing Sybil tolerant systems in two
fundamental ways: First, Genie considers crawlers that have
access to both Sybil and compromised accounts; previous
work considered only Sybil attacks. Second, unlike Ostra
and Bazaar (which rely on users to provide feedback on
whether a communication is spam or whether a transaction
is fraudulent), Genie infers whether or not activity is ma-
licious by exploiting differences in the browsing patterns of
crawlers and honest users.

3. SYSTEM AND ATTACK MODEL

3.1 System model
OSN sites such as Facebook, Renren [39], Google+, and
Orkut share a common system model: Users create accounts,
establish friend links with other users, and post content (of-
ten of a personal nature). Users have a “home page” on the
OSN that links to all of the user’s content; we refer to this
as the user’s profile. The graph formed by the entire set of
friend links forms a social network. In the OSNs of inter-
est to us, forming a friend link requires the consent of both
users.

Users can typically choose to make their data private (i.e.,
visible only to the user and the site operator), public (i.e.,
visible to every user of the social network), or semi-public

(i.e., visible to subsets of the user’s friends or to friends of
user’s friends). In practice, many users choose to make their
profile information public [24], despite the private nature of
some of the information posted. Contributing to this choice
may be that sites encourage public sharing [43], that the
default privacy setting is “public” [36], that other privacy
choices are not always intuitive [42], and that many users
are not fully aware of the privacy risks [24]. It is these public
profiles (that typically represent a large fraction of all user
profiles [23]) that Genie is concerned with protecting.

3.2 Attack model
Today, social networking sites tend to impose a rate limit
on the profile views a single user can request, in order to
slow down crawlers. However, there are two ways in which
a crawler can overcome these limits.

A crawler can conduct a Sybil attack by creating multiple
user accounts, thereby overcoming the per-user rate limit.
It is important to note that while the crawler can create an
arbitrary number of links between Sybil accounts he con-
trols, we assume that his ability to form links between his
Sybil accounts and honest users is limited by his ability to
convince honest users to accept a friend link, regardless of
how many user accounts he controls. The significance of this
point will become clear in the following section, where we
describe how Genie leverages social links to limit crawling
activity.

A crawler can also conduct a compromised account attack

by taking control (e.g., by obtaining the password) of exist-
ing accounts in the system. The crawler can gain access to
such accounts via phishing attacks, by guessing the user’s
password, or by purchasing the credentials of already com-
promised accounts on the black market. A compromised
account attack is more powerful than a Sybil attack, be-
cause every additional compromised account increases the
number of links to honest users that the crawler has access
to. Again, the significance of having access to such links will
become clear in the following section.

We assume that a crawler with access to compromised ac-
counts cannot compromise the accounts of strategically po-
sitioned users of his choosing. Defending against a crawler
who can access any account of his choosing would require
preventing social engineering attacks, which are outside Ge-
nie’s attack model. Instead, we assume that compromised
accounts are randomly distributed throughout the network.
Additionally, we assume that the crawler does not actively
form new links involving compromised accounts, as such ac-

tivity would likely alert the actual owner of the account that
their account has been compromised.

We are concerned about attacks where the crawler greedily
attempts to gather as many distinct user profiles as possi-
ble. We assume that the crawler is agnostic to which users
he crawls. Our crawler model captures both third-party
crawlers [2] as well as research-oriented crawlers (e.g., used
in studies of Facebook [22], Flickr [27], and Twitter [9]).
However, our model excludes some crawlers that may be
interested in repeatedly crawling the accounts of a small
subset of users over an extended period of time, perhaps
to gather their changing profile information. We make no
assumptions about the crawler’s strategy, i.e., whether the
crawler employs random walks or BFS or DFS to fetch user
profiles. Consequently, we simulate attacks employing the
strategy that optimizes for the crawler’s goal of fetching as
many distinct user profiles as possible.

4. WORKLOAD ANALYSIS
In this section, we compare profile viewing workloads of hon-
est users and crawlers. In later sections, we show how Genie
can exploit the differences in the browsing behavior of hon-
est users and crawlers to rate-limit crawlers, while rarely
affecting honest users.

4.1 Honest users’ profile viewing workload
We obtained anonymized user profile browsing data [22]
from the RenRen social network [39], a Facebook-like social
network that is popular in China. The data covers users
in RenRen’s Peking University (RR-PKU) network, and in-
cludes the links between PKU users and all other RenRen
users. We pre-processed the social network and browsing
trace to only include the subgraph of the PKU users, and
then extracted the largest connected component (LCC) from
the social network. Similar to prior work [28, 49], our anal-
ysis only examines users in the LCC (representing 91.2% of
the users and 94.3% of the links from the pre-processed net-
work). The LCC of the RR-PKU network has 33,294 users
and 705,248 undirected links.

The data set also includes a trace of all profiles (both
friends and non-friends) that each user browsed during a
two-week period during September, 2009. Unfortunately,
the RenRen trace does not provide timestamps or an or-
dering for profile views. Therefore, in experiments where
we need the profile views to be ordered, we generate a time
series by assigning each profile view a timestamp chosen uni-
form randomly within the two-week period covered by the
trace. This time series was used in all analyses conducted
in the paper. We highlight our key findings below.

1. Most users make (receive) few profile views, but a
small number of users make (receive) a large num-
ber of views. Figure 1 shows the distribution of profile
views made and received by individual users in the RR-
PKU network. The plots show a considerable skew in the
distributions: Most (> 90%) users make or receive fewer
than 10 views, while a handful of users (< 0.4%) view 50
or more profiles. In particular, there are three users who
viewed 1,827, 612 and 272 profiles (respectively) over a pe-
riod of two weeks. These users show significant crawler-like
behavior, and we return to discuss these users in Section
6.4. Thus, most users in the social network tend to make

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

0 1 10 100 1000

C
o

m
p

le
m

en
ta

ry
 C

D
F

Number of views

Requested
Received

Figure 1: Complementary cumulative distribution
of the number of profile view requests made and re-
ceived by RR-PKU users during a two-week period.

or receive views from a small number of other users in the
network.

2. The number of profile views made (received) by
users is significantly correlated with their degree.
The Pearson correlation coefficients between the rankings
of users ordered based on the number of views they make
(receive) and their degree is 0.67 (0.5). The high correlation
coefficient affirms the intuitive hypothesis that users who
are more active in the social network would also have more
friends in the network. This finding is consistent with the
profile browsing behavior previously studied in Facebook [6]
and Orkut [7].

This observation suggests that the imbalance in user ac-
tivity (defined to be the difference between the number of
profile views made and received by a user, divided by their
degree) would be tightly bounded. We find this to be true:
over 99.9% of users have an imbalance lower than 10, with
a median value of 0.05.

3. Not all profiles views are unique; a small but
non-trivial number of views are repeated. Users tend
to repeatedly visit the profiles of others to track updates. In
our two-week trace, we found 17,307 (17.8%) of the profile
views to be such repeat views. Our estimate of the fraction
that repeat views represent is likely to be conservative, as
we are restricted to a two-week trace. (One would expect
the percent of repeat views to increase with the length of the
workload trace.) However, the implication of the presence
of repeat views is that repeat views decrease the number of
distinct profiles viewed by users. For crawlers, repeat views
represent sub-optimal use of resources, as their goal is to
view the profiles of as many distinct users as possible.

4. Users tend to make (receive) profile views of oth-
ers who are within their immediate (1 or 2-hop) net-
work neighborhood. Figure 2 shows the distribution of
network distance, measured in terms of hops, between the

Network Users Links Average degree
RR-PKU [22] 33,294 705,262 21.2
Facebook [47] 63,392 816,886 25.7
Youtube [27] 1,134,889 2,987,624 5.2
Flickr [26] 1,624,991 15,476,835 19.0

Table 1: Number of users, links, and average user
degree in the large-scale social networks used to
evaluate Genie.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

C
D

F

Hop length

Figure 2: Cumulative distribution of hop distance
separating viewers and viewees in RR-PKU net-
work. The profile viewing activities are highly local.

viewers and viewees in our RR-PKU trace. We observe that
over 80% of all profile views are between users who are sep-
arated by no more than two hops. This observation is con-
sistent with prior studies of the Orkut social network [7], as
well as studies of friendship formation in the Flickr social
network [26].

Our analysis considers only a single network, due to the
difficulty in obtaining detailed profile viewing data. How-
ever, we note that many of our findings are consistent with
prior studies of other social networks [6,7,26,51], suggesting
that our RenRen data is likely to be representative of other
social networks.

4.2 Crawlers’ profile viewing workload
We now turn to examining the workload that a crawler
would generate when run on the RenRen network from the
previous section and three others: the Facebook New Or-
leans regional network [47], YouTube [27], and Flickr [26].
Table 1 provides more details on the number of users, links,
and average degree in these networks.

We simulate crawlers of varying strength by allowing
crawlers to “compromise” 1, 10, 100, and 1,000 randomly
chosen users within the network. Table 2 shows the num-
ber of links that connect user accounts under the crawlers’
control to honest users in the different graphs. Note that
while a crawler with 1,000 compromised accounts might not
seem particularly strong, it is important to consider the size
of the networks. For example, the crawler controlling 1,000
accounts controls around 0.1% of all users in the YouTube
network. As a point of reference, this would be equivalent
to controlling 1,000,000 compromised accounts in the real-
world Facebook network.

To generate the crawling workload, we implement the fol-

Number of compromised accounts
Network 1 10 100 1000

RR-PKU [22] 26 415 3,638 14,938
Facebook [47] 13 237 2,123 15,970
Youtube [27] 6 26 592 4,129
Flickr [26] 5 613 2,242 16,015

Table 2: Strength of crawlers in different social
graphs. Each column corresponds to specific num-
ber of random compromised accounts, and the corre-
sponding number of attack links in different graphs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Hop length

1 account
10 accounts

100 accounts
1000 accounts

Figure 3: Cumulative distribution of the distance of
crawler profile views in Flickr with different num-
bers of compromised accounts. To fully mimic the
high locality in honest user views the crawlers have
to control more than 1,000 compromised honest user
accounts.

lowing strategy for the crawler: We assume that all crawler’s
accounts collude to view profiles of all honest users in the
network. Each honest user is viewed only once, and the
crawler’s account nearest to an honest user will be assigned
the task of viewing that user’s profile. This strategy maxi-
mizes locality in profile views, making the crawler’s workload
look as “close” to the honest users’ workload as possible.

We now compare the resulting crawler workload with that
of honest users, noting two important differences.

1. In contrast to honest users’ workload, profile
views by crawlers are highly non-local. Figure 3 and
Figure 4 shows the locality in profile visits by crawlers with
different attacking capacities for the Flickr and Facebook
graphs (the other graphs show similar behavior and are
removed for brevity). For large network graphs like the
Flickr and YouTube samples, we observe that even a pow-
erful crawler with 1,000 accounts has only a small fraction
(less than 30%) of requested profiles within the 2-hop neigh-
borhood of the users under his control. For small network
graphs like the Facebook and RenRen samples, the crawler
does have a majority of users (around 80-90%) within a 2-
hop neighborhood. However, in these networks, 1,000 com-
promised accounts represent 3% of all users; considering that
controlling 3% would require controlling 29 million user ac-
counts in the current complete Facebook network, this is a
very powerful attack indeed.

Overall, the results indicate that to mimic the high local-
ity in profile views for honest users, crawlers would funda-
mentally have to control a very large fraction of all accounts.

2. In contrast to honest users, crawlers request
many more profile views than they receive. We ob-
serve that the median imbalance per link in profile views
is 8.3 for a crawler with 100 user accounts, compared to
honest users’ median imbalance of 0.05. Such an imbalance
is necessary, as even with 100 accounts, the crawler makes
significantly more profile views that an honest user. In the
next section, we present a system design that exploits these
differences in browsing patterns of honest users and crawlers.

5. GENIE DESIGN
In this section, we present the design of Genie, analyze its
security properties, and discuss how Genie can be used to
maliciously deny service to honest users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Hop length

1 acc
10 acc

100 acc
1000 acc

Figure 4: Cumulative distribution of the distance
of crawler profile views in Facebook with different
numbers of compromised accounts.

5.1 Strawman
To motivate the need for Genie’s more elaborate approach,
we briefly consider a simple distance-based rate-limiting
technique as a strawman design, and show that it is inef-
fective against Sybil crawlers. We know from Section 4.1
that honest users rarely view profiles outside their neighbor-
hood social graph, whereas the crawlers have to view distant
profiles. Our strawman uses distance based rate limiting to
leverage this finding.

In the strawman design each user account is allowed to
view user profiles at a maximal rate r, where viewing a pro-
file K hops away counts as viewing K − 1 profiles. (Thus,
viewing a friend’s profile is not subject to rate-limiting.) The
scheme discriminates heavily against crawlers, who tend to
view distant profiles. However, just like the existing rate-
limiting schemes discussed in Section 2, this design is vul-
nerable to Sybil attacks. A crawler can simply create more
Sybil accounts to overcome the per-account rate limit. The
same would be true for any per-account or per-IP-address
rate-limiting approach, no matter how much it discriminates
against workloads typical of crawlers.

To summarize, if the profile viewing privileges are assigned
based only on the viewing user, then a crawler can view
more profiles simply by creating additional Sybils. Instead,
Genie attaches the profile viewing privileges to paths in the
network, rather than users, as we describe in the following
section.

5.2 Genie design overview
Now, we present the design of Genie. Genie relies on a
credit network [14,15] to make sure Genie’s rate limits can-
not be circumvented by using more Sybil accounts. More-
over, Genie uses the credit network to impose rate limits
that discriminate against a crawlers’ workload, in order to
slow down powerful crawlers that use many compromised
user accounts.

A credit network is a directed graph G = (V,E), where
each edge (u, v) ∈ E is labeled with a scalar credit value
cuv ≥ 0. Each node in Genie’s credit network corresponds to
an OSN user and there is a pair of directed edges (u, v), (v, u)
in the credit network iff the users u, v are friends in the OSN.
Genie allows user s to view user t’s profile information iff the
max-flow between s and t in the credit network is at least
f(dst), where f is a non-decreasing cost function, and dst is
the length of the shortest path between s and t in the social
network.

Thus Genie computes the amount of credit charged for

B

C

D

1

1

3

1

2 1

(a)

A
3

4
B

C

D

0

2

2

2

3 0A
1

6

(b)

Figure 5: Example of Genie on a small credit net-
work. (a) User A wishes to view D’s profile; let us
assume this costs two credits. No single path has
two credits available, so both A → B → C → D and
A → B → D are debited 1 credit. (b) The state of
the credit network afterwards; note that intermedi-
ate nodes B and C maintain the same total credit
available, as debiting from one link automatically
adds credit to the opposite link.

a profile view based on the shortest path length between
the viewer and viewee. However, the credits can actually
be exchanged over any set of paths between the viewer and
viewee. For example, Figure 5 (a) shows an example of Genie
in a small network, where user A wishes to view D’s profile.
A is charged based on the shortest-path distance (two hops)
to D, but the credits may be exchanged over a set of longer,
different paths.

If the view is allowed, then the credit value on each link
(u, v) on each path pi that comprises the flow is reduced by
cpi ; the credit on each link (v, u) is correspondingly increased
by cpi , where cpi ≤ f(dst). An example of this credit adjust-
ment is presented in Figure 5 (b). It is worth noting that
Genie rejecting a profile view request does not necessarily
mean the operator must block the user making the request;
Genie merely flags individual views as suspicious. How the
provider responds is a matter of policy—normally, the OSN
operator provider would deny or delay the view, effectively
slowing down the suspected crawler’s activity, but not block
the user permanently.

The net effect of this transaction should be that the viewer
has f(dst) fewer credits available while the viewee has f(dst)
more credits available for future activity. If j is an interme-
diate user on one of the paths pi then the total number of
credits available to intermediate user j is unchanged, though
the distribution of credit among links adjacent to j is dif-
ferent. As long as user j is well connected and can reach
other users through any adjacent link, the change in credit
distribution is unlikely to impact the user [10]; if j is not
well connected, then attempted views may be flagged due
to a lack of liquidity.2

Social networks exhibit a very high degree of connectivity,
ensuring good liquidity in the credit network for most users.
New users, inactive users, or small fringe communities that
have not (yet) established strong connections to the rest of
the network may have issues with liquidity. We will consider
this issue in more detail in Section 6.

Genie leverages three key characteristics of honest user
activity identified in Section 4 to thwart large-scale crawlers.

2Liquidity in the context of credit networks is defined as the
capacity to route credit payments [10].

Leveraging unbalanced view ratios We observed in Sec-
tion 4 that honest users have a balanced ratio of views re-
quested to views received, while crawlers issue many more
views than they receive. Genie allows a user to use credits
obtained by being viewed to perform views in the future.
This ensures liquidity amongst honest users with balanced
activity ratios while draining credits from crawlers.

Because honest users do not have a perfect balance of
views, even honest users run the risk of eventually exhaust-
ing all of their credit. To address this concern, Genie rebal-
ances the credits on a pair of links (u, v), (v, u) at a fixed
rate rb. For example, this can be implemented by dividing
time into intervals, and at the beginning of each interval

cuv ← cuv −
rb
2
(cuv − cvu)

cvu ← cvu + rb
2
(cuv − cvu)

where 0 < rb ≤ 1.

Leveraging different path lengths Honest users tend to
view profiles of other users that are nearby in the social net-
work; crawling a significant fraction of the social network re-
quires crawlers to view users who are disproportionately far
from the crawler in the social network. Genie discriminates
against crawlers by charging more credits to view distant
users. The cost, in credits, to view a user that is distance
dst away in the social network is defined by the simple cost
function f(dst) = dst − 1.

Leveraging repeated views Honest users repeatedly view
the same subset of profiles in the network; crawlers eschew
repeat views unless they are re-crawling the network to track
changes. Genie does not charge for repeat views that occur
within a given time period. If user s views the profile of
user t within T days of when s was last charged for viewing
t then s is not charged for the profile view; if more than T

days have elapsed then s is charged as normal. A typical
value of T would be on the order of months.

5.3 Security properties
We now describe the security properties provided by Genie.

Let C ∈ V be the set of user accounts controlled by the
crawler and H = V \C be the set of user accounts not con-
trolled by the crawler (i.e., the honest users). The crawler’s
goal is to view the profiles of all users in H as quickly as
possible. (He can trivially obtain the profiles of users in C.)

We call a link (c, h) in the social network an attack link if
c ∈ C and h ∈ H . The cut separating C and H (i.e., the set
of attack links) is called the attack cut.

To determine the rate rc at which a crawler can view pro-
files in H , we need only consider the attack cut, because all
of the crawler’s views have to cross this cut. Profile views
within H or within C are irrelevant, because they must cross
the attack cut an even number of times, and do not change
the credit available along the cut.

The rate rc is determined by the following factors:

• A, the size of the attack cut (number of attack links):
a powerful crawler has a large attack cut.
• dh, the average OSN distance for honest profile views.
• dc, the average OSN distance between users in H and

the corresponding closest user in C.
• rc, the expected rate of profile views received by users

in C from users inH : per our threat model, the crawler
has little control over this rate, and we can conserva-

tively assume that it is the same as the expected rate
of views received by a user in H .
• rb, the rebalancing rate.
• f , the view cost function.

Using f(d) = d− 1, the maximal steady-state crawling rate

rc = A
rb + rc(dh − 1)

dc − 1

The numerator is the crawler’s “income”, the rate at which
he can acquire credits. The denominator is the crawler’s
“cost”, in credits, per profile view. As we can see, the maxi-
mal crawling rate increases linearly with the number of at-
tack links, at a slope defined by the second term. A larger
rb, rc or dh increases, a larger dc decreases the slope.

The credit network effectively makes the power of a cor-
rupted account attack proportional to the number of ac-
quired attack links.

A crawler can increase the crawling rate by obtaining ad-
ditional attack links, which are difficult to obtain in large
quantities. Obtaining an attack link requires forming a so-
cial link with a user not already controlled by the crawler,
or compromising a user account that has social links with
users not already controlled by the crawler. Creating more
user accounts by itself is ineffective, because it does not
yield new attack links. As a result, the credit network ren-
ders Sybil attacks as such ineffective. Additionally, pur-
chasing many compromised accounts is unlikely to provide
the attacker with much additionally crawling ability: many
accounts available in underground marketplaces have been
observed to not be well connected users, but rather poorly
connected users on the fringes of the OSN [33].

5.4 Potential for denial-of-service attacks
Credit exhaustion is a key concern for any credit network-
based system where a crawler can consume credits to pre-
vent honest user activity. In the context of Genie we con-
sider two distinct resource exhaustion attacks: First, can
a crawler prevent honest users’ profile views from taking
place? Second, can a crawler target weakly-connected hon-
est users from viewing other profiles or from being viewed?
Due to space constraints, we can only summarize the re-
sults of our analysis; details can be found in a technical
report [31].

A crawler would have to be quite powerful to be able to
have a noticeable effect on cuts through the core of the net-
work, which would be necessary for the crawler to impact
large numbers of users. However, a modestly strong crawler
can impair users in small fringe communities. However, such
users can respond by forming additional links to the core of
the network.3 We will further explore the impact of crawlers
on honest users empirically in Section 6.

6. EVALUATION
In this section, we evaluate the performance of Genie over
several different social networks. When evaluating Genie’s
performance, we focus on the two primary metrics of inter-
est: (1) the time required for a crawler to crawl a Genie-

3Recall our assumption that a crawler cannot compromise
the accounts of specific users of his choosing. If a crawler
were able to do this, he could target weakly connected users
or small communities very effectively.

Network Users Profile views
RR-PKU [22] 33,294 77,501
Facebook [47] 63,392 98,960
Youtube [27] 1,134,889 984,425
Flickr [26] 1,624,991 1,703,831

Table 3: Statistics of synthetic profile view work-
loads generated for different networks.

protected network and (2) the amount of honest users’ ac-
tivity flagged by Genie.

6.1 Datasets used
To evaluate the performance of Genie, we need four datasets:
(i) a social network graph, (ii) a time-stamped trace of hon-
est users’ profile views in the form of (X,Y, t) where user
X views user Y ’s profile at time t, (iii) a crawler’s topol-
ogy (i.e., how the user accounts controlled by the crawler
are embedded in the network), and (iv) the crawler’s profile
crawling trace.

Social network graphs We evaluate the performance of
Genie on social network graphs taken from four different on-
line social networks: RenRen [22] (RR-PKU), Facebook [47],
YouTube [27] and Flickr [26]), which were introduced in Sec-
tion 4.2. Table 1 shows their high-level characteristics.

Gathering and generating workload traces Gathering
profile viewing traces for large social networks is rather dif-
ficult, as it requires explicit cooperation from social network
site operators. Unfortunately, many OSN operators are re-
luctant to share such traces due to competitive and privacy
concerns [34]. Thus, we were able to obtain a profile viewing
trace for the RR-PKU [22] network only.

As a result, we design a workload generator that repro-
duces the key features of the original RR-PKU profile view-
ing trace that we observed in Section 4. We focus on two
features that capture the correlation between profile view
request/receiver user degree and the number of views per
user, and the locality of profile views.

It is difficult to preserve the correlation between both
requester and receiver user degrees and number of inter-
actions while ensuring the locality of interactions because
of varying degree distribution and path length distribution
across different networks. Instead, we generated two syn-
thetic traces: a receiver trace that preserves the correlation
between the receiver user degree and number of received
views while ensuring the locality of interaction, and a re-

quester trace that preserves the correlation corresponding to
requester user degree and number of requests made while
ensuring locality of interaction. Due to space constraints,
we only present results for the receiver trace. Results for
requester traces are similar and are shown in our extended
technical report [31]. The high level statistics of the receiver
trace workloads are shown in Table 3.

One concern with our trace generation is that if the social
networks are sparse and have very high average path length,
the generated trace may not ensure locality of interaction
while preserving the correlation between user degree and
number of interactions. We cross check whether our traces
preserve the intended key features. We do this by testing
whether the newly generated traces preserve the two key fea-
tures we aim to reproduce: (i) locality of interactions and

(ii) the correlation between user degree and number of profile
views received. Both of these two features for the synthetic
traces match quite closely (results not shown) with the orig-
inal RR-PKU trace indicating that the synthetic workload
generator retains the key properties of the original work-
load. We used 5 synthetic traces generated using different
random seeds for each of the Facebook, Youtube and Flickr
networks.

Crawler’s attack topology We model crawlers by sim-
ulating that the crawler has compromised the accounts of
random users in the social network. We simulate 1, 10, 100
and 1,000 corrupted user accounts in the RR-PKU, Face-
book, YouTube and Flickr networks. As the crawler obtains
access to more corrupted accounts in the network, he also
acquires many more attack links to honest users. The vary-
ing strength of crawlers on different networks was discussed
in Section 4.2 and Table 2.

Crawler’s profile crawling trace To generate the crawler
crawling workload, we follow the same crawler model dis-
cussed in Section 4.2. This models a crawler that achieves
the lowest average path distance to the crawled profiles, and
is the optimal attacker strategy.

Unless otherwise noted, all results are the average across
25 different runs of our simulator (5 synthetic honest user
profile viewing traces, each paired with 5 synthetic crawler
traces).

6.2 Trace-driven simulation methodology
To evaluate the performance of Genie, first we built a max-
flow path based trace driven simulator. We use the social
graph connecting the users to simulate a credit network. For
each profile view in the workload trace, our simulator checks
if there exists a set of paths in the credit network that allow
p − 1 units of credits to flow between the viewer and the
viewee, where p denotes the shortest path length separating
the viewer and the viewee. To this end, our simulator com-
putes the max-flow paths [35] between the viewer and the
viewee. If the max-flow is larger than p− 1, then the profile
view is allowed and if it is not, then the view is flagged. If
the profile view is allowed, the credits along the links of the
max-flow paths are updated as described in Section 5.

A key input to our simulator is the credit refreshment
rate, which denotes the rate at which exhausted credits on
the links are replenished. We set the credit refreshment
rate in our simulator by tuning the following two parame-
ters described in Section 5.2: (i) the initial credit value, i,
assigned to each link in the network at the beginning of the
simulation, and (ii) the credit rebalance rate, rb, which re-
stores some of the exhausted credits on the links after each
time step, say of duration t. We set the parameter rb to
1, which has the effect of restoring the credit values on all
links to i after every refresh time period (2 weeks in our ex-
periments). So i

t
represents the effective credit refreshment

rate, which determines the number of profile views accepted
both for crawlers and honest users. As the value of credit re-
freshment rate increases, more profile views will be accepted
from both crawlers and honest users. Thus, the key evalua-
tion challenge that we address using our simulator is: Does

there exist a credit replenishment rate that significantly slows

down crawlers, while flagging few views by honest users?

For a real-life deployment the OSN operator can estimate
initial credits by using past browsing activity of users. The

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

0 0.001 0.01 0.1 1 10 100

C
o

m
p

le
m

en
ta

ry
 C

D
F

Imbalance

Figure 6: Complementary cumulative distribution
of the imbalance of RR-PKU users (views are
weighted by cost function mentioned in Section 5).
Only 226 (0.7%) users have an imbalance greater
than 12.

operator can build a distribution of user activity based on
the imbalance between average number of profile views re-
quested and received (weighted by the cost function men-
tioned in Section 5) made per outgoing link per user. Then
the operator can pick an initial credit value/link from this
distribution so that most (e.g. 99.9%) users’ activity is al-
lowed, but a few profile views are flagged (probably from
super active users or crawlers). We check this methodology
with our current RR-PKU dataset. Our implicit assump-
tion here is that honest user behavior shows constant trends
over time. We show the weighted imbalance distribution in
Figure 6. From this figure we can estimate the number of
users affected at a given credit value. For example with a
credit value of 12, our estimate shows that views from 33,068
(99.3%) users will be allowed and 226 users will have some
views flagged. We will show in section 6.4 that our esti-
mate is quite good and indeed 275 users are flagged with
this particular credit setting.

Scaling simulations to large graphs While we were able
to run our max-flow path based simulator over the smaller
RR-PKU network with 33,000 users, we found it compu-
tationally expensive to scale our simulations to the much
larger YouTube and Flickr social networks with millions of
users, links, and profile views. The computational complex-
ity arises for three reasons: (i) even a single max-flow com-
putation over a large graph is expensive, the most efficient
algorithms for the maximum flow problem run in O(V 3) [17]
or O(V 2 log(E)) [13] time; (ii) we have to perform millions
of such computations, one for each profile view in the trace,
and (iii) even worse, the computations cannot be parallelized
and have to be performed online and in sequence, as the
max-flow computation for a profile view has to account for
credit changes on links in the network due to all prior profile
views in the workload trace.

To allow Genie to be deployed on much larger networks,
we leverage the recently proposed Canal [49] framework.
Canal speeds up computations over credit networks and en-
ables credit operations on very large-scale credit networks
(on the order of millions of users) with low latency (on the
order of a few milliseconds or less). Canal uses a novel land-
mark routing based technique to pre-compute paths with
available credit (between different users in the network) con-
tinuously in the background as new credit operations are
processed. Canal trades off accuracy for speed to achieve

Network Avg. time (ms) 95th percentile
time (ms)

RR-PKU [22] 0.16 0.78
Facebook [47] 0.21 0.86
Youtube [27] 0.46 1.45
Flickr [26] 0.65 1.41

Table 4: Average and 95th percentile time taken by
Canal implementation to process one view request.

this goal. It explores only a subset of all possible paths
between two users to complete a credit network operation
between them. Thus, Canal may not always find sufficient
paths with available credit between two users, even if such
a path exists. However, Canal can achieve over 94% accu-
racy on various large-scale social networks [49]. Using Canal
we were able to use Genie on data from online social net-
works including YouTube and Flickr that contain millions of
users and links. We show the latency for processing one pro-
file view with the Canal implementation of Genie in Table 4.
Our current Canal implementation runs on a single machine.
Results in [49] shows that, using a single machine with 48
GB RAM and 24 CPU cores, Canal can support operations
on graphs with over 220 million links. Canal could likely be
scaled to networks with a billion links using multiple ma-
chines and graph parallel processing frameworks [19,25].

Simulating Genie with CanalWe implemented Genie us-
ing the Canal library. While processing a profile view, Genie
asks Canal for the shortest path length between the viewer
and viewee. It should be noted that Canal can only provide
an approximate shortest path length because it uses a sub-
set of all possible paths between two users. Genie uses this
path length as the basis of charging for the view and then
queries Canal again for a set of paths from viewer to viewee
with sufficient credit values. If Canal returns a set of paths
then the view is allowed and Genie deducts credit along the
returned set of paths. Otherwise the view is flagged. Canal
requires two parameter settings to configure the amount of
path data to be pre-computed. We use the same settings4

used in the original Canal paper [49]. (These settings pro-
vided over 94% accuracy when applied to the Bazaar [35]
system.)

As Canal may fail to find sufficient credit when it exists,
but will not find credit that does not actually exist, deploy-
ing Genie with Canal provides an upper bound for the num-
ber of flagged profile views. We now examine how close the
Canal estimates are to the true level of flagged user activity.

To understand the effect of approximation error intro-
duced by Canal in terms of flagged honest user activities,
we compare the Canal implementation output with the out-
put from the max-flow path based technique. We use the
RR-PKU network for this part of the evaluation as the rel-
atively smaller size of RR-PKU enabled us to use the max-
flow path based technique. Figure 7 shows the percentage
of flagged honest user activity for the two techniques in the
presence of a crawler with 10 compromised accounts. As the
amount of credit available per refresh period increases, the
percentage of flagged activity decreases for both techniques.
On average, the absolute difference in flagged activities be-
tween the two techniques is only 0.7% of all user activities,

420 level-3 landmark universes

 0

 2

 4

 6

 8

 10

 4 8 12 16 20 24 28

%
 u

se
r

ac
ti

vi
ty

 f
la

g
g

ed

Credit threshold

Canal implementation
Max-flow path

Figure 7: Variation of the fraction of user activi-
ties flagged with different credit values in RR-PKU
in the presence of a crawler with 10 compromised
accounts. We compare the results obtained using
Canal implementation (red solid line) with those ob-
tained using the max-flow based technique (green
dotted line). The red solid line provides a close up-
per bound for the green line.

suggesting that Canal provides good accuracy. In the rest
of our evaluation we will present results using our Canal
implementation.

6.3 Limiting crawlers vs. flagging activity
We now switch our attention to the core tradeoff that is
being made as we select the appropriate credit refreshment
rate: namely, the amount of time it takes the crawler to
crawl the entire graph and the fraction of honest users’ ac-
tivity that is flagged. We have already observed that to
slow down crawlers effectively we need to replenish credits
at a slow rate. However, a limited rate of credit replenish-
ment opens up the possibility of honest users’ views getting
flagged. In this section, we explore the extent to which hon-
est users’ activity is flagged by Genie as it tries to limit
crawlers.

We ran our Canal implementation for various different
values of available credit per refresh period. For each re-
plenishment rate, we compute two metrics: (i) the time it
would take for a crawler to finish its crawl and (ii) the per-
centage of honest users’ activity that is flagged. We compare
these two metrics looking for a good tradeoff, where crawlers
are effectively slowed down, while good user activity is rarely
flagged. We present the basic tradeoff for our different social
networks in Figure 8.

For each social network, we show the results for crawlers
of different strengths. On YouTube and Flickr graphs with
more than 1 million users, we considered a crawler control-
ling up to 1,000 user accounts, while for RR-PKU with only
30,000 user accounts, we limited the crawler strength to 10
users. While the absolute number of compromised accounts
controlled by the crawler might seem small, it is worth not-
ing that the percentage of compromised users in these net-
works is still substantial as discussed earlier in section 4.2.

The plots show that it is possible to slow down crawls
sufficiently to force a crawler to spend several months to tens
of months to complete a single crawl. At the same time, the
percentage of flagged user activity can be held to less than
5%. In many instances, the flagged activity can be held
lower than 1%. Thus, there are two important take-aways
from these results: first, with Genie, a certain amount of
honest users’ activity will unavoidably be flagged. Second,

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity flagged

1 year

1 account (0.003%)
10 account (0.030%)

(a) RR-PKU

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity flagged

1 year

1 account (0.001%)
10 accounts (0.010%)

100 accounts (0.100%)

(b) Facebook

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity flagged

1 year

1 account (0.00008%)
10 accounts (0.00080%)

100 accounts (0.00800%)
1000 accounts (0.08000%)

(c) Youtube

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity flagged

1 year

1 account (0.00006%)
10 accounts (0.00060%)

100 accounts (0.00600%)
1000 accounts (0.06000%)

(d) Flickr

Figure 8: Trade-off between fraction of user activity flagged and time taken to finish a complete crawl with
crawlers of varying strengths over different social network graphs. We measure crawler strength by the total
number as well as the percentage (shown in parentheses) of compromised accounts in the network under
control of the crawler. We conservatively allowed crawlers to exhaust the credits on links before allowing any
honest users’ activity.

unless the crawler is powerful and possesses over 0.1% of the
accounts, the impact of the crawler on honest users is small.

6.4 Alternate strategies forflaggedusers
We observed in the previous section that a certain amount
of blockage of honest users’ activity is unavoidable. In sec-
tion 5.2, we discussed that the OSN operator can make a
choice based on some policy, once the profile view is flagged
(or blocked) by Genie. Normally, the OSN operator would
deny or delay the view to slow down the crawler’s activity.

We now pose a simple question: can users do anything to
minimize the amount of their flagged activity? To answer
this question, we first investigate the flagged views in more
detail. We then propose some recourse available to users
with flagged activity.

We analyze the set of flagged activities in our extensive
RR-PKU simulation, where we compute max-flow paths to
verify if a profile view has to be allowed. We intentionally
focused on max-flow based simulations because of the cer-
tainty that profile views flagged during such simulations are
flagged due to lack of credit in the network.

For the analysis in this section, we focus on one particular
simulation experiment with credit value 12, where 2.6% (or
2,574 activities) of the user activities are flagged and the
crawler controlling 10 compromised accounts needs 8 months
to complete the crawl.

A profile view can be flagged for one of three reasons: (i)
the profile viewer runs out of credit on all links connected to
itself (i.e., source blocked), (ii) the credit on links connecting
the profile viewee is exhausted (i.e., destination blocked), or
(iii) the view is flagged due to credit exhaustion somewhere

in the middle of the network. Strikingly, only 190 out of
2,574 (7%) flagged views (i.e., 0.18% of all views) are flagged
due to lack of credit on links in the middle of the network.
The remaining 2,384 (out of which 1,961 views were blocked
at the source) views which includes 93% of the flagged ac-
tivities is due to credit exhaustion on links directly next to
the viewers or the viewees. On examining the degrees of
these viewers and viewees who are flagged, we find that 96%
of them have degree 1 and 99% of them have degree of 5 or
less. That is, most activities flagged near the source or des-
tination is due to source or destination users having too few
friends and lying on the fringes of the network graph. These
results support our observation in Section 5 that social net-
work graphs are sufficiently well connected in their core that
most flagged activity (and credit exhaustion) occurs close to
the fringes.

Next, we investigated the amount of flagged activities for
individual users. We found that a small number of users
are bearing the brunt of the flagged activities. 1,808 of the
2,574 (or 70%) of the flagged profile views are made by 3
users in the network. These are the same super-active users
mentioned in Section 4.1. Interestingly, all 3 users issue two
orders of magnitude more views than an average RR-PKU
user and they are all flagged near the source. Further inves-
tigation suggests that these three users exhibit crawler-like
characteristics with more than 60% of viewed profiles lying
beyond their 2-hop neighborhood. Ignoring these three users
(who bear strong resemblance to crawlers), the percentage
of total flagged activity falls to less than third of its orig-
inal value, which is already a low percentage (2.6%) of all
activity.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 8 12 16 20

C
D

F

#Friends added

Figure 9: Cumulative distribution of how many ex-
tra links flagged RR-PKU users needed for com-
pleting their activities. Evidently majority of them
needed just a few more links.

For the remaining users who contribute to only 30% of
flagged views, we have already observed that most (99%) of
the users have degree less than five. These are users who
got flagged because their low number of friend links are in-
sufficient to support the reasonable number (on average 6
views) of views they issued. However, we argue that there
is a simple and natural recourse available to them: they can
simply form more links in the online social network.

In order to test this hypothesis, we perform a simple
experiment. We re-run the Genie simulation where each
flagged user (i.e., 275 users falling in the low degree cat-
egory), establishes a friend link to the destination of the
flagged view (i.e requester sends a link request and the re-
ceiver approves it). This immediately leads to the accep-
tance of that view. At the end of the simulation, we look at
the number of friend links established by each flagged user
so that all the earlier flagged views could now be accepted.

Figure 9 shows the distribution of number of friend links
established versus the ranked set of users. A significant ma-
jority (269 out of 275 or 97%) of the flagged users can get
their views accepted by only establishing very few links (less
than 4). Thus, most of the honest user activity flagged by
Genie would be accepted if the users of the flagged views
spent a minimal effort to establish a small number of friends.
In fact, if Genie were to be deployed, it would naturally in-
centivize users to form a few more friend links. Given that
many OSN sites already explicitly encourage their users to
form more friend links, we believe that the overhead from
Genie would be acceptable for a majority of users.

7. CONCLUSION
In this paper, we address the problem of preventing large-
scale crawls in online social networks, and present Genie, a
system that can be deployed by OSN operators to thwart
crawlers. Based on trace data from the RenRen OSN, we
show that the browsing patterns of honest users and crawlers
are very different. While most honest users view the pro-
files of a modest number of users who tend to be nearby
in the social network, even a strong, strategic crawler must
view profiles of users who are further away. Genie exploits
this fact by limiting the rate of profile views based on the
connectivity and social network distance between a profile
viewer and viewee. An experimental evaluation on multiple
OSNs shows that Genie frustrates large-scale crawling while
rarely impacting browsing of honest users; the few honest

users who are affected can recover easily by adding a few
additional friend links.

Acknowledgements
We thank our shepherd Athina Markopoulou and the anony-
mous reviewers for their helpful comments. We also thank
Ben Zhao and Christo Wilson for their assistance with
the RR-PKU trace. This research was supported by the
Max Planck Society and NSF grants IIS-0964465 and CNS-
1054233.

8. REFERENCES
[1] 45,000 Facebook accounts compromised: What to know.

http://bit.ly/TUY3i8.
[2] Crawl packages for social networks. http:

//80legs.com/crawl-packages-social-networks.html.
[3] 83 million Facebook accounts are fakes and dupes.

http://bit.ly/Np3seb.
[4] A standard for robot exclusion.

http://www.robotstxt.org/orig.html, 1994.
[5] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford.

Captcha: Using hard AI problems for security. In
Proceedings of the 22nd Annual International Conference
on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’03), 2003.

[6] L. Backstrom, E. Bakshy, J. M. Kleinberg, T. M. Lento,
and I. Rosenn. Center of attention: How Facebook users
allocate attention across friends. In Proceedings of the 5th
International AAAI Conference on Weblogs and Social
Media (ICWSM’11), 2011.

[7] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida.
Characterizing user behavior in online social networks. In
Proceedings of the 9th ACM/USENIX Internet
Measurement Conference (IMC’09), 2009.

[8] C. Canali, M. Colajanni, and R. Lancellotti. Data
acquisition in social networks: Issues and proposals. In
Proceedings of the International Workshop on Services and
Open Sources (SOS’11), 2011.

[9] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi.
Measuring user influence in twitter:The million follower
fallacy. In Proceedings of the 4TH International AAAI
Conference on Weblogs and Social Media(ICWSM’10),
2010.

[10] P. Dandekar, A. Goel, R. Govindan, and I. Post. Liquidity
in credit networks: A little trust goes a long way. In
Proceedings of the 12th ACM Conference on Electronic
Commerce (EC’11), 2011.

[11] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil nodes
using social networks. In Proceedings of the 16th Network
and Distributed System Security Symposium (NDSS’09),
2009.

[12] Details of 100 million Facebook users published online.
http://on.msnbc.com/qvLkX2.

[13] E. A. Dinic. An algorithm for the solution of the max-flow
problem with the polynomial estimation. Doklady Akademii
Nauk SSSR, 1970.

[14] D. do B. DeFigueiredo and E. T. Barr. Trustdavis: A
non-exploitable online reputation system. In Proceedings of
the 7th IEEE International Conference on E-Commerce
Technology (IEEE E-Commerce’05), 2005.

[15] A. Ghosh, M. Mahdian, D. M. Reeves, D. M. Pennock, and
R. Fugger. Mechanism design on trust networks. In
Proceedings of the 3rd International Workshop on Internet
and Network Economics (WINE’07), 2007.

[16] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou.
Practical recommendations on crawling online social
networks. In Selected Areas in Communications, IEEE
Journal on Measurement of Internet Topologies, 2011.

[17] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum flow problem. In Proceedings of the 18th annual
ACM Symposium on Theory of Computing (STOC’86),
1986.

[18] Google Plus rate limiting. https:
//developers.google.com/console/help/#cappingusage.

[19] D. Gregor and A. Lumsdaine. The parallel BGL: A generic
library for distributed graph computations. In Proceedings
of the Parallel Object-Oriented Scientific Computing
(POOSC), 2005.

[20] Hacker proves Facebook’s public data Is public.
http://tcrn.ch/9JvvmU.

[21] Inside a Facebook botnet. http://bit.ly/JSeRYs.
[22] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai,

and B. Y. Zhao. Understanding latent interactions in online
social networks. In Proceedings of the 10th ACM/USENIX
Internet Measurement Conference (IMC’10), 2010.

[23] E. A. Kolek and D. Saunders. Online disclosure: An
empirical examination of undergraduate Facebook profiles.
Journal of Student Affairs Research and Practice, 2008.

[24] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove.
Analyzing Facebook privacy settings: User expectations vs.
reality. In Proceedings of the 11th ACM/USENIX Internet
Measurement Conference (IMC’11), 2011.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In Proceedings of the
International Conference on Management of Data
(SIGMOD’10), 2010.

[26] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Growth of the Flickr social network.
In Proceedings of the 1st ACM SIGCOMM Workshop on
Social Networks (WOSN’08), 2008.

[27] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online
social networks. In Proceedings of the 7th ACM/USENIX
Internet Measurement Conference (IMC’07), 2007.

[28] A. Mislove, A. Post, K. P. Gummadi, and P. Druschel.
Ostra: Leveraging trust to thwart unwanted
communication. In Proceedings of the 5th Symposium on
Networked Systems Design and Implementation
(NSDI’08), 2008.

[29] A. Mislove, B. Viswanath, K. P. Gummadi, and
P. Druschel. You are who you know: Inferring user profiles
in online social networks. In Proceedings of the 3rd ACM
International Conference of Web Search and Data Mining
(WSDM’10), 2010.

[30] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing
time of social graphs. In Proceedings of the 10th
ACM/USENIX Internet Measurement Conference
(IMC’10), 2010.

[31] M. Mondal, B. Viswanath, A. Clement, P. Druschel, K. P.
Gummadi, A. Mislove, and A. Post. Defending against
large-scale crawls in online social networks. Technical
Report 2011-006, MPI-SWS, November 2011.
http://www.mpi-sws.org/tr/2011-006.pdf.

[32] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.
Voelker, and S. Savage. Re: Captchas: Understanding
CAPTCHA-solving services in an economic context. In
Proceedings of the 19th USENIX conference on Security
(SEC’10), 2010.

[33] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and
G. M. Voelker. Dirty jobs: The role of freelance labor in
web service abuse. In Proceedings of the 20th USENIX
conference on Security (SEC’11), 2011.

[34] Netflix-AOL data leak. http://cnet.co/6JiHr8.
[35] A. Post, V. Shah, and A. Mislove. Bazaar: Strengthening

user reputations in online marketplaces. In Proceedings of
the 8th Symposium on Networked Systems Design and
Implementation (NSDI’11), 2011.

[36] Public posting now the default on Facebook.
http://bit.ly/RkoIWR.

[37] D. Quercia and S. Hailes. Sybil attacks against mobile
users: Friends and foes to the rescue. In Proceedings of the
29th Conference on Information Communications
(INFOCOM’10), 2010.

[38] Rate limiting for yahoo! search web services.
http://developer.yahoo.com/search/rate.html.

[39] Renren. http://www.renren.com.
[40] Spokeo privacy and safety concerns. http://en.wikipedia.

org/wiki/Spokeo#Privacy_and_safety_concerns.
[41] T. Stein, E. Chen, and K. Mangla. Facebook immune

system. In Proceedings of the 4th Workshop on Social
Network Systems (SNS’11), 2011.

[42] K. Strater and H. R. Lipford. Strategies and struggles with
privacy in an online social networking community. In
Proceedings of the 22nd British HCI Group Annual
Conference on People and Computers: Culture, Creativity
(BCS-HCI’08), 2008.

[43] The day has come: Facebook pushes people to Go public.
http://rww.to/7Zhc6N.

[44] N. Tran, J. Li, L. Subramanian, and S. S. Chow. Optimal
Sybil-resilient node admission control. In Proceedings of the
30th Conference on Information Communications
(INFOCOM’11), 2011.

[45] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient
online content voting. In Proceedings of the 6th Symposium
on Networked Systems Design and Implementation
(NSDI’09), 2009.

[46] Twitter rate limiting. https://dev.twitter.com/docs/
rate-limiting-faq#measurement.

[47] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi.
On the evolution of user interaction in Facebook. In
Proceedings of the 2nd ACM SIGCOMM Workshop on
Social Networks (WOSN’09), 2009.

[48] B. Viswanath, M. Mondal, A. Clement, P. Druschel, K. P.
Gummadi, A. Mislove, and A. Post. Exploring the design
space of social network-based Sybil defense. In Proceedings
of the 4th International Conference on Communication
Systems and Network (COMSNETS’12), 2012.

[49] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove,
and A. Post. Canal: Scaling social network-based Sybil
tolerance schemes. In Proceedings of the 7th European
Conference on Computer Systems (EuroSys’12), 2012.

[50] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove.
An analysis of social network-based Sybil defenses. In
Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM’10),
2010.

[51] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and
B. Y. Zhao. User interactions in social networks and their
implications. In Proceedings of the 4th European
Conference on Computer Systems (EuroSys’09), 2009.

[52] C. Wilson, A. Sala, J. Bonneau, R. Zablit, and B. Y. Zhao.
Don’t tread on me: Moderating access to osn data with
spikestrip. In Proceedings of the 3rd ACM SIGCOMM
Workshop on Social Networks (WOSN’10), 2010.

[53] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao.
SybilLimit: A near-optimal social network defense against
Sybil attacks. In Proceedings of the IEEE Symposium on
Security and Privacy (IEEE S&P’08), 2008.

[54] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: Defending against Sybil attacks via social
networks. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM’06), 2006.

